Noncausal Modeling and Closed-Loop Optimal Input Design
Cross-Directional Processes of a Paper Machine

Qiugang Lu, Lee Rippon, Bhushan Gopaluni, Michael Forbes, Philip Loewen, Johan Backstrom and Guy Dumont

The University of British Columbia
Pulp and Paper Center

May 25, 2017
Outline

1. Introduction
2. Cross-Directional Process
3. Causal Scalar Representation
4. Optimal Input Design
5. Case Study
6. Summary
Introduction

The paper machine

- Transforms a slurry of pulp fiber into a uniform sheet of paper through a series of dewatering and pressing operations.
- Can be over 100 m long in the machine-direction (MD), producing a sheet over 10 m wide in the cross-direction (CD) at rates exceeding 30 m/s [1].

Figure 1: Schematic of a Fourdrinier paper machine [3]
Introduction

CD actuators

- Spatial variations are controlled by CD actuators distributed across the width of the paper machine.
- Headbox dilution profiling valves and induction heating profilers are two primary CD actuators.

Figure 2: Headbox dilution valves (top) and induction profilers (bottom)
Cross-Directional Process

Steady-state model

\[y_{ss} = G_{ss}u_{ss} + \Phi e_{ss}, \]

(1)

where each column of \(G_{ss} \in \mathbb{R}^{m \times m} \) is the sampled impulse response (IR) of a single actuator and all actuators are assumed to have identical and symmetric IR coefficients.

\[K_{ss} = -Q_3^{-1} \alpha_K G_{ss} Q_1, \]

(2)

where \(Q_1 \) and \(Q_3 \) are weighting matrices that penalize deviation from set-point and steady-state MV offset, respectively.

Figure 3: Closed-loop control system
Cross-Directional Process

Closed-loop

- MPC (K_{ss}) assumed to operate linearly with no active constraints.
- We have the following closed-loop CD process:

$$y_{ss} = (I + G_{ss}K_{ss})^{-1} G_{ss}K_{ss}r + (I + G_{ss}K_{ss})^{-1} v_{ss}, \quad (3)$$
$$u_{ss} = (I + K_{ss}G_{ss})^{-1} r - (I + K_{ss}G_{ss})^{-1} K_{ss}v_{ss}, \quad (4)$$

where $r \in \mathbb{R}^m$ is the spatial excitation signal to be designed.

- **Challenge:** Large input-output dimensions and large number of parameters in G_{ss}.

- **Solution:** Use a noncausal scalar transfer function to represent steady-state CD actuator response and reduce complexity.
Causal Scalar Representation

Noncausal Scalar Model

- Scalar noncausal finite IR (FIR) model from any column of G_{ss} represents spatial impulse response of an actuator, i.e.,

$$g(\lambda, \lambda^{-1}) = g_{-n}\lambda^{-n} + \ldots + g_0 + \ldots + g_n\lambda^n,$$

where $n < m$ is a truncated index representing significant coefficients and $g_i = g_{-i}$.

- n is large so a parsimonious noncausal transfer function is used to approximate $g(\lambda, \lambda^{-1})$ as

$$\bar{g}(\lambda, \lambda^{-1}) = \frac{B(\lambda)B(\lambda^{-1})}{A(\lambda)A(\lambda^{-1})},$$

$$B(\lambda^{-1}) = b_0 + b_1\lambda^{-1} + \ldots + b_{n_b}\lambda^{-n_{b}},$$

$$A(\lambda^{-1}) = 1 + a_1\lambda^{-1} + \ldots + a_{n_a}\lambda^{-n_{a}},$$

where n_a and n_b are the orders of $A(\lambda^{-1})$ and $B(\lambda^{-1})$, respectively.
Similarly for \(k(\lambda, \lambda^{-1}) \) we have

\[
\bar{k}(\lambda, \lambda^{-1}) = \frac{F(\lambda)F(\lambda^{-1})}{E(\lambda)E(\lambda^{-1})},
\]

\[F(\lambda^{-1}) = f_0 + f_1 \lambda^{-1} + \ldots + f_{nf} \lambda^{-nf},\]

\[E(\lambda^{-1}) = 1 + e_1 \lambda^{-1} + \ldots + e_{ne} \lambda^{-ne},\]

where \(n_e \) and \(n_f \) are the orders of \(E(\lambda^{-1}) \) and \(F(\lambda^{-1}) \), respectively.

High dimensional MIMO steady-state closed-loop model replaced by scalar noncausal transfer functions, i.e.,

\[
y(x) = \frac{\bar{g}}{1 + \bar{g} k} r(x) + \frac{1}{1 + \bar{g} k} v(x),
\]

\[
u(x) = \frac{1}{1 + \bar{g} k} r(x) - \frac{\bar{k}}{1 + \bar{g} k} v(x),
\]

where \(x \) stands for the spatial coordinate.
Consider the following noncausal Box-Jenkins model:

\[
y(x) = \frac{M(\lambda)M(\lambda^{-1})}{N(\lambda)N(\lambda^{-1})} r(x) + \frac{R(\lambda)R(\lambda^{-1})}{S(\lambda)S(\lambda^{-1})} e(x),
\]

(14)

where \(\{e(x), x = 1, \ldots, m\}\) is a Gaussian white noise sequence.

Assuming all polynomials have no zeros on the unit circle and are minimum phase, there exist causal polynomials \(\tilde{M}_y(\lambda^{-1}), \tilde{N}_y(\lambda^{-1}), \tilde{R}_y(\lambda^{-1}), \tilde{S}_y(\lambda^{-1})\), a white noise sequence \(\{\tilde{e}_y(x)\}\) and a stochastic sequence \(\{\tilde{y}(x)\}\) with the same spectra as \(\{y(x)\}\) such that,

\[
\tilde{y}(x) = \frac{\tilde{M}_y(\lambda^{-1})}{\tilde{N}_y(\lambda^{-1})} r(x) + \frac{\tilde{R}_y(\lambda^{-1})}{\tilde{S}_y(\lambda^{-1})} \tilde{e}_y(x),
\]

(15)

where \(N(\lambda)N(\lambda^{-1})\pi_N = N^2(\lambda^{-1}), \tilde{N}(\lambda^{-1}) = N^2(\lambda^{-1})\) and the same also holds for \(M(\lambda), R(\lambda),\) and \(S(\lambda)\).
Causal Scalar Representation

Causal Equivalent Model

- We have \(\tilde{y}(x) = \frac{\pi_M}{\pi_N} y(x) \), \(\tilde{e}(x) = \frac{\pi_M \pi_S}{\pi_N \pi_R} e(x) \) where \(\pi_N = \prod_i \frac{\lambda^{-1} - \beta_i}{\lambda - \beta_i} \) and \(\pi_M, \pi_R \) and \(\pi_S \) are defined in a similar fashion.

- The input signal \(u(x) \) can also be represented through causal filters, i.e.,

\[
\tilde{u}(x) = \frac{\tilde{M}_u(\lambda^{-1})}{\tilde{N}_u(\lambda^{-1})} r(x) + \frac{\tilde{R}_u(\lambda^{-1})}{\tilde{S}_u(\lambda^{-1})} \tilde{e}_u(x),
\]

(16)

where \(\{ \tilde{u}(x) \} \) and \(\{ u(x) \} \) have the same spectra.
Consider the noncausal model (θ is the parameter in compact set Ω)

$$y(x) = \bar{g}(\lambda, \lambda^{-1}, \theta)u(x) + \bar{h}(\lambda, \lambda^{-1}, \theta)e(x),$$ \hspace{1cm} (17)

where $e(x)$ is Gaussian white noise and data is generated in closed-loop and all relevant transfer functions are uniformly stable.

Then, as $m \to \infty$ (m is the number of measurement bins),

$$\sup_{\theta \in \Omega} |L^m_{\hat{y}}(\hat{y}) - L^m_y(y)| \xrightarrow{w.p.1} 0,$$ \hspace{1cm} (18)

$$\sup_{\theta \in \Omega} \left\| \frac{dL^m_{\hat{y}}(\hat{y})}{d\theta} - \frac{dL^m_y(y)}{d\theta} \right\| \xrightarrow{w.p.1} 0,$$ \hspace{1cm} (19)

where $L^m_y(y)$ is the noncausal log-likelihood function and $L^m_{\hat{y}}(\hat{y})$ is the causal-equivalent log-likelihood function [4].

Therefore, the parameter covariances coincide and we may perform optimal input design based on the causal-equivalent model.
Optimal Input Design

- Split \(\theta \) as \(\theta = [\rho^T \eta^T]^T \) and focus on process model parameters \((\rho) \).

- **Objective:** minimize a function of the parameter covariance of \(\rho \), \(P_\rho \), subject to input and output power constraints, i.e.,

\[
\begin{align*}
\min_{\Phi_r(\omega)} & \quad f_0(P_\rho(\Phi_r(\omega))) \\
\text{s.t.} & \quad \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_u(\omega) d\omega \leq c_u, \\
& \quad \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_y(\omega) d\omega \leq c_y,
\end{align*}
\]

(20)

(21)

(22)

where \(c_u \) and \(c_y \) are the power limits on input and output signals.

- Finite dimensional parameterization of \(\Phi_r \), i.e.,

\[\Phi_r(\omega) = \sum_{k=-m_c}^{m_c} c_k e^{-j\omega k} \geq 0, \quad \forall \omega, \]

(23)

where \(c_k, k = -m_c, \ldots, m_c \), are the parameters, and \(m_c \) is the selected number of parameters [5].

- Choosing \(f_0(\cdot) \) to be convex the resulting optimization is convex.
Spatial actuator response is nonlinear with four parameters, i.e., gain (γ), width (ξ), divergence (β), attenuation (α) [2].

Comparing three methods

1. **Optimal input design:** causal-equivalent model, excitation amplitude constrained to $\leq \pm 10$.
2. **Bump excitation:** amplitudes alternate between $+10$ and -10.
3. **White noise:** designed with the same variance as the optimal input.

For computational efficiency model orders are specified as $n_b = n_f = 1$ and $n_a = n_e = 2$.

Process model is identified in 100 Monte-Carlo simulations.
Case Study

- High order models can improve accuracy with a computation cost.

Figure 4: IR of a single actuator (red) and noncausal estimate (blue).
Case Study

- Large spectrum amplitude in the cross-over frequency enables better excitation.

Figure 5: Optimal input spectrum from causal-equivalent model
Case Study

Impulse Responses of the Process Under Optimal Input

![Graph showing impulse responses under optimal input]

Impulse Responses of the Process Under Bumped Input

![Graph showing impulse responses under bumped input]

Impulse Responses of the Process Under White Noise Input

![Graph showing impulse responses under white noise input]
Summary

- Averaged errors ($\bar{\epsilon}$)
 1. Optimal input design: $\bar{\epsilon} = 0.0643$
 2. Bump excitation: $\bar{\epsilon} = 1.3344$
 3. White noise: $\bar{\epsilon} = 0.4479$

- **Noncausal model**: circumvents large dimension of MIMO CD process.

- **Causal-equivalent modeling**: facilitates traditional optimal input design methods.

