
Stable Soft Sensor Modeling for Industrial Systems
1st Liang Cao

Chemical and Biological Engineering
University of British Columbia

Vancouver, BC, V6T 1Z3, Canada
clubc19@mail.ubc.ca

2nd Yankai Cao
Chemical and Biological Engineering

University of British Columbia
Vancouver, BC, V6T 1Z3, Canada

yankai.cao@ubc.ca

3rd R. Bhushan Gopaluni
Chemical and Biological Engineering

University of British Columbia
Vancouver, BC, V6T 1Z3, Canada

bhushan.gopaluni@ubc.ca

Abstract—Learning trustworthy models is essential for ma-
chine learning tasks, as many researchers have revealed the vul-
nerability of machine learning models, especially when the funda-
mental independent and identically distributed (IID) assumption
is not satisfied. Building a trustworthy model is promising when
training on big representative data but fails to work with limited
data. In this paper, we focus on solving small sample problems
and unstable prediction problems in machine learning. First, to
deal with small sample problems, we propose using a uniform
manifold approximation and projection (UMAP) algorithm to
generate high-quality virtual samples. Then, with the generated
big data and original small data, we use the stable learning
method to achieve stable predictions. In addition to a detailed
description of the UMAP algorithm and the stable learning algo-
rithm, we also discuss the corresponding theoretical explanations
and implementation details. Finally, several comparison studies
are implemented on the Tennessee Eastman benchmark process
to validate the effectiveness of the proposed method.

Index Terms—trustworthy model, small sample, UMAP, stable
learning, soft sensor

I. INTRODUCTION

The performance of a machine learning model is largely
dependent on the quality and quantity of data [1]. A common
practice is to feed large volumes of data to an algorithm and
hope that it provides the best possible model. However, in
real applications, data shortage is inevitable due to missing
values, high-dimension space, noise, and many other reasons
[2]. Data shortage makes it difficult to build an accurate model
and this is often referred to as the small sample problem [3].
Few Shot Learning (FSL) is a common approach that builds
models with limited data [4]. FSL uses a pre-trained/pre-tuned
model to rapidly generalize to new tasks that contain only a
few samples with supervised information. However, in a large
number of real applications, the pretrained/pretuned model is
not readily available.

Virtual Sample Generation (VSG) is another effective ap-
proach for small sample problem [5], [6]. VSG is an approach
that generates virtual samples according to the distribution
of available samples. There are several ways to generate
virtual samples, including resampling [7], generative model
[5], and dimension reduction [8]. The dimension reduction
method is very powerful for high-dimensional virtual sample
generation and we choose dimension reduction to generate
virtual samples. The reason is that the distribution of data
in high-dimensional space is usually very complex and it is

difficult to extract accurate distribution information in high-
dimensional space to generate virtual samples.

As shown in Figure 1, the dimension reduction is mainly
classified into two groups, matrix factorization [9] and neigh-
bor graphs [8], [10]. The basic idea of matrix factorization
is to find two (or more) matrices whose products best ap-
proximate the original matrix. The neighbor graphs are based
on the nearest-neighbor search to find a low-dimensional
representation of the data, in which the distances in the low-
dimensional space follow the distances in the original high-
dimensional space. UMAP is a state-of-the-art neighbor graph
algorithm and has excellent feature extraction performance [8].
In this work, we use UMAP to obtain the representation of
the samples in a low-dimensional space, then generate virtual
samples in a low-dimensional space, and finally project to a
high-dimension space to get virtual samples.

Fig. 1. Classification of dimension reduction algorithms

In machine learning algorithms, the same distribution of
training data and test data ensures the predictive performance
of the model for unknown test data sets. However, in practical
applications, the data distribution of the unknown test set
cannot be the same as that of the training set, which violates
the fundamental assumption that training and testing data
are IID [11]–[13]. This issue usually leads to inconsistent
predictions of the model on different test sets. Although
modern machine learning techniques have achieved significant
success in many application areas, the drawback of not being
able to guarantee prediction performance limits their utility.
To address this challenge, some scholars proposed the concept

of stable learning that uses causality to guarantee prediction
consistency even with out-of-distribution (OOD) test data sets
[14]. Since causality is invariant across different distributions,
it is obvious that prediction using causal variables is stable.

Stable learning algorithms can be thought of as feature
selection mechanisms based on regression coefficients [15].
Assuming that one wants to predict a target variable with a set
of variables, it is well known that some variables in the set may
not provide useful information for modeling and in some cases
degrade the model. Usually, a subset of variables contains all
the useful information and that subset is called the Markov
blanket [16]. The definition of Markov blanket comes from
the structural causal model framework, which is a conceptual
framework that describes the causal mechanisms of a system
[17]. Stable learning algorithms are essentially aiming to find
a Markov blanket to guarantee the generalization ability of the
model in OOD cases.

Several efficient stable learning algorithms already exist
in the literature. [13] proposed a framework to decorrelate
every two features by minimizing the covariance matrix. [11]
proposed a sample reweighting method to decorrelate all
features by fitting a binary probabilistic classifier. [12] devel-
oped a deep learning model, called StableNet, which extends
linear stable learning frameworks to nonlinear frameworks
by adopting random Fourier features. However, these stable
learning methods are generally affected by the sample size.
They typically perform well with big data but fail when data
are limited. Therefore, we need to propose a new method to
improve the stable learning algorithm when the sample size is
small.

The present work aims to introduce stable learning into the
analysis of industrial process modeling with a small sample
size. With few informative samples, we propose to use UMAP
to generate virtual samples according to the distribution of
original data. Then, stable learning is utilized with the enlarged
dataset to achieve consistent prediction. Unlike traditional
stable learning methods, the proposed algorithm performs well
even when data are limited. The illustrative case study shows
that the proposed stable learning model performs well even
when the distributions of training and test data are different.

This article is organized as follows. In section 2, we
propose new approaches for generating virtual samples and
provide detailed implementation procedures with theoretical
explanations. In section 3, we provide a review of the stable
learning algorithm and discuss the theoretical aspects of stable
learning. In section 4, we present case studies using the well-
known Tennessee Eastman benchmark process to verify the
effectiveness of the proposed methodology, and finally, in
section 5 we present a brief summary.

Notation: Throughout the paper, we define X as a n × p
matrix, n as the number of training samples, p as the number
of features, x as the input vector, xij as the feature j in the
training sample i, yi as the label of a sample i, y as the list of
n labels that containing the label yi in position i, xi as the list
of all features for a sample i with p elements xi1, xi2, ..., xip.
For virtual sample generation, we define X̃ as m× p′ matrix,

m as the number of virtual samples (normally, m ≫ n), X̃ij

as feature j in the training sample i, ỹ as the list of m labels
that containing the label ỹi in position i.

II. VIRTUAL SAMPLE GENERATION

The virtual sample generation task can be defined as fol-
lows: Given the original data with input X and label y, the task
is to generate virtual sample input X̃ and label ỹ according to
the distribution of the original data.

A. Generation of low-dimensional virtual samples inputs
based on UMAP

1) Introduction of UMAP: The theoretical basis of UMAP
is mainly manifold theory and topological analysis. The two
steps in the UMPA algorithm are graph construction and
graph projection. The first step of UMAP is to build a
weighted k-neighbour graph in high-dimensional space. For
input X with a metric (dissimilarity measurement) d, given
a hyper-parameter k, we compute the k nearest neighbors set
{xi1 , · · · , xik} of each xi under the metric d. If k is big,
the global structure is better preserved. If k is small, the
local structure is better preserved. Therefore, k can provide
the balance between the preservation of local and global
structures.

For each xi, we define ρi as the distance from each i− th
data point to its first nearest neighbor (minimum distance) and
the expression can be given as follows:

ρi = min
{
d
(
xi, xij

) ∣∣1 ≤ j ≤ k, d
(
xi, xij

)
> 0

}
(1)

ρi varies from point to point, which guarantees the local
connectivity of the manifold.

The normalization factor in UMAP is used to scale the
distances between data points in the high-dimensional space
to the distances in the low-dimensional space. This helps to
preserve the relative distances between data points as much
as possible, while also reducing the dimensionality of the
data. Here, define σi as a normalization factor and set σi to

be the value such that:
∑k

j=1 exp

(
−max(0,d(xi,xij)−ρi)

σi

)
=

log2(k).
To describe the probability of the existence of directed

edges (connections) between samples, we define a weighted
matrix H = (V,E,w) where V is the number of vertices,
E is the set of directed edges between xi and its k nearest
neighbors of xi, E =

{(
xi, xij

)
|1 ≤ j ≤ k, 1 ≤ i ≤ N

}
, w

is the weight function and is defined as follows: w
(
xi, xij

)
=

exp

(
−max(0,d(xi,xij)−ρi)

σi

)
. Intuitively, one can think of the

weight of an edge as the probability of the existence of an
edge between xi and its neighbor xij . After UMAP glues
points together with locally varying metrics (via the parameter
ρi), symmetrization is necessary because it may happen that
the probability of the existence of directed edges between xi

and xij is not equal to xij and xi. Define wh (i, j) as the

probability that there is at least one of the two directed edges
and it can be given as follows:

wh (i, j) = w
(
xi, xij

)
+ w (xj , xji)− w

(
xi, xij

)
w (xj , xji)

(2)
The new UMAP graph H (different from H) is then an
undirected weighted graph whose adjacency matrix element
is given by wh (i, j).

The second phase of UMAP involves projecting the graph
H in high dimensions to the graph L in low dimensions. We
would like to find low-dimensional position points {li}i=1···n
and its weighted graph L such that the graph L induced
by those points most closely approximates the graph H ,
which allows to recover the important topology and retain the
information of high-dimensional space to a large extent.

To construct a low-dimensional topological representation,
the first question is how to determine the topological structure
in low-dimensional space. UMAP uses wl(i, j) to model the
probability of edge existence in low dimensions: wl(i, j) =(
1 + a

(
∥li − lj∥22

)b
)−1

, where a and b are UMAP hy-

perparameters to control the topological structure in low-
dimensional space.

The second question is how to find a good metric
to measure the difference between two weighted graphs
H and L, and then optimize the layout of the data
representation in the low-dimensional space. UMAP uses
total cross entropy on all edges as a cost function: C =∑

i

∑
j wh(i, j) log

(
wh(i,j)
wl(i,j)

)
+ (1− wh(i, j)) log

(
1−wh(i,j)
1−wl(i,j)

)
.

Overall, UMAP constructs a high-dimensional graph rep-
resentation of the data and then optimizes a low-dimensional
graph to be as structurally similar as possible. We can per-
form a mapping from high dimension to low dimension to
effectively extract rich information in the data. In this work,
for sample xi = {xi1, xi2, ..., xip} with p features, UMAP
is adopted to embed data into space with p′ dimensions
li = [li1, li2, ..., lip′].

2) Interpolation of virtual samples in low-dimensional
space: In the low-dimensional space, k nearest neighbors
set {li1 , · · · , lik} of li are selected to calculate the average
value and this value is assigned to the virtual sample l̃i:
l̃i = 1

k

∑k
j=1 lij . After repeating the interpolation step m

times, m virtual samples are obtained in a low-dimensional
space. Since the UMAP algorithm is stochastic, different runs
with the same hyperparameter may yield different virtual
samples; it would be very useful to evaluate the similarity
score between real and virtual data. The Kullback-Leibler
(KL) divergence [18] is designed to measure the similarity
between two distributions. For distributions P and Q of a
random continuous variable, the KL divergence from Q to P

is defined as: DKL(P∥Q) =
∫∞
−∞ p(x) log

(
p(x)
q(x)

)
dx, where

p and q denote the probability density of P and Q.
For the multivariate case, KL divergence of two random

vectors that have multivariate Gaussian distributions fz and
f̃z can be given as follows:

Lemma 1 [19]: Under the assumption that f̃z and fz are
the densities of dz dimensional normal random vectors z̃ ∼
N

(
µ̃z, Σ̃z

)
and z̃ ∼ N (µz,Σz), the KL divergence of f̃z

with respect to fz is given by:

DKL

(
f̃z ∥fz

)
=

1

2

{
(µ̃z − µz)

T
Σz

−1 (µ̃z − µz)
}

+
1

2
ln

 |Σz|∣∣∣Σ̃z

∣∣∣
+

1

2

{
tr

(
Σz

−1Σ̃z

)
− dz

} (3)

Here, ln() is the natural logarithm, tr() is the trace of a
square matrix. Lemma 1 will be used to evaluate the quality
of virtual samples. Bad virtual dataset will be removed if
DKL (P (virtual) ∥P (original)) is larger than a predeter-
mined threshold T .

B. Generation of virtual samples based on regression

It is important to note that UMAP warps the high-
dimensional structure of the data when projecting to low
dimensions; the distance in low dimensions is not directly
reflected in the distance in high dimensions. Therefore, it is
essential to use a regression model to predict virtual samples
X̃ and ỹ. For better visualization, we choose the dimension
of the low-dimensional space as 3. First, p regression models
are established with 3 low-dimensional input l and p high-
dimensional output X in the original data. Then, we will
use these established p regression models to predict the
virtual dataset X̃ with KNN-interpolated l̃. Second, the output
regression model is established with X as input and target y as
output in the original data. Then, the output regression model
will be used to predict the virtual sample output ỹ with the
virtual sample input X̃ . In this work, random forest regression
is used for input regression and output regression.

III. STABLE LEARNING

A. Stable learning and preliminaries

Stable learning can be defined as follows: given the target
y and the input X , the objective is to find a robust model that
can achieve consistent predictions in different distributions.
As mentioned above, the core idea of stable learning is to
eliminate the correlation of variables by reweighting. Consider
the following linear regression model:

y = XTβ1:p + β0 + b (X) + ε (4)

where b(X) is a bias term with bound δ, i.e., |b (X)| ≤
δ, and ε is zero-mean noise with variance σ2. Define
β̄ =

[
β̄0, β̄1:p

]
as the model parameter and β̂ =

argmin
β

n∑
i=1

(
xi

Tβ1:p + β0 − yi
)2

as the least-squares solu-

tion. Two assumptions are needed for stable learning [11]:
1. There is a stable structure between y and X that remains
invariant throughout different distributions. 2. There are spu-
rious correlations which lead to unstable predictions across
different distributions. With the assumptions mentioned above,
the following propositions hold:

Proposition 1 [11]: Define γ2 as the smallest
eigenvalue of the covariance matrix cov (X,X) =

E
[
(X − E (X)) (X − E (X))

T
]
, then the estimation

error in the coefficients caused by the bias term b(X) can be
as bad as: ∥∥∥β̂ − β̄

∥∥∥ ≤ 2
(
δ/γ

)
+ δ (5)

For proposition 1, we observe that the worst-case estimation
error goes to infinity when γ goes to 0. This means that when
the variables are highly correlated (the smallest eigenvalue γ
is 0 when there are perfectly collinear variables existing), the
error in parameter estimation will be amplified, resulting in
unstable prediction results if these estimated parameters are
used. To solve the collinearity problem, a sample reweighting
method is proposed to reduce collinearity between input
variables. If we can find β̂ such that the estimation error∥∥∥β̂ − β̄

∥∥∥
2
= O (δ) (independent of γ), then the stability of

the model can be guaranteed. Proposition 2 will provide a
theoretical guarantee of the existence of sample weights that
can reduce the correlation between the input variables.

Proposition 2 [11]: Let pu (x) be the uniform distribution
on χ = χ1 × χ2 × · · · × χp ⊂ Rp, and assume that
Ex∼pu(x) ∥x∥

2
2 < ∞ for each variable xj ∈ χj , and that

the vector x has a density p (x) on χ such that 0 < 2γ0 ≤
pu (x)/p (x) ≤ γ1/2 . For all ξ > 0, ς > 0, with probability
larger than 1− ς , there exists w such that ∥w∥1 = 1, γ0/n ≤
∥w∥∞ ≤ γ1/n and∣∣∣∣∣n−1

n∑
i=1

wi (xij − x̄j) (xik − x̄k)

∣∣∣∣∣ ≤ ξ (6)

where x̄j = n−1
∑

i xij is the mean of each variable j
and j ̸= k. The left side of equation 6 shows the off-
diagonal elements of the covariance matrix. Assuming that
we standardize all variables (all variables will have a mean
of 0, the standard deviation of 1), the covariance matrix
becomes a correlation matrix since corr(X,X) = cov(X,X)

σXσX
.

Proposition 2 demonstrates that the elements of the correlation
matrix can be constrained arbitrarily small (no larger than
ξ) with the sample weight wi. As γ2 ⩾ 1 − (p − 1)ξ, by
reducing the pairwise correlation between variables, we can
adjust the smallest eigenvalue to be not close to 1. In this
way, the problem of unstable parameter estimation mentioned
in proposition 1 is solved.

B. Stable learning algorithms

The framework of typical stable learning algorithms is two
steps, sample reweighting, and weighted least squares. In step
1, for training data, the sample weights are learned by the
sample reweighted decorrelation operator (SRDO) to ensure
statistical independence between the features [11]. Figure 2 is
an example of SRDO. First, we use the matrix X to generate
a column-decorrelated X̂ by performing a random resam-
pling column-wise, where i, j, k, r, s, t, u, v, w are drawn from
1, 2, · · · , n at random. Random resampling can break down
the joint distribution D of X into p independent marginal

distributions D̂ of X̂ . Since X̂ is completely independent of
columns, which means we can transfer the original X to the
decorrelated X̂ by SRDO.

Fig. 2. A graphical representation of the sample reweighted decorrelation
operator

Specifically, we set the samples in X̂ as positive samples
(Z = 1) while the samples in X as negative samples (Z = 0)
and fit a binary probabilistic classifier. The decorrelated weight
can be given as follows:

w (x) =
pD̂ (x)

pD (x)
=

p (Z = 1 |x)
p (Z = 0 |x)

(7)

where p (Z = 1 |x) is the estimated probability that the sample
x is drawn from D̂ and p (Z = 0 |x) is the estimated probabil-
ity of sample x being drawn from D. For example, for the first
sample x1 = [x11, x12, · · · , x1p] in X , if the binary classifier
outputs p (Z = 1 |x1) = 0.5 and p (Z = 0 |x1) = 0.5, the
weight w (x1) = 1. It means that x1 is very similar to
x̂1 = [xi1, xr2, · · · , xup], the classifier cannot tell that x1

comes from D or D̂, so it is a good sample in X and gets a high
weight. If the binary classifier outputs p (Z = 1 |x1) = 0.01
and p (Z = 0 |x1) = 0.99, the weight w (x1) ≈ 0.01. This
means that x1 is very different from x̂1, it is not a good sample
in X , and we get a very small weight.

In step 2, learned sample weights are incorporated into
the weighted regression method to obtain the solution β̂w =

argmin
βw

n∑
i=1

w (xi)
(
xi

T {β1:pw + β0w − yi
)2

.

C. Reasons for combining virtual sample generation and
stable learning

Recently, stable learning algorithms have been shown to be
very effective in improving generalization in some machine
learning tasks. However, it is important to note that stable
learning algorithms are generally affected by the sample
size. In many applications, decreased performance has been
observed in a small sample dataset due to the effect of variance
inflation (mentioned in Proposition 1) in parameter estimation.
Inspired by the idea of virtual sample generation, it is natural
to generate a large number of virtual samples to improve the
performance of the stable learning algorithm. Figure 3 shows
the framework of the proposed algorithm.

Fig. 3. Framework of stable learning with small samples

IV. CASE STUDY

The effectiveness of the proposed methodology is illustrated
in the Tennessee Eastman process benchmark (TEP) [20].
TEP provides a realistic industrial process monitoring bench-
mark. In this case study, 33 variables are chosen as the input
variables; component C in the purge gas is chosen as the target
variable to be predicted. To simulate different distributions
on test data, normal operating condition data and 5 faulty
conditions data are used. The detailed information about 5
faulty cases can be found in Table I. To simulate the small
sample scenario, only 100 samples are used for training and
800 samples are used for testing. The threshold T of KL
divergence is set at 0.5.

TABLE I
5 PROCESS FAULTS

Fault case Description Type
Fault case 1 A Feed Loss (Stream 1) Step
Fault case 2 A,B,C Feed Composition (Stream 4) Random Variation
Fault case 3 D Feed Temperature (Stream 2) Random Variation
Fault case 4 Reaction Kinetics Slow Drift
Fault case 5 Reactor Cooling Water Valve Sticking

In the virtual sample generation section, first, the dimen-
sions of the input variables are reduced from 33 to 3 (define
the 3-dimension as X,Y, Z) by UMAP graph projection;
then, 5000 virtual samples are generated based on the low-
dimension interpolation. As shown in Figure 4, the red dots are
the original samples, and the blue dots are the virtual samples
generated. As we can see, the blue dots fill the space between
the red dots indicating that the generated virtual samples are
a good approximation of the original data.

The KL divergence is 0.37 between the original distribution
and the virtual distribution in a 3-dimensional space. Figure
4 shows multiple pairwise distributions of the virtual data
subset and the original data in a 3-dimensional space. It can
be seen that virtual samples and original samples have almost
similar distributions in every low dimension X,Y, Z. After
KNN interpolation, the input and output regression models
are established to generate virtual samples.

In the stable learning section, stable regression models are
built with weighted samples (generated 5000 virtual samples

Fig. 4. Left: Low dimension representation of original data (red dots) and
virtual generated data (blue dots) Right: Pairwise relationship between virtual
data features and original data features in 3-dimension space

and 100 original samples). Here, we choose the linear regres-
sion method as the regression model. Four methods, linear
regression with original data (small data), linear regression
with virtual data and original data, stable learning linear
regression with weighted original data (SL) and stable learning
linear regression with weighted virtual generated data and
weighted original data (VSGSL), are used to compare the
performance in 6 different test data distributions.

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT REGRESSION METHODS

small data VSG(5000) SL VSGSL(5000)
Normal RMSE 0.486 0.364 0.472 0.359

R2 0.035 0.080 0.033 0.106
Fault 1 RMSE 5.923 0.680 2.449 0.665

R2 0.043 0.236 0.028 0.273
Fault 2 RMSE 1.684 1.131 1.707 1.099

R2 0.028 0.209 0.033 0.251
Fault 3 RMSE 3.143 2.089 3.049 2.060

R2 0.292 0.367 0.222 0.405
Fault 4 RMSE 2.910 1.640 2.417 1.613

R2 0.002 0.328 0.006 0.353
Fault 5 RMSE 3.242 1.678 2.69 1.632

R2 0.003 0.355 0.004 0.390

Table II lists the detailed comparison results of different
methods in different cases. The numbers in bold blue means
the worst performance, while the bold red means the best
performance among all methods. From Table II, it can be seen
that, for training data and test data with the same distribution
(normal case), VSG and SL show an improvement in RMSE
and R2 compared to using only small data, and the proposed
VSGSL method has the best performance. For example, for
fault case 1, the VSGSL method has an improvement of about
10 times in rmse and 6 times improvement in r2 compared
to the small data case.

In this case study, we generated 5000 virtual samples to
build the models. The number of virtual samples may have
an impact on model performance. To evaluate the impact
of virtual sample sizes on model performance, we test the
performance of VSG and VSGSL with 100, 500, 1500, 5000,
7500, and 9000 virtual samples in six different scenarios.

TABLE III
PERFORMANCE COMPARISON OF VSG AND VSGSL WITH DIFFERENT

NUMBER OF VIRTUAL SAMPLES

VSG 100 500 1500 5000 7500 9000
Normal rmse 0.395 0.367 0.365 0.364 0.369 0.372

r2 0.023 0.082 0.079 0.080 0.058 0.045
Fault 1 rmse 0.752 0.689 0.686 0.680 0.691 0.700

r2 0.133 0.229 0.228 0.236 0.213 0.195
Fault 2 rmse 1.315 1.140 1.113 1.131 1.184 1.193

r2 0.073 0.186 0.208 0.209 0.152 0.137
Fault 3 rmse 2.221 1.929 2.003 2.089 2.094 2.143

r2 0.177 0.451 0.410 0.367 0.335 0.294
Fault 4 rmse 1.894 1.711 1.642 1.640 1.675 1.687

r2 0.194 0.293 0.325 0.328 0.296 0.285
Fault 5 rmse 2.067 1.897 1.730 1.678 1.795 1.794

r2 0.180 0.278 0.334 0.355 0.280 0.271
VSGSL 100 500 1500 5000 7500 9000
Normal rmse 0.378 0.363 0.359 0.329 0.364 0.366

r2 0.060 0.098 0.089 0.106 0.082 0.069
Fault 1 rmse 0.711 0.677 0.679 0.665 0.675 0.683

r2 0.204 0.254 0.244 0.273 0.249 0.232
Fault 2 rmse 1.241 1.120 1.100 1.099 1.151 1.160

r2 0.120 0.211 0.223 0.251 0.191 0.177
Fault 3 rmse 2.073 1.874 1.983 2.060 2.050 2.096

r2 0.301 0.494 0.431 0.405 0.379 0.344
Fault 4 rmse 1.854 1.687 1.628 1.613 1.643 1.654

r2 0.231 0.313 0.336 0.353 0.324 0.315
Fault 5 rmse 2.072 1.894 1.715 1.632 1.753 1.749

r2 0.222 0.291 0.345 0.390 0.311 0.306

Table III gives the results of VSG and VSGSL with different
numbers of virtual samples. Both VSG and VSGSL have the
worst performance when the number of virtual samples is 100,
and almost the best performance when the number is 5000.
As the number of virtual samples increases, the performance
of the model improves first; when the number of virtual
samples reaches a certain level (5000 virtual samples in this
work), the model performance is optimal; and then, as the
number of virtual samples increases, the model performance
slowly declines. The reason may be that more virtual samples
would also lead to an increase in the number of low-quality
virtual samples (that cannot represent the real-world problem
being modeled), and these low-quality samples may have a
significant impact on the performance of the model. In this
case, having more virtual samples may actually decrease the
performance of the model. It should be noted that the optimal
number of virtual samples is determined by trial and error in
this work, and an effective method to determine the optimal
number of virtual samples will be studied in future work.

V. CONCLUSION

This study addresses the problem of building trustworthy
models when only a small amount of data is available and the
underlying assumption of IID about the data distribution is not
satisfied. Considering that current stable learning algorithms
are generally affected by sample size, a stable learning algo-
rithm based on UMAP virtual sample generation is proposed.
KL-divergence is used to evaluate the quality of generated
virtual samples and then select good virtual samples to build a
trustworthy model. The effectiveness of the proposed method
is validated in 6 different cases of the Tennessee Eastman

process. This study shows that the integration of virtual sample
generation and stable learning is very promising in terms of
improving model accuracy and generalization.

REFERENCES

[1] J. Fan, F. Han, and H. Liu, “Challenges of Big Data analysis,” National
Science Review, vol. 1, no. 2, pp. 293–314, Feb 2014.

[2] A. R. T. Donders, G. J. van der Heijden, T. Stijnen, and K. G. Moons,
“Review: A gentle introduction to imputation of missing values,” Journal
of Clinical Epidemiology, vol. 59, no. 10, pp. 1087–1091, 2006.

[3] M. Wasikowski and X.-w. Chen, “Combating the small sample class
imbalance problem using feature selection,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, no. 10, pp. 1388–1400, 2010.

[4] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” ACM Comput. Surv., vol. 53,
no. 3, Jun 2020.

[5] Q.-X. Zhu, K.-R. Hou, Z.-S. Chen, Z.-S. Gao, Y. Xu, and Y.-L. He,
“Novel virtual sample generation using conditional gan for developing
soft sensor with small data,” Engineering Applications of Artificial
Intelligence, vol. 106, p. 104497, 2021.

[6] Y.-L. He, Q. Hua, Q.-X. Zhu, and S. Lu, “Enhanced virtual sample
generation based on manifold features: Applications to developing soft
sensor using small data,” ISA Transactions, 2021.

[7] M. K. P. B. Kulesa, Anthony and N. Altman, “Sampling Distributions
and the Bootstrap,” Nature Methods, vol. 12, no. 6, p. 477–478, 2015.

[8] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction,” ArXiv e-
prints, Feb. 2018.

[9] I. S. Dhillon and S. Sra, “Generalized nonnegative matrix approxima-
tions with bregman divergences,” in Proceedings of the 18th Inter-
national Conference on Neural Information Processing Systems, ser.
NIPS’05. Cambridge, MA, USA: MIT Press, 2005, p. 283–290.

[10] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008.

[11] Z. Shen, P. Cui, T. Zhang, and K. Kunag, “Stable learning via sample
reweighting,” Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 34, no. 04, pp. 5692–5699, April 2020.

[12] X. Zhang, P. Cui, R. Xu, L. Zhou, Y. He, and Z. Shen, “Deep stable
learning for out-of-distribution generalization,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 5372–5382.

[13] K. Kuang, P. Cui, S. Athey, R. Xiong, and B. Li, “Stable predic-
tion across unknown environments,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery Data
Mining, ser. KDD ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 1617–1626.

[14] X. Zhang, P. Cui, R. Xu, L. Zhou, Y. He, and Z. Shen, “Deep stable
learning for out-of-distribution generalization,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021, pp. 5372–5382.

[15] R. Xu, P. Cui, Z. Shen, X. Zhang, and T. Zhang, “Why stable learning
works? A theory of covariate shift generalization,” 2021. [Online].
Available: https://arxiv.org/abs/2111.02355

[16] K. Yu, L. Liu, and J. Li, “A unified view of causal and non-causal
feature selection,” ACM Trans. Knowl. Discov. Data, vol. 15, no. 4,
April 2021. [Online]. Available: https://doi.org/10.1145/3436891

[17] J. Pearl and D. Mackenzie, The Book of Why: The New Science of Cause
and Effect, 1st ed. USA: Basic Books, Inc., 2018.

[18] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The
Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.
[Online]. Available: https://doi.org/10.1214/aoms/1177729694

[19] J. Zeng, U. Kruger, J. Geluk, X. Wang, and L. Xie, “Detecting abnormal
situations using the kullback-leibler divergence,” Automatica, vol. 50,
no. 11, p. 2777–2786, Nov 2014.

[20] B. R. Russell E.L., Chiang L.H., Data-driven Methods for Fault Detec-
tion and Diagnosis in Chemical Processes. London: Springer, 2000.

