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Abstract

the aim of this research is to provide an interactive and user-friendly
visualization tool geared towards Model Predictive Control (MPC)
that provides an intuitive presentation of data, and incorporates
constraint and gain data in a way that facilitates controller diagnosis.
Despite extensive development in the performance aspects of MPC
algorithms, there has been little development in the tools used to
visualize and interact with MPC systems. Users of such systems may
therefore experience difficulty in troubleshooting, especially when
there are large numbers of variables. To alleviate this difficulty, we
are outlining our design for an interface that incorporates principles
from information visualization, computer science, and advanced
process control (APC), in order to facilitate the process of controller
diagnosis. Data related to the Linear Program (LP) layer of the
control structure are used to develop visualization tools that aim
to improve the quality of human-automation interactions. The tasks
required in diagnosing a controller are analyzed and abstracted into
generic computer science-based operations. These tasks are fed into
a nested model for visualization design along with the relevant data,
and both are combined to design the final visualization tool. Specific
design decisions regarding the gain matrix and constraint data are
discussed in detail, and a brief history of interactive heat maps is
examined in order to contextualize the design decisions. The layout
and interactivity of the final visualization tool are discussed in detail.
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1
Introduction

Model Predictive Control (MPC) is an advanced feedback control
algorithm that has become accepted as an industry standard in a
variety of processes. While MPC implementation has advanced
into a more complex and effective algorithm for controlling large
multi-input multi-output (MIMO) systems, the availability of expertise
in MPC commissioning, monitoring, and maintenance has become
increasingly limited [1]. Since MPC is a model-based control strategy,
understanding the underlying behaviour of the process model (in
terms of steady-state gains, transfer functions, etc.) is essential for
effective controller diagnosis.

While MPC has developed considerably since its inception, there
has been an apparent lack of development in the tools used to visualize
MPC controllers in action [1]. Often the packages that implement
MPC, such as AspenTech’s DMCPlus, use dense, tabular views to
convey model information. Operators and engineers who use MPC
with these types of views may experience difficulty in firstly getting
acquainted with it, as well as with monitoring and troubleshooting
the controllers when in use. DMCPlus, for instance, spreads out
information pertaining to controller ‘health’ over many static tabs
and sheets. For control systems with small numbers of variables,
users may not experience any difficulties navigating through controller
data. However, MPCs often involve more than 50 variables [2] - for
instance, the MPC system used for the Fluid Catalytic Cracking
(FCC) unit at the Parkland refinery in Burnaby has 44 manipulated
and feedforward variables (MVs and FFs) and 64 controlled variables
(CVs)1, making navigation through model data in this way tedious. 1 MVs and FFs are the independent

variables in the system, while CVs are
the dependent variables. MVs and FFs
are also known as ‘inputs’, and CVs as
‘outputs’.

This is only one example, but the ideas presented here can be applicable
to other MPCs that have similar functions and structures.

An improved user interface for MPC systems can therefore be of
huge benefit to operators and engineers. In designing an improved
visualization tool, the design must follow some methodology that
incorporates evaluation in the design process. Using a rigidly defined
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Figure 1.1: This research takes
principles from information
visualization and software
engineering and applies them
to the field of process control
(specifically model-based
predictive control) in order
to try and create visualization
tools that assist operators of
such control systems in their
day-to-day tasks. The tools
presented here were developed
with an emphasis on quality of
human-automation interactions.

methodology means that design decisions are more justified, and are
less prone to the pitfall defined by Munzner (2008) as ‘Application
Bingo’: “where you pick a narrowly defined problem domain, a
random technique, and then write an application paper with the
claim of novelty for this particular domain-technique combination”
[3]. The methodology chosen for designing the visualization is
Munzner’s “Nested Model for Visualization Design and Validation"
[4] because it provides a clear approach to designing visualization
applications, and because it provides useful suggestions for evaluating
(or ‘validating’) any designed tools. These validation methods are
incorporated into each layer of the model. The issues with current
tools for MPC visualization are discussed, and alternatives are
investigated.

1.1 Problem Statement

Small controllers can be more easily diagnosed using the aforementioned
static displays, but larger controllers are often much more difficult
to diagnose using the same tools. This idea forms the basis of the
problem statement.

Based on initial research and discussion with industry partners,
the project is driven by the following research questions:

• How can existing tools for MPC visualization be improved, with
an emphasis on human-automation interactions?

• How can the process of controller diagnosis be made easier using
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data visualization? Is it possible to automate this process using
constraint data from the LP?

1.2 Section Breakdown

Section 1.3 outlines the background of MPC operation and how MPC
systems solve optimization problems and control processes. This
section also discusses the theory behind gain matrices in multivariable
control and provides an overview of the FCC gain matrix at the
Parkland refinery, then outlines the computational structure of
commercial MPC systems. The principles of LP optimization follow,
along with a generic process for MPC diagnosis. Section 1.4 provides
a literature review that discusses previous work, then discusses
the history of interactive heat maps in encoding data2. Chapter 2 Interactive heat maps have been used

extensively in this project, which is why
a detailed discussion of their usage in
the past is important.

2 discusses principles of data and information visualization and
how humans understand visual representations of data. Section
2.1 explains the ‘Nested Model’ used to develop the visual tools in
this project, and section 2.2 provides an overview of the ‘Multi-level
typology’ for the development of our task analysis.

Chapter 3 discusses all results from this work: the task analysis
for controller diagnosis is explained in section 3.1, the process for
developing the final visualization tool is outlined in section 3.2,
and the final visualization tool along with its features are shown
in section 3.3. Chapter 4 explains the limitations of this work and
considerations for future work.

1.3 Background

1.3.1 MPC Concept

MPC is an advanced form of automatic feedback control that is
widely used in industry due to its robustness and compatibility with
large MIMO systems [5]. MPC is a model-based algorithm, normally
using a linear state space model that is often developed by applying
analytical methods (such as IMC) to process data 3. 3 Models calculated using techniques

like IMC often need to be conditioned,
because they can suffer from issues
like ill-conditioning. Ill-conditioning
can significantly hinder controller
performance because it makes the
degrees of freedom in the process
unclear. Consequently, the controller
may try to drive the process using
degrees of freedom that appear to be
available in the model, but are not
actually available in the plant [6].

In addition to the process model, MPC systems also typically
contain a linear optimizer (also known as Linear Program or LP). The
optimizer aims to solve a dynamic optimization problem using an
objective function, which is often an economic function of process
variables that is to be minimized or maximized. At each iteration
of the control system, the optimizer reads the process state relative
to its reference trajectory, and uses this information to compute an
optimized control plan over a specified prediction horizon (a defined
number of time steps, during which the MPC tries to reach the
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process setpoint). Typical MPC operation is shown in Figure 1.2.

k  k+1  k+2  k+p...
Sample Time

PAST FUTURE

Prediction Horizon

Reference Trajectory

Predicted Output

Measured Output

Predicted Control Input

Past Control Input

Figure 1.2: MPC concept for a
single variable. Figure adapted
from Bequette (2009) [7].

At any time t = k, the optimizer instantaneously computes the
optimized control plan. At t = k + 1, the controller output y is set
to y(k + 1), and the real process response is observed. Since the real
process response will likely deviate from the predicted output, the
controller must take this new change into account by re-calculating
its control plan at t = k + 1. The repetition of this process is the most
basic MPC algorithm [8], [9].

1.3.2 Gain matrix theory

In multivariable control, CVs are affected by MVs and FFs both
directly and indirectly, and these relationships can be summarized
using the steady-state gain matrix (referred to as ‘gain matrix’ from
now on). Indirect effects come in the form of MV and CV interactions,
and these are harder to pinpoint but play an important role in multivariable
control. The gain of a given MV/CV pair is calculated by quantifying
the response of the CV to a change in the MV, while holding all other
MVs constant, as defined as in equation 1.1.

Kij =
∂CVi
∂MVj

∣∣∣∣∣
MVk

(1.1)

Where Kij is the gain value and MVk represents all other MVs,
which are held constant when quantifying the gain4. This is also 4 Classical control texts use u to denote

inputs (MVs) and y to denote outputs
(CVS). In this thesis, we are following
industry convention by using MV and
CV instead of the control convention of
using u and y.
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known as ‘open-loop’ gain because all other MVs are held constant5. 5 The ‘closed-loop’ gain, which is
used to calculate Relative Gain Array
(RGA), quantifies the same relationship
without holding other MVs constant.
Rather, the closed-loop gain requires
other CVs to be held constant.

Equations 1.2 and 1.3 show the mathematical representation of the
gain matrix. [

∆CV1

∆CV2

]
=

[
K11 K12

K21 K22

] [
∆MV1

∆MV2

]
(1.2)

Where Kij represents the steady-state gain between CVi and MVj.
The following equation shows a sample gain matrix for a 2x2 system:[

∆CV1

∆CV2

]
=

[
2 −1
0 3

] [
∆MV1

∆MV2

]
(1.3)

By looking at this gain matrix, it is easy to understand the steady-state
dynamics of this hypothetical plant; a unit increase in MV1 causes a
two-unit increase in CV1 and a unit decrease in CV2. Similarly, a unit
increase in MV2 has no direct effect on CV1 and causes a three-unit
increase in CV2. While the increase in MV2 has no direct effect on
CV1, it causes a threefold increase in CV2. In order to maintain plant
control, the controller may increase MV1, which would then cause
CV1 to change. This analysis of the steady-state changes in the plant
is easily done for such a small system and requires no additional
tools for visualization or analysis; if CV1 is changing for an unknown
reason, users need to investigate a maximum of three variables in
order to find the root cause.

1.3.3 Parkland gain matrix

For systems such as those in the Parkland refinery - where there are
100+ variables in total - the analysis performed in section 1.3.2 is not
as easy. To illustrate this idea, table 1.1 shows a section of the FCC
gain matrix in Parkland, with seven MVs and 28 CVs6. All tables 6 The FCC gain matrices plotted in

tables 1.1-1.2 show only seven MVs and
28 CVs because most of the nonzero
gain values are quite small, so it became
difficult to read them when more MVs
and CVs were packed in. The 28× 7
matrix is estimated to be large enough
to illustrate the points discussed.

that represent the FCC gain matrix at Parkland do not show the real
gain values for confidentiality purposes. We normalized the gain
matrix so that all values lie between 0 and 1, using linear scaling.
This computation is shown in equation 1.4.

x′ =
x− xmin

xmax − xmin
(1.4)

Where:

• x = raw gain value

• x′ = normalized gain

• xmin = lowest gain value
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• xmax = highest gain value

At a glance, the gain matrix in table 1.1 is much more complicated
than the sample matrix shown before7. Performing a similar analysis 7 The gain matrices in tables 1.1-1.2 are

plotted using CVs as rows and MVs as
columns. The convention for DMCPlus
plots MVs as rows, but the layout
here is more intuitive, as it is a better
representation of equations 1.2-1.3.

as in section 1.3.2 to determine how changes in MVs will affect CVs
and other MVs is not as feasible. Engineers may want to analyze how
changes in MV-1 affect the operating point of the plant and would
need the gain matrix in order to do so. Table 1.2 shows the same gain
matrix with the column for MV-1 highlighted.

MV-1 MV-2 MV-3 MV-4 MV-5 MV-6 MV-7

CV-1 0.004803 0 0 0 0 0 0

CV-2 0 0 0.004803 0 0 0 0

CV-3 0 0.001463 0 0 0 0 0

CV-4 -0.00438 1.22E-05 -0.00012 0.020056 0.000346 0 -0.00014

CV-5 -0.10345 0.000289 -0.00278 0.696379 0.012007 0 -0.0032

CV-6 -0.0199 0 -0.00072 0.348189 0.006003 -0.05276 0

CV-7 0 0 0 0.288496 0 0.005311 0

CV-8 0 -9.58E-05 0.002951 0.025905 0.000447 0.035774 0.001954

CV-9 -7.34E-05 0 0 0.004496 0 -8.53E-05 0

CV-10 0 0 0 0.004803 -7.23E-05 0 0

CV-11 0 0 0 0 0.009131 0.011408 0

CV-12 0 0 -0.00021 0 0 -0.00388 0

CV-13 -0.00053 0 -0.00012 0 0 0.004997 0

CV-14 0.125636 0 0.002094 -0.30362 -0.00523 0 -0.00871

CV-15 0.086447 0 0.001441 -0.13928 -0.0024 0 -0.00871

CV-16 0 0 6.92E-05 -0.00669 -0.00012 0.000367 8.02E-05

CV-17 0.011321 0 0.000487 0 0 0 0.004066

CV-18 0.035626 0 0.004023 0 0 0 0

CV-19 0.013472 0 0.001234 0 0 0 0

CV-20 0.14141 0 0.015968 0 0 0 0

CV-21 0.124814 0 0.014094 0 0 0 0

CV-22 -0.03572 0 0 0 0 0 0

CV-23 -0.08371 0 0 0 0 0 0

CV-24 -0.02888 0 0 0 0 0 0

CV-25 -0.13894 0 0.001709 0 0 0 0

CV-26 -0.03057 0 0.000376 0 0 0 0

CV-27 0.010248 0 7.85E-05 0 0 0 0

CV-28 0.048413 0 0.005467 0 0 0 0

Table 1.1: 28×7 section of the
FCC gain matrix at Parkland;
the full gain matrix has
44 independent variables
(MVs/FFs) and 64 CVs. Only
seven MVs are displayed
because the normalized gain
values are all quite small, so
adding more MVs made it
difficult to read each of the gain
values.

Reading the gain matrix as it is shown in table 1.2 provides some
potentially useful information; if an operator were to increase MV-1
by one unit, CV-1 would increase by 0.004803 units, CV-4 would
decrease by 0.00438, CV-5 by 0.10345, CV-6 by 0.0199, and so on. The
direct effects of MV-1 on the dependent variables can be determined
with some analysis, but determining how interactions between MVs
affect the CVs is extremely difficult in this way. For example, the
same unit increase in MV-1 causes an increase of 0.125636 in CV-14.
To maintain control of CV-14, the controller may reduce MV-3 by
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MV-1 MV-2 MV-3 MV-4 MV-5 MV-6 MV-7

CV-1 0.004803 0 0 0 0 0 0

CV-2 0 0 0.004803 0 0 0 0

CV-3 0 0.001463 0 0 0 0 0

CV-4 -0.00438 1.22E-05 -0.00012 0.020056 0.000346 0 -0.00014

CV-5 -0.10345 0.000289 -0.00278 0.696379 0.012007 0 -0.0032

CV-6 -0.0199 0 -0.00072 0.348189 0.006003 -0.05276 0

CV-7 0 0 0 0.288496 0 0.005311 0

CV-8 0 -9.58E-05 0.002951 0.025905 0.000447 0.035774 0.001954

CV-9 -7.34E-05 0 0 0.004496 0 -8.53E-05 0

CV-10 0 0 0 0.004803 -7.23E-05 0 0

CV-11 0 0 0 0 0.009131 0.011408 0

CV-12 0 0 -0.00021 0 0 -0.00388 0

CV-13 -0.00053 0 -0.00012 0 0 0.004997 0

CV-14 0.125636 0 0.002094 -0.30362 -0.00523 0 -0.00871

CV-15 0.086447 0 0.001441 -0.13928 -0.0024 0 -0.00871

CV-16 0 0 6.92E-05 -0.00669 -0.00012 0.000367 8.02E-05

CV-17 0.011321 0 0.000487 0 0 0 0.004066

CV-18 0.035626 0 0.004023 0 0 0 0

CV-19 0.013472 0 0.001234 0 0 0 0

CV-20 0.14141 0 0.015968 0 0 0 0

CV-21 0.124814 0 0.014094 0 0 0 0

CV-22 -0.03572 0 0 0 0 0 0

CV-23 -0.08371 0 0 0 0 0 0

CV-24 -0.02888 0 0 0 0 0 0

CV-25 -0.13894 0 0.001709 0 0 0 0

CV-26 -0.03057 0 0.000376 0 0 0 0

CV-27 0.010248 0 7.85E-05 0 0 0 0

CV-28 0.048413 0 0.005467 0 0 0 0

Table 1.2: FCC gain matrix
in table 1.1 highlighting the
column of MV-1 and the
row of CV-7. The highlighted
column shows the steady-state
open-loop changes in CVs
caused by a unit increase in
MV1. The highlighted row
shows how CV1 is affected by
unit changes in all seven MVs.

0.125636
0.002094 = 59.99, causing CV-2 to drop by 0.004803 · 59.99, and so on.
Similarly, analyzing how one particular CV is affected by the MVs in
the system yields an equally complex workflow.

Following a similar procedure, CV-7 increases by 0.288946 with an
open-loop unit increase in MV-4 and by 0.005311 with a unit increase
in MV-6. Since there are only two non-zero entries in this example,
it is much easier to perform this single-input single-output (SISO)
analysis on CV-7, but the interaction parameters remain difficult to
quantify. This effect is exacerbated in the real FCC gain matrix, which
has 37 more independent variables and 36 more CVs.

1.3.4 Commercial MPC structure

Typically, commercial MPC packages like DMCPlus involve more
than just the MPC algorithm itself. The MPC algorithm is used to
drive the plant to a specified operating point, and this is accomplished
using a dynamic control plan. This operating point is not defined
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within the MPC algorithm, rather it is provided to it as a setpoint
by the LP – a linear optimizer8 that calculates the optimal operating 8 The LP comprises the optimization

step in MPC operation. This may also
be accomplished using a Quadratic
Program (QP), which uses quadratic
optimization to solve the problem.

point based on economic objectives instead of performance objectives.
In this way, commercial MPC systems typically have a cascade-control
structure, as shown in figure 1.3.

Measurements

Setpoints

Constraints

Prediction and dynamic control 

(constrained model predictive 

control)

Manipulated 

variable settings

Linear program (determine 

optimum operating point)

Predictions
Steady-state 

targets

$

$ $ $

$

P
ro

c
e
s
s

P
ro

c
e
s
s

Figure 1.3: Typical MPC
package control structure
(adapted from Sorensen et
al). The blue section represents
the steady-state economic
optimization problem, while
the green section represents the
dynamic control problem.

Figure 1.3 shows that controlling a plant is achieved by solving
two sub-problems:

1. The steady-state optimization problem, where the LP takes MPC
predictions and economic targets and calculates the steady-state
targets of the plant using an economic objective function;

2. The dynamic control problem, where the MPC takes the steady-state
targets from the LP and drives the plant to the defined operating
point.

The question of how a control system solves the ‘dynamic control
problem’ relates to the specific control algorithm chosen in that plant.
One such algorithm could involve using a series of Proportional-Integral-Derivative
(PID) control loops with decoupling, where the PID controller moves
MVs as necessary, while the decouplers try to eliminate interaction
between loops.

Another example is Dynamic Matrix Control (DMC), which is
a common control algorithm and an example of MPC technology.
The dynamic control problem in DMC involves minimizing some
function of the controller error9. Given a set of targets by the LP, 9 Controller error is the difference

between a variable’s target and its
measurement. A ‘function’ of controller
error can be the square of error, for
example.



mpc visualization: improving human-automation interactions 13

DMC would compute a set of control steps (also known as a control
plan) to drive the process to its targets in the most effective way.
However, this optimization comes at a cost; the optimized control
plan may involve large MV moves that are too aggressive for the
system, which can cause stability and safety issues. Hokanson et al
(1992) describe the issues with the optimized control plan:

The preceding least-squares solution [DMC control plan] has two
difficulties:

• It tends to be ill-conditioned or very near singular.

• It results in a very aggressive controller. Without somehow suppressing
its outputs, this solution will try to move the plant as fast as
mathematically, but not realistically, possible to minimize error.
[10]

Consequently, DMC often uses an additional parameter known as
move suppression to address this issue. Move suppression imposes a
limit on the size of the move by which the controller changes each
MV. The move suppression value set in the controller therefore
determines how aggressive the controller will be, giving rise to
an important trade-off in the DMC system. At any given time,
the controller is trying to minimize error by driving MVs in their
necessary directions. Simultaneously, operators need to maintain
process stability and safety by minimizing the magnitude of the MV
changes at each iteration.

At each iteration, the LP uses the predictions generated from
the process model to solve the economics of the plant in terms of
process variables. Sorensen et al (1998) outline the role of the LP in
the controller:

“The use of the predicted steady-state for each dependent variable
permits the controller to solve the LP based on the steady-state without
the process having to reach the condition. The steady-state solution
from the LP is given to the dynamic part of the controller as targets
for the execution... In effect, the LP solves for the optimum economic
steady-state for the system within the limits specified for the independent
and dependent variables (under assumptions of linearity and within
the scope of the controller)." [11]

To summarize, the LP uses predictions from the process model
to find the most economical operating point, and it provides this
economic optimum in the form of steady-state targets for individual
variables that the controller drives the process towards. The economic
optimum normally lies at the point that maximizes plant revenue
and minimizes costs. In order to maximize revenue, the controller
often sets one or more CVs to its maximum - for instance, feed rate
in an FCC unit. Setting CVs to their maximum values corresponds to
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process equipment operating at maximum capacity, which can cause
concern for the operators, as their work involves maintaining safety
and equipment functionality. Consequently, human operation of
the plant often exhibits large process variability due to human error
and response time in changing process parameters. An automated
control system will have a smaller margin of error, meaning that it
can drive the process closer to its setpoint compared to that of human
operation. This effect is illustrated in figure 1.4.

Figure 1.4: Plant performance
with human operation
and APC [12]. Before APC
is implemented, there is
significant variability, causing
poor performance with respect
to the target. Using APC
reduces variability, which
corresponds to the “MPC
operating region” in figure
1.5, allowing the controller to
push the process closer towards
its control objective.

Reducing process variability (and, consequently, the size of the
operating region) allows the process to be driven closer to its desired
setpoint. With a wider operating region, human operators are unable
to push the process closer towards the desired optimum, because the
process variability may cause some parameters to breach their safety
limits. This leads to a disconnect between the operating ranges of the
true economic optimum, the MPC, and the operators. This disconnect
is shown in figure 1.5.

The visualization tool developed in this project and accompanying
analysis is focused on the first sub-problem outlined in figure 1.3,
partly because the steady-state optimization data provide a wider
lens through which we can look at the control of the plant. The
decision to limit the visualization tool in this way limits the applications
of the tool, which will be discussed further in chapter 4.

In order to develop tools for MPC visualization, it is necessary to
first understand the work done by the target users. Forbes et al (2015)
outline three key layers of MPC monitoring:

• Management monitoring prioritizes financial benefits and resource
management, and “briefs management on MPC utilization and
economic performance”
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Pressure

Compressor Speed

Temperature
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True Economic 
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MPC 
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Figure 1.5: Typical preferred
operating regions for human
operators (yellow) and MPC
systems (green) shown with
respect to the true economic
optimum. Human operators
are not always able to run units
in tighter control intervals
compared to automated
systems, often due to safety
concerns. The size of each
operating region is also
indicative of the process
variability during operation,
so the ideal case consists of
operating at the economic
optimum point with no
variability. This figure is
adapted from Brooks (2017)
[13].

• Engineering monitoring is concerned with the construction and
commissioning of new controllers and ensuring their quality. This
requires in-depth knowledge of MPC operation.

• Operational monitoring is concerned with maintaining and troubleshooting
existing controllers, and typically involves the “front-line engineering
support staff in order to probe effective utilization operationally”
[1]

For the purposes of this project, management monitoring is not
the focus. Management monitoring is an important component to
consider, but there are other tools used in this stage, and a visualization
tool would not be particularly useful for it.

Engineering and operational monitoring are both important layers
with regards to controller diagnosis. Both layers involve different
responsibilities but are instrumental in determining how well a
given MPC will perform, and how a given MPC is diagnosed when
it performs poorly. Engineering monitoring often involves subject
matter experts who need to commission the MPC so that it is ‘fitted’
for the plant. 10 10 Commissioning often involves

mathematical analysis of the plant
through system identification and
model conditioning, in order to ensure
that the model in the MPC is suitable
for automatic control (i.e. the model
does not contain ill-conditioned
subsystems) and reflects the plant
accurately.

Operational monitoring involves process engineers, control engineers,
and operators, who are concerned with the day-to-day performance
of the control system. Tasks related to this layer include monitoring
process variables and their statuses (i.e. if they are constrained,
out of service, etc.), detecting process faults, and diagnosing the
controllers. Since this layer is the one concerned with controller
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diagnosis, those involved in operational monitoring are chosen as
the targeted end-users of the visualization tool developed.

1.3.5 LP operation

The optimum operating point given to the MPC, as discussed before,
is at some intersection of process constraints. The decision of which
variables to constrain is made by the LP at each iteration and often
changes throughout MPC operation. In order to understand the
controller diagnosis process and constraint analysis in more detail,
it is important to first understand how the LP operates and how it
chooses which set of constraints should be active at any given point.

The LP solves an economic objective function to obtain the optimum
operating point, and this objective function is determined using cost
data for all variables in the system. The objective function can be a
profit function using such cost data, as shown in equation 1.5.

Profit = ∑
i

Producti · PValuei −∑
j

Feedj · FCostj −∑
k

Utilityk ·UCostk

(1.5)
Where:

• Profit = Plant profit function ($/day)

• Producti = product flowrate i (quantity/day)

• PValuei = product value i ($/quantity)

• Feedj = feed flowrate j (quantity/day)

• FCostj = feed cost j ($/quantity)

• Utilityk = utility usage k (quantity/day)

• UCostk = utility cost k ($/quantity)

The LP maximizes this objective function subject to given constraints,
which can change throughout process operation [11]. The constraints
in the LP relate to the engineering limits of process variables in the
controller. Depending on the number of constraints and the ‘shape’
of the controller, the solution to this constrained optimization may
take multiple forms.

The ‘shape’ of the controller refers to the number of dependent
and independent variables. In a perfectly square controller, there
are equal numbers of dependent and independent variables (MVs
= CVs), meaning that the control problem has a unique solution.
This is rare in reality; the more likely case is that of the fat plant,
where there are more MVs than CVs, allowing for greater degrees of
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freedom in the system11. More degrees of freedom give the LP the 11 The ‘degrees of freedom’ in a
control system refer to the number
of unconstrained MVs (which equals
the number of constrained CVs). A
square controller has zero degrees of
freedom, a fat plant has a positive
amount, and a thin plant has a
negative amount. Degrees of freedom
can be thought of as the degree of
specification of a 2-dimensional system;
the square controller is perfectly
specified with a unique solution.
The fat plant is underspecified and
has a multidimensional solution (a
line or plane), while the thin plant is
overspecified.

flexibility to pursue multiple operating points, depending on what
the objective function dictates. In contrast, the thin plant case is one
where there are more CVs than MVs, which can occur when control
action is lost through valve saturation or manual control. This creates
an infeasible control problem. In this case, the controller cannot meet
the specified objectives; constraints must be relaxed so that more
degrees of freedom are available [14].

In the ‘fat plant’ case, the controller has degrees of freedom
available so that it can drive the process to the operating point
designated by the LP. The constraints chosen in this case are determined
solely by the cost function, because the controller has the freedom
to move the operating point as necessary. On the other hand, the
‘thin plant’ case imposes additional restrictions on the controller.
If more setpoints are specified than there are degrees of freedom
available, the controller must relax some constraints in order to
make the control problem feasible. The LP must decide on a set
of CVs that create the least concern for operators and relax their
constraints, and this decision is influenced by both economics and
process safety. Sorensen and Cutler (1998) summarize this decision
process as follows:

“Operators, engineers and managers associated with the process
operation are asked to evaluate each dependent variable when it is
exceeding its most important limit and assign a delta value beyond
the limit that represents a crisis situation. The delta value beyond the
limit for the most critical [CV] is used as a reference. Effectively, the
personnel with the greatest knowledge of the operations create a list of
delta values, in engineering units, that represents equal concern for limit
violations.” [11]

Calculating delta values and equal concern values allows the LP to
minimize concerns when facing an infeasible control problem. These
calculations are also used as a basis for the ‘cost’ of each CV; costs
are assigned to negative slack variables12 in the LP, giving the LP a 12 Slack variables are unknown variables

added to inequalities in order to
transform them into equalities.
Constraint statements are often
inequalities, so adding slack variables
turns the set of constraint statements
into equations.

quantitative basis on which to decide the constraints to be relaxed13

13 Costs of each CV are inversely
proportional to their ‘equal concern’
value, and directly proportional to their
importance in the system.

[11].
Given a feasible control problem, the LP then determines how to

approach the calculated operating point. In doing so, the LP uses the
current state and predictions to calculate a set of MV moves over the
specified time horizon. The LP maintains economic objectives over
this transition period by ensuring that the MV moves are economically
sound. The LP must therefore rank MVs based on their impact on the
optimal solution, and this impact is quantified as the ‘LP cost’. The
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LP cost of a given MV is defined as in equation 1.6.

LPCosti = −
∂Profit
∂MVi

≈ −∆Profit
∆MVi

(1.6)

Using the cost for each MV, the LP is able to determine the most
profitable (or least costly) path between operating points. These costs
are combined with the ‘move suppression’ parameters (discussed
in section 1.3.4) in order to produce an optimized and cost-effective
control plan in order to move the plant between operating points.

Additionally, the objective function can be expressed in terms of
minimizing cost rather than maximizing profit. Often some variables
cannot fall neatly into categories of ‘product’, ‘feed’, or ‘utility’, so
expressing the objective function in terms of the total cost in the plant
makes for a clearer objective function. Based on the LP cost and move
size of each MV, the objective function can be simplified as follows:

Cost = ∑
i

LPCosti · ∆MVi (1.7)

Where:

• Cost = the total cost

• LPCosti = LP cost value of MVi

• ∆MVi = change in MVi

This form of the objective function is often the standard form used
in APC systems, because it can account for all variables in the system
without ambiguity regarding the category that each variable falls
into. In this way, if the LP cost of a given MV is negative then the LP
will try to maximize it, and vice versa.

Having quantities that can prioritize both MVs and CVs, the LP is
able to determine:

• Where the operating point needs to be in terms of which constraints
must be satisfied, and

• How to drive the plant in that direction, in the form of an MV
control plan to relay to the controller.

An additional parameter often considered in linear programming
and constrained optimization is the ‘shadow price’, which is: “the
change in the optimum value of the objective function per unit
change in a constraint limit (the right-hand side of an inequality
constraint)” [15]. With reference to the LP objective function in
equation 1.5, the shadow price of a given CV is the change in profit
per unit change in the constraint limit (similar to the LP cost calculation
for MVs). Shadow prices allow for detailed sensitivity analyses
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to be performed, and may relate to problematic variables when
performing controller diagnosis. The shadow price is also only
relevant to variables that are actively constrained; unconstrained
variables, by definition, have a shadow price of zero14 [16]. If a 14 Increasing the constraint limit of a

given unconstrained variable will have
no effect on profit, because the current
profit is dependent on other constraints.

certain CV is falling/rising for unknown reasons and reducing
profit, engineers need to find the MV responsible for these changes.
Because the shadow price is nonzero only for constrained variables,
it may give additional insight that can aid engineers in the controller
diagnosis process.

1.3.6 MPC diagnosis

In operating and maintaining MPC systems, there are many issues
commonly faced in different plants that engineers need to troubleshoot
on a regular basis. Issues that are commonly discussed in control
literature include model-plant mismatches (MPMs) and underperforming
control loops, where many papers offer various data-driven strategies
for MPM detection/elimination and MPC tuning. Often the solution
to these issues is some method of re-calculating the MPC model
and the optimal MPC tuning parameters, but these processes are
time-consuming and can cause major disruption to production.
For example, in recalculating the MPC model by performing step
tests, engineers need to go through numerous administrative and
logistical barriers before being able to actually run the tests. These
can include ensuring that instruments are functional, setting up data
collection, planning the specific variables to be tested, scheduling the
step tests, and coordinating with other departments to confirm that
the scheduled window does not disrupt any other work. Moreover, in
the testing window, engineers need to run their system identification
computations and ensure that the model is realistic by analyzing
it using partial pivoting, RGA, or SVD. These factors make model
recalculation quite tedious, thus the model is not recalculated frequently.

Rather, typical issues that users face on a more frequent basis can
include incorrect limit clamping and instrumentation issues. Through
discusssion with our industry partner at the Parkland refinery, it
is found that incorrect clamping and instrumentation issues are
common issues that MPC users often need to troubleshoot on a
day-to-day basis. Troubleshooting MPCs to solve such problems is
also time-consuming, but these human factor issues occur much
more frequently than MPMs. Consequently, the question of how
to automate this troubleshooting process is an important research
question for this research.

As described by Guerlain et al (2002), some MPC variables may
have their limits tightened (or ‘clamped’) due to instrumentation
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issues or as a response to local operating conditions. For large-scale
MPC systems, operating conditions may take days or weeks to
return to normal, meaning that operators or engineers may forget
to unclamp those variables. If the typical limits are not reinstated
when operating conditions return to normal, the clamped variables
can limit the ability of the controller to control the process [2]. The
clamped variables each take up one degree of freedom from the
controller, causing it to drive the process towards its desired operating
point through undesirable moves, such as changing feed rate or
other economic handles. While this may seem like a trivial issue
that is easy to solve (by simply identifying the clamped variables),
it is often difficult to understand undesirable MV moves without
detailed understanding of the process and investigation of process
data, especially for large-dimensional controllers.

As for the instrumentation issues, poorly functioning instrumentation
can result in far-reaching consequences for the control system. Field
instruments can fail for numerous reasons, such as fouling, leaks,
or poor maintenance. Instrumentation issues are often detected by
performing quality checks on the data in the DCS, to ensure that
bad data are not sent to the MPC system from failed instruments.
However, some instrument failures may go undetected through these
quality checks, because certain instruments are more complex and
their failures are not easily detectable based only on the quality of
data. For example, the Parkland refinery uses a pressure-compensated
temperature (PCT) inferential to estimate C2 content in a de-ethanizer
column bottoms stream15, and this PCT inferential is biased by gas 15 The de-ethanizer column is fed the

outlet stream from the top of the main
fractionation column and separates
lighter hydrocarbons (C2 content)
from heavier hydrocarbons. The C2
content of the bottoms stream in the
de-ethanizer column is therefore a
measure of separation and of the purity
of the bottoms stream.

chromatography (GC) readings. This bias is only present when the
GC device is online; when the GC device is offline, the bias must be
manually removed by the operator. When the bias is not removed
while the GC is offline, the PCT reading is incorrectly biased, but
the MPC will not detect this incorrect bias and continue to use the
PCT for control. Over a longer period of time, the C2 prediction
may hit an upper or lower limit while still being incorrectly biased,
causing the controller to use alternative degrees of freedom to drive
the process towards its setpoint. In a large control system, it will not
be immediately obvious that the PCT reading is incorrectly biased,
and finding this result will be difficult without detailed knowledge
of how the instrumentation is tied to the inferential control and DCS
systems.

Both of these issues are common in the day-to-day operation of
large-scale MPC applications, but are not strongly emphasized in
control literature. Controller diagnosis is an essential component of
MPC operation and is made more difficult by the prevalence of these
issues on a regular basis. We provide a generic process for controller
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diagnosis that requires no process knowledge; rather, this method of
diagnosis comprises an iterative process of elimination involving a
visual representation of the gain matrix.

Given a problem CV, we can use the gain matrix and knowledge of
active constraints to find the variable causing the problem. Isolating
that row16 in the gain matrix lets us identify which MVs are controlling 16 This form of the gain matrix shows

CVs as rows and MVs as columns,
which does not follow DMCPlus
convention, where MVs are rows
and CVs are columns. This is a more
intuitive form, as outlined in equations
1.1-1.2

the problem CV. For each of those MVs, the constraint status indicates
whether the given MV is the root cause; if the given MV is constrained,
we need to check if unclamping that constraint would solve the
problem. If the problem is not found, then we must repeat this
process for other MVs in that row that have nonzero gains and that
have not been checked before. If no other MVs exist in that row that
satisfy these conditions, then the user must identify the column
of the last MV being investigated. The same process follows for
checking whether the CVs in that column are causing the problem;
checking their constraint statuses and repeating for other CVs in
the column. This process is iterated, checking every variable until
a final root cause is established. By iterating through every set of
variables influenced by a given MV or CV, this data structure can
be represented by a stack: a type of list where items are stacked on
top of each other, and only one element is accessible at a time, which
is the element that last entered the stack. The concept of a stack is
shown in figure 1.6, and the algorithm is summarized in figure 1.7.

Push Pop

Figure 1.6: Representation of a
stack data structure. The stack
is filled by ‘pushing’ elements,
and ‘popping’ removes the top
element from the stack.

Consider a 4× 3 system (4 CVs, 3 CVs) with three active constraints
and, consequently, two degrees of freedom. Figure 1.8 summarizes
the features of this system, including a heat map representation of
the gain matrix.

MV1 MV2

CV4

CV3

CV2

CV1

MV3

System

3 MVs, 4 CVs
Typical Constraints:

CV3 at UL
CV4 at LL
MV3 at LL

Figure 1.8: Sample system to
illustrate the proposed generic
controller diagnosis process. The
steady-state gain matrix shows
the directions of each MV/CV
pairing, with negative gains in red
and positive gains in green.

For the purposes of this
system, we consider CV3

to be the main controlled
variable and is constrained
at its upper limit, similar to
the feed rate in an FCC unit.
Consequently, a typical fault
in this system could be where
CV3 becomes unconstrained
and drops. To diagnose this
fault, users can use the gain
matrix and knowledge of the
typical constraints in order to
eliminate variables that are not
the root cause. For each variable
identified in the gain matrix,
whether or not that variable is
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Problem
variable

Identify corresponding
row/column in the gain

matrix

Choose next CV/MV
with nonzero gain not

already visited

If the variable is
incorrectly clamped,

unclamp it

Any variables 
left to check in 

this row/column?

Is the stack empty?

Problem found?

No

Yes
Stop

No

Stop
Yes

No

Add variable to the
stack

Add problem
variable to stack

Pop the stack and identify
popped variable

Yes

Figure 1.7: Abstract diagnosis
process for identifying variables
that are incorrectly clamped.
The stack represents the list
of variables that users need
to check; users first need to
identify the variables directly
related to the problem variable,
then investigate the variables
related to each variable added
to the stack. In the realm
of software engineering,
the algorithm represents a
‘Breadth-First Search’ (BFS)
algorithm. In contrast, a
‘Depth-First Search’ (DFS)
algorithm would begin with
identifying a single variable
related to the problem variable,
then going to that variable’s
row/column in the gain matrix,
and so on. These can both
be classified as ‘naive’ search
algorithms, because no process
knowledge is employed to
eliminate irrelevant variables
from the stack.
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the root cause is determined by
the presence of nonzero gains in that variable’s row or column. This
process is summarized in figure 1.9, and the descriptions indicated
by letters in this figure are outlined in table 1.3. Each variable has a
constraint status adjacent, and figure 1.10 illustrates the meaning of
the constraint symbols.

MV1 MV2

CV4

CV3

CV2

CV1

MV3

Dashed line = Read across row.
Use gain matrix to determine
control handles for this CV

MV1 MV2 MV3

CV1

CV2

CV3

CV4

Solid line = read down column.
Use gain matrix to see which
CVs uses this MV

F

CV3

MV2

CV2

CV4 MV1 CV1 MV3

A

B

C

D

E G

H

I

Figure 1.9: Generic controller
diagnosis process without
background process knowledge.
The gain matrix is used to
eliminate variables in each of
the transitions, and the symbols
adjacent to each variable
represent that variable’s
constraint status, which are
explained in figure 1.10. Each
letter represents an analytical
thought process, and these are
summarized in table 1.3.

A legend explaining the constraint symbols in figure 1.9 is shown
in figure 1.10.

Upper Limit (UL)

Lower Limit (LL)

Typically constrained at UL

Typically unconstrained

Typically constrained at LL

Figure 1.10: Explanation of the
constraint symbols in figure 1.9.

The diagnosis process
begins with CV3 becoming
unconstrained and dropping
from its upper limit. Looking
at the gain matrix, CV3 is
controlled only by MV2 with
a positive gain, so the focus of
our analysis shifts to MV2. MV2

is not part of the constraint set,
so is not the root cause of the problem; the controller is dropping
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MV2 because of another variable. MV2 controls CVs 2, 3, and 4, and
we have already looked at CV3, so we can eliminate it. Both CV2

and CV4 have negative gains with MV2, meaning that they increase
when MV2 is reduced. CV2 is not typically constrained and has
no other control handles, so we can eliminate it. CV4 is typically
constrained at its lower limit and MV2 is driving it upwards;
however, CV4 is also controlled by MV1, with which it has a positive
gain. Consequently, while MV2 drives CV2 upwards, the controller
will drive MV1 down in order to maintain CV4 at its constraint. We
then shift to MV1, which controls CV1 and CV4 (both with positive
gains), thereby eliminating both CV4 and MV1 as the root cause.
Since MV1 is moving down, CV1 moves down as well. The only
other MV that controls CV1 is MV3, with a negative gain. MV3 is
typically constrained at its lower limit; in order to maintain CV1 at its
level, MV3 needs to move down. Because the limit is clamped, MV3

cannot move down any more, meaning that MV3 is the root cause of
the problem. These findings are summarized in table 1.3.

Letter Explanation
A CV3 is typically constrained at its UL. During a fault, CV3 becomes unconstrained, so it will

move down. Why did CV3 move down?
B MV2 is the only MV that has a control handle over CV3, and this pairing has a positive gain.

Since CV3 moves down, MV3 moves down. MV2 is a control handle over CV2 and CV4. Why is
the controller moving MV2 down?

C CV2 is typically unconstrained, so the drop in MV2 causes it to move up.
D CV2 is unconstrained and has no other control handles, so is NOT the root cause.
E CV4 is typically constrained at its LL. MV2 is driving it upwards. To keep CV4 at its LL, the

only handle available is MV1, with a positive gain. Why is the controller moving MV1?
F MV1 is unconstrained and controls CV1 and CV4. MV1 moves down to maintain CV4, but

what happens to CV1?
G CV1 is unconstrained and has a positive gain with MV1 so it moves down. To maintain CV1,

MV3 is the only available control handle.
H MV3 is constrained at its LL. It needs to move down to maintain CV1, but the limit is clamped,

so it can’t move.
I MV3 is the root cause.

Table 1.3: Explanation of
the thought process for
understanding the cause of
the drop in CV3 for the generic
controller diagnosis process.

This diagnosis process utilizes the gain matrix to eliminate MVs
and CVs based on their constraint statuses and the number of variables
that they control/are controlled by. The problem being solved here
is that of an incorrectly clamped MV/CV, as explained earlier in this
section.

This algorithm for controller diagnosis can also be represented
as a graph, with nodes representing MVs/CVs and their required
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computations, and edges representing nonzero gains between specified
MV/CV pairings. Using a graph to represent the system clarifies the
distinction between the BFS and DFS algorithms used to traverse
the gain matrix. A graph representing the diagnosis process starting
from CV3 is shown in figure 1.11.

CV3

MV2

CV2 CV4

MV1

CV4

MV1

"Base" Level

Depth = 1

Depth = 2

Depth = 3

Depth = 4

Depth = 5

Figure 1.11: Directed Acyclic
Graph (DAG) representation of
the controller diagnosis process.
CVs are highlighted in purple,
and MVs are highlighted in
blue. Each node represents
a given variable, and the
computation required at each
node is the investigation of
that variable’s constraint data
(i.e. whether that variable is
incorrectly clamped). Each
edge in the graph represents
a nonzero value in the gain
matrix for that particular
MV/CV pairing. The ‘root’
node is CV3 (where the
diagnosis process begins),
and the ‘depth’ of each node is
the number of edges between
that node and the root node.
Because the gain matrix in this
example is fairly sparse, the
DFS and BFS algorithms are
quite similar. In a larger matrix,
each node has more sub-nodes,
and so the order of visiting
variables is highly impacted by
the search algorithm chosen.

Presenting the naive diagnosis process in this way provides some
additional insight. The ‘computation’ required at each node is the
investigation of that particular variable’s constraint status. The
process begins with investigating the constraints of CV3, and the
nonzero gain between CV3 and MV2 is represented by that edge,
so MV2 becomes the next node. We investigate whether MV2 is
improperly clamped, then move on to CV2 and CV4, and so on. If
the graph begins with a different problem CV, the size of the graph
(total number of nodes; total number of variables being investigated)
may change. In the best case scenario, the diagnosis process yields
a root cause of the problem after one ‘level’ of investigating (i.e.
one unit of depth). In the worst case scenario, we must investigate
all variables in the system to find the root cause of the problem.
Hence, the size of the graph (i.e. the number of nodes that must
be visited) can be mathematically represented as a range between
[2, N(nonzero gains)].

Using a naive search algorithm like BFS (as in figure 1.7) provides
a very basic form of controller diagnosis. Variables are investigated
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systematically based on their position in the gain matrix, rather
than how they physically affect the problem variable. In reality,
this mental process is more accurately represented by a less naive
search algorithm, as engineers will not investigate variables they
know to be irrelevant. The actual process of diagnosis would be
more accurately represented by a greedy search algorithm; greedy
algorithms find the solution in the system by making the most
locally optimal decision in each step. 17 Greedy algorithms often 17 An example of such a system is the

A* algorithm, which uses weighted
edges and predictions to optimize the
solution.

use heuristics to aid the solution process, so in this case, engineers
can incorporate process knowledge as a heuristic in order to evaluate
the various branches to be explored. In this way, greedy algorithms
can allow for more informed decisions to be made when traversing
through the graph. Therefore, real diagnosis processes can comprise
a combination of naive searching and informed elimination of nodes,
until a reasonable solution is reached.

In the previous example, it was necessary to investigate all seven
variables, corresponding to seven nonzero values in the gain matrix.
No process knowledge was used to eliminate variables, and each
variable was eliminated by looking at its constraint data. Process
knowledge allows engineers to eliminate variables in each layer,
because it tells engineers which variables are physically capable of
causing the problem. For example, engineers can eliminate CV2

from the diagnosis process if they knew that it physically cannot be
causing a problem in CV3. This may seem like a trivial difference,
but in real systems such as the FCC gain matrix at Parkland, MVs
and CVs may have 30 or so nonzero gains in their corresponding
columns and rows, corresponding to 30 or so edges coming out of
a given node. Without the use of process knowledge to eliminate
irrelevant variables at each step, diagnosing the controller is an
extremely tedious process.

1.4 Literature Review

1.4.1 Previous work

There are five principal sources of inspiration that have investigated
similar concepts in the past. The first is the MPC Elucidator, a Honeywell
visualization tool, on which this project is based. The Elucidator
aimed to solve, for the most part, the same problems that we are
aiming to solve in this research. Its design was based on the implementation
of ‘Representation Aiding Strategies’, which help to “represent
relevant domain, task, and system constraints through visual properties
of the display, and thus encourage people to perceive these relationships
with little cognitive effort.” [2]. Cognitive task and work analyses
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were performed in order to provide guidelines for the design. Even
though the design involved extensive consultation with end users,
discussions with industry partners revealed that the product was
not as widely implemented as expected. The authors also outline
challenges and limitations to the research, which mostly comprise
issues with the representation aiding approach as well as the sheer
volume of relationships present in the system. The representation
aiding approach may cause the designers to encode data that is not
easily decodable, potentially causing some representations to be more
easily understood than others. The second limitation relates to the
volume of complex relationships that designers are attempting to
represent; using one representation to do so may be impractical, and
it may be helpful to use analytical tools to simplify the data being
encoded.

Although this article was published in 2002, many of the arguments
made are still relevant today, as the human-automation interactions
between operators and controllers have been neglected relative to the
development of the algorithms themselves. A response to a blog post
by Jim Cahill [17], Chief Blogger for Emerson Automation Solutions,
provides a succinct description of MPC engineering:

“MPC math is simple and elegant; MPC engineering is not.” [18].

Secondly, Lindscheid et al (2016) discuss the importance of trust
in automation - specifically regarding MPC and nonlinear MPC
(NMPC) - and outline some requirements for a visualization tool
to facilitate human-automation interactions [19]. It is important to
note that this same paper does not mention existing visualization
tools for such systems.

The next major application of this research is an ExxonMobil
patent outlining a process for MPC analysis in 2011 [20]. This patent
explains the process of matrix ‘pivoting’ (also known as ‘partial
inversion’) in the context of multivariable control18. Partial pivoting 18 Partial pivoting has been

independently studied in different
academic disciplines and has a different
name in each one, such as “Principal
Pivot Transform”, “Exchange”, or
“Sweeping” [21].

has mostly been used in applications such as statistics, linear algebra,
and programming, but has seen limited usage in APC applications. It
is surprisingly difficult to find partial pivoting explained in academic
process control literature. In addition to this patent, a literature
review revealed two other instances of partial pivoting being used
in APC applications.

The next major source of inspiration is a presentation on “Durable
MPC” by Hoffman et al (2010) [22] in the American Institute of
Chemical Engineers (AIChE). Hoffman describes a mixing problem
and uses partial pivoting to rearrange the gain matrix such that a
desired set of variables is on the ‘independent’ axis, and another is on
the ‘dependent’ axis19. The next example of partial pivoting in APC 19 In reality, often one of these chosen

sets would represent the set of variables
that are typically constrained, so that
operators can understand how the
constraints in the system are affected by
MV changes.
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is in an article by Sorensen et al (1998) in Hydrocarbon Processing [11].
Sorensen uses the partial pivoting method (‘partial inversion’ in the
text) in the context of an FCC unit, where it modifies the structure
of the model to make it more suitable for integrating the LP into the
control system.

In an APC context, partial pivoting would be applied to steady-state
gain matrices in order to highlight the relationships between constrained
and unconstrained variables. Gain matrices are 2-dimensional matrices
with independent variables (MVs and FFs) on one axis, and dependent
variables (CVs) on the other 20. Partial pivoting transforms the matrix 20 The steady-state gain matrix in a

multivariable control problem relates
the changes in control inputs (MVs)
to the steady-state changes in process
outputs (CVs).

such that some MVs/CVs/FFs are moved from one axis to the other
based on their constraint statuses. Moving all constrained variables
to one axis and all unconstrained variables to the other axis allows
operators to understand how a change in an unconstrained variable
will affect the other constraints and, consequently, the economic
optimum calculated by the LP. While partial pivoting is not directly
applied to MPC visualization in the ExxonMobil patent, it can be
applied to provide significant benefits in this context. These benefits
are discussed in chapter 4.

The fifth and final major previous application of similar research
appears in the work of Kozub et al (2002) [23]. This paper discusses
issues with monitoring MIMO systems like MPCs, specifically in
terms of the relationships between the dynamic and steady-state
components of MPC control. The steady-state component comprises
the LP, which is concerned with the economic performance of the
plant. One major issue discussed is the importance of the LP layer
in process monitoring. The LP determines the targets towards which
the controller drives the process, and so the relationship between the
LP layer and the dynamic control layer cannot be ignored. This paper
also provides some visual tools that represent important factors to
consider in visualizing MPC systems, which are discussed in section
3.2.

1.4.2 History of interactive heat maps

One feature of the visualization tool developed in this research is
the representation of the gain matrix as a colour-coded heat map.
The decision to incorporate heat maps into this visualization is
contextualized by this discussion of the history of heat map representations.
This is because heat maps are not a common representation of data in
process control.

Heat maps have been used most extensively in the field of bioinformatics,
especially when involving gene expression data [24]. The idea of
permuting matrices to reveal underlying structure started with
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Brinton (1914), representing educational data for US states in the
form of a shaded matrix [25]. The next major contribution in this
particular application of heat maps was from Jacques Bertin (1967),
with his physical reorderable matrix; a replica designed by Perin et al
is shown in figure 1.12.

Figure 1.12: Replica of Bertin’s
reorderable matrix, created by
Perin et al [26]. This matrix
was displayed on blocks of
wood, each with its data ‘value’
represented as a circle with a
specified area etched onto the
surface. Each row and column
were held in place using metal
rods, and the matrix was
reordered by removing and
rearranging the metal rods.

The idea was that, by reorganizing the structure of a matrix, Bertin
was able to highlight underlying structures in the data. This has been
applied extensively in bioinformatics, but has not been applied in
the area of process control21. Consequently, much of the value of this 21 The method used to actually reorder

the matrix is also known as seriation.
Seriation began with Petrie (1899)
attempting to reorder a matrix of
anthropological data to recover
temporal ordering of the dataset[24]

research lies in the novelty of it; presenting underlying structures in
multivariable control applications can yield significant benefits that
go beyond simply sorting the gain values for a specific variable.

Figure 1.13: Manipulation of
the Bertin reorderable matrix
[26]

In encoding the FCC gain matrix as a heat map with functionality
to reorder the matrix, the user exposes numerous opportunities for
further analysis. The main analysis performed in this project involves
reordering the gain matrix based on gains of MV/CV pairings, and
one important benefit of doing so is revealing underlying structure
that is unavailable in the raw gain matrix. There are numerous other
parameters available by which the user can reorder the matrix to
reveal different structures, depending on what information the user
is looking for. For example, the gain matrix can be sorted by LP cost
to analyze variable gains with respect to their importance in the LP
problem22. Users can also sort the gain matrix by subcontroller or by

22 The user’s ability to interpret the
information shown in the gain matrix is
dependent on its arrangement, and this
effect becomes more prevalent as the
gain matrix grows.

name. Alternatively, one could also use the gain matrix to analyze a
specific MV; sorting the matrix by gains of that MV tells the user how
changing that MV affects the system more effectively than just the
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raw gain matrix. Similarly, selecting one CV and sorting the matrix
based on that row tells the user how strong each MV’s control handle
is on that particular CV.

Much of this research is focused on the gain matrix. As shown
in section 1.3.2, the information obtained from analyzing one row
or column of the gain matrix is fairly straightforward; i.e. how
much does MV1 affect CV1 and in what direction? Similarly, if
CV1 needs to increase, which MVs can be used to do so? These
questions can be answered using the raw gain matrix. It is also
known that the raw gain matrix can be analyzed in a number of
ways to make its presentation more effective, through techniques
like partial pivoting. This technique combines the gain matrix with
real-time optimization data, making it more useful for operators.
The novelty of this research lies in the following questions: can
we apply principles from information visualization and matrix
seriation in order to extract additional information from the gain
matrix? Since partial pivoting incorporates optimization data into
the gain matrix to make it more useful, how can we use the available
constraint data with the gain matrix to provide additional benefits?
Finally, with the information provided by such analyses, how can
we effectively display such information? The benefits of performing
these analyses are known to control engineers; Hoffman et al (2010)
use partial pivoting to ensure that the gain matrix represents a
model that is properly conditioned, so that the controller always
uses degrees of freedom that are available in the real system [22].
Peterson et al (2011) use partial pivoting to quantify how certain
MV moves will affect the operating point in terms of the active
constraint set [20]. Hence, further investigation in this area and
incorporating information visualization principles can potentially
provide significant benefits to users of MPC systems.



2
Data and Information Visualization

Brehmer et al. (2013) provide a concise definition of information
visualization:

“The foundation of information visualization is the characterization
of how known facts about human perception should guide visual
encoding of abstract datasets” [27]

The terms ‘information visualization’ (or infovis) and ‘data visualization’
are often used interchangeably, but they mean different things in
most contexts. In a general sense, data is simply a collection of
facts and statistics, without the inclusion of context or meaning.
Information is produced from data by adding context and meaning
to it. As such, to avoid ambiguity, the definitions used in this discussion
are:

• Data visualization is the representation of data without context;

• Information visualization is the representation of data in a specified
context for a specified purpose.

The overall purpose of this field is to communicate information
through visual media, allowing users to gain insight into data without
analytical tools. 1 1 This is accomplished by replacing

cognitive tasks that the user would
perform with visual tasks facilitated
by the user interface. These cognitive
tasks are ‘translated’ into visual tasks
through the use of visual encoding,
where meaningful information is
represented by visual media.

Each medium used to represent information has associated strengths
and weaknesses, meaning that each medium is more suited for
certain types of data. The effectiveness of a visual medium in representing
a dataset is dependent on multiple factors, such as the type of the
dataset and its dimensionality. These different types of datasets and
the effectiveness of various encoding techniques was first explored
by French cartographer Jacques Bertin. Bertin laid the foundation
of information visualization in Semiology of Graphics, in which he
identified three data types (quantitative, ordinal, or nominal) and
numerous ‘retinal’ variables [28]. Quantitative data are any data
that have exact numbers; ordinal data are not numerical, but have
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an ordering to them (i.e. low, medium, high); nominal data are
everything else (normally categorical data). The ‘retinal’ variables
are methods for visual encoding that utilize different visual channels
to convey information.

Position 1

P
o
s
it
io

n
 2

Figure 2.1: Encoding numerical
data in the form of each point’s
visual position. This is the
premise behind typical graphs
with x- and y-axes (positions 1

and 2, respectively).

Common variables defined in visualization literature are: position,
length, area, shape, texture, orientation, and colour. Position is a
fairly self-explanatory variable, as this is how information is represented
in any scatter or line plot. Distinguishing points based on position is
shown in figure 2.1.

Length, area, and shape are all similarly obvious, though they
would represent different types of data. Lengths and areas are
suitable for quantitative data, as they are typically used to represent
data in the form of bar and pie charts, respectively. Examples are
shown in figure 2.2.
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(a) A bar chart represents quantitative data through each bar’s
length.

A
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C

(b) A pie chart represents quantitative data
through relative areas of each section.

Figure 2.2: Comparison of data
representation through length
(bar chart) and area (pie chart).
Both graphs are representing
the same dataset.
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Different shapes are not as suitable for representing quantitative
data, because the correlations between the shapes are not inherently
quantitative. The effectiveness of shape as a visual medium is entirely
dependent on the specific selection of shapes; it is difficult to select
shapes that are inherently quantitative or ordinal, so shape is often
used to differentiate categories. An example of different shapes that
can be used in visualization is shown in figure 2.3.

Figure 2.3: Different shapes can
be used to encode data, often
for nominal datasets.

Texture in this context refers to the patterns appearing on a data
representation, such as diagonal lines or a cross-line pattern, but it
is not commonly used in visualizations. Texture can also represent
the feel of a physical representation, such as the Bertin reorderable
matrix. An example of different textures is shown in figure 2.4.
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Figure 2.4: Bar chart
differentiating variables
(Var 1 and Var 2) through
the pattern on the bar. This
can be a common method
of representing nominal
data when colour is not
available (e.g. on black/white
documents).

Orientation is self-explanatory, but its implementation is not as
straightforward. For instance, it is visually easy to distinguish a
vertical line from a horizontal line, but it is not as easy to differentiate
a line at 30°from a line at 40°. An example is shown in figure 2.5. Figure 2.5: Various

orientations of the same object.
Theoretically, orientation can be
used to represent any dataset.

Colour is an interesting variable, mostly because there are multiple
ways to quantify colour. Visually encoding a dataset as a colour
scale can be accomplished in multiple ways, each being effective
in particular contexts. Examples common to digital visualization
include RGB (Red, Green, Blue), CMYK (Cyan, Magenta, Yellow,
Black), and HSL (Hue, Saturation, Luminosity). RGB and CMYK
combine the numerical values for each colour to create the final
output2, while HSL uses a combination of other factors. The structure 2 An easy way to look at these methods

of colour mixing is that they are linear
combinations of the number assigned
to each colour; when red, green, and
blue values are identical in an RGB
setting, the output is a shade of white.
Similarly, when CMYK values are
identical, the output is a shade of black.

of RGB and CMYK colouring is shown in figure 2.6.
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(a) RGB colour structure. The
combination of maximum values
for each colour results in the white
centre.

(b) CMYK colour structure. The
combination of maximum values for
each colour results in the black centre.

Figure 2.6: Common colour
models used in computer
graphic operations. RGB is
often a part of digital pixels,
making it a common colour
model in computer graphics.
CMYK is often used in colour
printing systems.

Figure 2.6 shows how the linear combination of individual colour
values results in a final output colour3. These details are important to 3 HSL operates differently; hue

represents the identity of the colour,
saturation is a percentage representing
the amount of ‘colour’ (0% is a gray
colour, 100% is the colour itself), and
luminosity is a percentage representing
brightness (0% luminosity is black,
100% luminosity is white)

understand because they dictate how colour is used to encode data.
Mackinlay (1986) summarized the effectiveness of various perceptual

tasks in encoding the three types of data. In this summary, position
is shown to be the most effective in all types of data, while other
visual encodings vary considerably between the data types. Figure
2.7 shows these results.
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Figure 2.7: Mackinlay’s ranking
of perceptual tasks. The tasks in
the gray boxes are not relevant
to the types of data. Figure
adapted from Mackinlay (1986)
[29]

Figure 2.7 illustrates an important pattern in visual encodings;
encodings that have inherently quantitative properties are much more
suitable for quantitative data. Similarly, those that are not inherently
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quantitative are more suitable for ordinal or nominal data. This
may seem obvious, but it is important to clarify, because it provides
basic guidelines as to how various data should be encoded. The
pattern presents itself in figure 2.7 in the changes of each variable’s
effectiveness between the datasets4. 4 More quantitative encodings like

length, area, and angle (orientation)
become much less effective in
non-quantitative datasets. Similarly,
less quantitative encodings (colour hue,
texture, shape) become much more
effective in non-quantitative datasets.

As explained here, there are numerous methods available to
encode data, each with their own strengths. However, most existing
tools for MPC visualization do not take this into account. The problems
outlined by Guerlain et al (2002) are still prevalent in many APC
systems; for instance, many systems show the gain matrix in static
displays of raw data, spread out over numerous tabs. This is not
an effective way to display data in terms of the user’s ability to
understand underlying patterns. This is partially because of the
nature of human perception when interacting with data; a numerical
display of data is not a visual medium with which to convey information,
rather it is a cognitive one5. As such, the perception of underlying 5 Note that, in figure 2.7, numerical

presentation of data is not shown at all.patterns in a table of numerical values would be difficult, in comparison
to a table of more visual representations of said numbers, such
as colours or shapes. The goal of this section is therefore to move
away from the static, tabular views that are common to MPC, and
move towards a visual tool that is more interactive, effective, and
user-friendly.

Aside from the actual encodings used to present relevant MPC
data, interactivity is especially important in creating new visual tools,
because interactivity allows the user to reveal underlying structures
that were previously imperceptible. The use of this concept in the
context of MPC (specifically regarding the gain matrix) was discussed
in section 1.4.2, where reordering the gain matrix allows the user
to visually sort the control system using multiple criteria, each
revealing various hierarchies by which the MPC system operates. For
example, sorting the matrix by LP cost allows users to understand
which variables are prioritized in the LP problem, whereas sorting
by gain value informs the user on how different variables are related
to each other. This is an important take-away point in this research
that was also emphasized by Guerlain et al (2002) in their “MPC
Elucidator” product [2]; by creating visually effective and interactive
designs, users are more able to obtain important information from
the controller visually rather than cognitively. Jansen (2014) discusses
this idea with regards to using a matrix display that provides reordering
functionality:

“...the analyst can interact with [the display] and actively explore the
data by manipulating rows and columns to expose patterns in the data.
Its design thereby directly supports visual thinking through action
[Kirsh and Maglio, 1994].”[30]
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2.1 Nested model for visualization design and validation

The overall objective of the visualization tool is to extract useful
information from numerical plant data and present it in such a
way that facilitates controller diagnosis. In order to develop this
visualization, we must adhere to some methodology that is suitable
to our goals. In this way, we can effectively evaluate the design in
terms of how it helps to solve specific problems that MPC operators
experience. As mentioned previously, the methodology chosen is
Munzner’s “Nested Model for Visualization Design and Validation",
which breaks the problem of visualization development into four
components, as shown in Figure 2.8.

Domain problem characterization

Data/operation abstraction design

Encoding/interaction technique design

Algorithm design

Domain problem characterization

Data/operation abstraction design

Encoding/interaction technique design

Algorithm design

Figure 2.8: Munzner’s nested
model for visualization design
and validation [4].

2.1.1 Domain problem characterization

The first level of visualization development is characterizing the
domain problem. This involves specifying who the users are and
what their intentions are for the visualization, as well as identifying
what realm the data to be visualized is relevant to. An example
could be data scientists in the commerce sector. It is important to
note that domain problem characterization is expressed in terms of
domain-specific vocabulary.

2.1.2 Data and task abstraction

The second level is concerned with the abstraction of two components:
data and tasks.

Data abstraction expresses domain-specific data as generic data
types that can be used to build visualizations. For instance, a matrix
of steady-state gains can be transformed into a table of floating-point
values that are not specific to process control.

Similarly, task abstraction applies this concept to operations that
are performed on the data6. For instance, an operator’s task to 6 Tasks, in this context, are generic and

not domain-specific.monitor controller health using Statistical Process Control (SPC) can
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be translated into a set of mathematical rules that apply to time-series
data.

2.1.3 Encoding and interaction design

This level is where a design process can be employed in order to
create a well-functioning visualization. The output of this layer in the
methodology is an interface for the users that displays what has been
abstracted in the previous layer, in order to achieve goals defined in
the first layer.

2.1.4 Algorithm design

Algorithm design involves writing effective algorithms that create the
encoding and interaction techniques developed in the previous layer.
Concerns in this level would include the speed and performance of
the algorithms, as well as any “bugs" that arise from user interaction.

2.1.5 Threats to validity

Each layer in the nested model has associated threats to validity and,
consequently, associated methods for evaluating visualizations. At
the domain characterization level, the principal threat to validity is
mischaracterization of the problem, in that the target users do not
actually experience the problems being described. For instance, users
of a small MPC system may not experience the issues discussed
in section 1.1, meaning that they do not need a new visualization
tool to improve MPC workflow. This threat can be addressed using
qualitative measures like discussion with the target audience, ethnographic
field studies, or investigating the tool’s adoption rate after implementation.

At the level of abstracting data and operations, the main threat
to validity is that the target users’ problems are not being solved by
the designated data types and operations. A relevant example of this
threat is that the task analysis abstracted from a controller diagnosis
workflow is not accurate, and is not reflective of how users actually
diagnose controllers. Designers can address this threat by testing
how target users do their work using the created tool, often using
formal field studies to report the users’ experiences.

The level of encoding and interaction design is threatened by
the inability of the chosen designs in “communicating the desired
abstraction to the person using the system” [4]. In terms of a visualization
for MPC systems, an example of this threat is that a colour-coded
heat map does not help users understand the MPC structure. Approaches
taken to deal with this threat include heuristic evaluations, expert
reviews, or formal user studies at a later stage.
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Finally, the level of algorithm design is primarily threatened by
the poor performance of the chosen algorithm in terms of time and
memory. Designers can measure and analyze the performance of
the algorithm in order to tackle this threat. Another threat that is
more relevant in this project is that the algorithm chosen is incorrect,
and does not meet the needs required for encoding the data and
operations chosen in the previous layers. In other words, the software
packages chosen to create and display the visualization tools may not
contain the functionality required for certain tasks; in this case, one
example is that the Dash and Plotly packages in Python provide only
high-level modules for visualization, making it difficult to customize
the visualizations in the application. The limitations resulting from
this particular software package are discussed in chapter 4. To
manage this, designers can present the created tool to the target
audience, who can directly evaluate algorithm ‘correctness’ [4].

A summary of the threats and validation methods in all layers and
how they relate to components of this project is displayed in figure
2.9.

Domain problem characterization

Threat: wrong problem

Domain problem characterization

Threat: wrong problem

Data/operation abstraction design

Threat: bad data/operation abstraction

Data/operation abstraction design

Threat: bad data/operation abstraction

Encoding/interaction technique design

Threat: ineffective encoding/interaction technique

Validate: qualitative/quantitative result image analysis

Validate: lab study, measure human time/errors for operation

Encoding/interaction technique design

Threat: ineffective encoding/interaction technique

Validate: qualitative/quantitative result image analysis

Validate: lab study, measure human time/errors for operation

Algorithm design

Threat: slow algorithm

Validate: analyze computational complexity

Validate: measure system time/memory

The chosen algorithm (software package in 

this case) must meet the needs required 

for the encoding and interaction strategies 

above.

This is the real ‘design’ component; the visualization 

must ensure that:

- encoding is effective (not too much lost information)

- representation of encoded data is effective

- interactivity facilitates tasks required for the user

- Colour-coded heat maps do not help users 

understand structure in the gain matrix

- Using dropdowns as interactive tools is ineffective

- Software packages do not provide customizability

- Interactive parameters cannot be designed effectively

Figure 2.9: Nested model
showing each layer’s threats to
validity as well as validation
methods. The ‘Domain
problem characterization’
and ‘Encoding/interaction
technique design’ layers are
greyed out because they are
not as relevant as the other
layers; creating all the tools in
this project involved extensive
consultation with potential
users.

Figure 2.9 summarizes the threats to validity and validation
methods associated with each layer in the nested model. In this
research, threats related to encoding/interaction and algorithm
design are more relevant than those regarding domain characterization
and data abstraction. Consequently, they are the only threats highlighted
in figure 2.9.
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2.2 Multi-level typology for task analysis

In developing visualizations, it is important for designers to take
into account the overall goals of the tools being developed. Decisions
made for lower-level tasks such as algorithm design and interaction
parameters should be driven by high-level decisions pertaining to
the ‘big-picture’ goals of the tool. This seems like an obvious point to
consider, but is often a pitfall of such designs. As stated by Munzner
(2013) [27]:

“The considerable previous work characterizing visualization usage
has focused on low-level tasks or interactions and high-level tasks,
leaving a gap between them that is not addressed. This gap leads to a
lack of distinction between the ends and means of a task, limiting the
potential for rigorous analysis"

To avoid this pitfall, a task analysis following Munzner’s “Multi-Level
typology of abstract visualization tasks" is performed and discussed7. 7 This task analysis pertains specifically

to the Data and Task Abstraction
component of the nested model. The
goal here is to translate domain-specific
tasks into sets of generic tasks that
can be used to more effectively design
visualization tools.

Performing this task analysis on the typical workflow for MPC
diagnosis allows the designer to create visual encoding and interaction
strategies that are better than existing strategies and, more importantly,
that are justifiable. Otherwise, designers may end up choosing
random visualization designs and having to justify them later. 8. 8 Randomly choosing visualizations

and justifying them after the fact is
what Munzner (2008) refers to as
‘Application Bingo’ [3]

The main idea presented in this model, as opposed to other task
analyses, is its inherent linking of low-level tasks (how a given task is
performed) to high-level classification of said task (why a given task
is necessary). The exact methodology revolves around defining the
what, why, and how of a given task. Figure 2.10 provides an overview
of the methodology:

Figure 2.10: Munzner’s
multi-level typology of abstract
visualization tasks.

In this context, the terms presented in figure 2.10 have specified
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definitions that may conflict with definitions presented in similar
work. These definitions are provided in table 2.1.

Term Definition
Present Display of data within the context of planning, decision making, forecasting, etc.

Discover Generating and verifying hypotheses through scientific investigation
Enjoy Casual visualization driven by curiosity

Produce Generating new information based on input data
Lookup Searching for a known element in a known location
Browse Searching for an unknown element in a known location
Locate Searching for a known element in an unknown location

Explore Searching for unknown elements in unknown locations
Identify Finding characteristics of known targets or references relating to unknown targets

Compare Comparing identified elements to each other
Summarize Compiling findings from comparisons

Select Pinpointing a specified element and distinguishing it from others
Navigate Changing the viewpoint (panning, zooming, etc.)
Arrange Spatially organizing visual elements
Change Altering the encoding of a specified element (change colour, transparency, etc.)

Filter Using specified criteria to highlight elements satisfying those criteria
Aggregate Alter granularity of visual elements
Annotate Marking visual elements with graphical or textual additions

Import introduce new elements to the visualization
Derive Using existing elements to calculate new ones
Record Capture current state of visual elements

Table 2.1: Terms presented
in figure 2.10 and their
associated definitions in the
context of the multi-level
typology. Higher-level terms
are omitted because they are
fairly self-explanatory [27].



3
Results

3.1 Task analysis

3.1.1 Case study: feed rate

Before designing the visualization, we were given a ‘case study’ that
emulated the typical workflow for MPC diagnosis. The goal was to
pinpoint the root cause of a drop in the product rate (or feed rate)
of the plant. This diagnosis procedure resembled the IDS procedure
discussed in section 1.3.6. The product rate data is shown in figure
3.1.
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Figure 3.1: Product rate over
time from January 29th,
2020 to January 31st. The
aforementioned drop is
apparent in the ‘Value’ and
‘SS’ tags around 3:00AM on
January 30th; the red arrow
is pointing to the drop. The
lower constraint is omitted to
illustrate the magnitude of the
drop.

The first step in diagnosing this controller is to identify variables
that are directly related to product rate. The easiest way to do this
with the provided data is through the gain matrix; by isolating the
row/column of the product rate and sorting the resulting variables
by value, the user is able to quickly filter out variables that are not
directly impacting product rate. The heat map representing the gain



42 shams elnawawi

matrix, and the resulting heat map sorted by product rate (MV-1), are
shown in Figure 3.2.
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Figure 3.2: Heat maps
representing the same section
of the gain matrix as shown
in table 1.1, with negative
values in red and positive
values in green. This section
is shown instead of the full
gain matrix to highlight the
reordering functionality. The
justifications for using heat
maps to represent the gain
matrix are discussed in section
3.2.1

By sorting the gain matrix visually, it is easy to filter out the
variables that have nonzero gains with respect to product rate.
Identifying this set of variables is made considerably easier with the
functionality to reorder the matrix; this feature is discussed further
in section 3.2.1. The heat maps shown in figure 3.2 show the final
iteration of the gain matrix representation; before representing the
colours as solid, the colours were on a continuous scale. This issue is
discussed in detail in section 3.2.1.

After identifying the variables that directly impact product rate,
the next step is to examine their behaviour in order to find the
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variable1 that is exhibiting abnormal behaviour around the time 1 This step involved choosing a
single variable and not a set of
abnormally-behaving variables because
it was necessary to iterate through
multiple times. Choosing a single
variable allows iteration without
needing to investigate an excessive
amount of data.

the problem started. This involved presenting the time-series process
data for each variable and visually analyzing its behaviour around
the time the product rate fell. There are 36 variables that directly
impact product rate, so this step of the process is fairly time-consuming.
Six of the potential ‘culprits’ are displayed in figure 3.3.
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Figure 3.3: Analyzing the CVs
with nonzero gains with respect
to product rate. The x-axis for
each figure represents a narrow
time period within which the
drop in product rate occurred,
between 00:00 and 06:00. The
red region is the time period
around which feed rate drops,
and around which each variable
is investigated.

Out of the plots shown in figure 3.3, De-Eth DP, Sponge Abs C3+,
and MF Top Reflux (the bottom three plots) were initially thought
to be the potential culprits. In order to determine the exact variable
causing the drop in product rate, it was necessary to understand
what each variable represented in the plant. From there, a process
of elimination began; for each considered variable, it was necessary
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to evaluate the validity of the hypothesis that the behaviour of that
variable can cause the change in product rate. It was found that
De-Eth DP (the sixth plot in figure 3.3) was a likely cause of the drop
in product rate, through consultation with industry partners. De-Eth
DP represents differential pressure in the de-ethanizer column in
the refinery. In this step, it was necessary to incorporate process
knowledge, as this allowed us to eliminate hypotheses that are
unrealistic from a physical standpoint.

De-Eth DP is a CV in this MPC system, and so the unusual spike
shown in figure 3.3 (in the sixth plot) was caused by some abnormality
in MV behaviour, which was driven by the controller. Consequently,
it is necessary to dig further and perform the same analysis to
understand what was causing the controller to drive De-Eth DP
upwards so intensely. This task is iterated until a reasonable root
cause of the problem can be identified. This is the last distinct task
in the diagnosis workflow; subsequent tasks involve repeating these
steps over different sets of variables. We repeated this procedure -
sorting the gain matrix and filtering out unnecessary variables - for
De-Eth DP, which led us to believe the issue was caused by De-Eth
Reb Stm (reboiler steam flow rate for the same column). The process
plots for product rate, De-Eth DP, and De-Eth Reb Stm are shown in
figure 3.4.
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Figure 3.4: Two ‘levels’ of
tracking the cause of the
drop in product rate. This
corresponds to a depth of 2 in a
graphical representation of the
diagnosis process, as discussed
in section 1.3.6.
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The reboiler steam flow rate in the third plot of figure 3.4 rises well
before the issues in both De-Eth DP and product rate occur, meaning
that this hypothesis is reasonable. It is also important to note that, for
both De-Eth DP and reboiler steam flow rate, the process behaviour
is very stable in the regions before the drop in product rate; this
concept is key to identifying ‘abnormal process behaviour’. Digging
further using this same technique led us to the final culprit, the
‘De-Eth Btms C2’, which represents the relative amount of lighter
hydrocarbons in the system. The bottoms C2 content also represents
the purity of the bottoms stream in the de-ethanizer column. The
compiled findings of the diagnosis are shown in figure 3.5.
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Figure 3.5: Compiled findings
of the controller diagnosis,
investigating the drop in
product rate at around 3:00AM
on January 30. As C2 content
hit its upper limit, the controller
increased steam flow in the
reboiler to drive the lighter
hydrocarbons to the top,
sharply increasing pressure
drop throughout the system.
As the De-Eth DP hit its upper
limit, the controller relieved the
system by cutting the feed rate.

Conceptually, higher bottoms C2 content (De-Eth Btms C2) means
that the bottoms stream of the column contains larger proportions of
lighter hydrocarbons, meaning that the bottoms stream is less pure
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than it should be. Consequently, the reboiler must provide more
heat to drive lighter components to the top of the column. However,
increasing the steam flow through the reboiler causes an increased
pressure differential due to the greater amount of vapour re-entering
the column from the reboiler. Consequently, to bring the system back
to an equilibrium point, the controller can reduce the product rate
target. Doing this reduces the downstream demand, relieving the
reboiler of the high load required. This diagnosis came about as a
result of analyzing process data in this way; using visualization to
generate hypotheses, then using process knowledge to verify them.

Evidently, it is necessary to incorporate process knowledge in
multiple stages of diagnosis; it is required when deducing which
variables are causing which problems, and is also necessary to know
when to stop ‘digging’ through variables2. Through consultation 2 Otherwise, we are left with ‘naive’

methods of diagnosis where variables
are checked based on their position in
the gain matrix, instead of how likely
they are to cause the problem.

with industry partners, we conclude that the root cause of the problem
is in the bottoms C2 content in the De-Eth column, because this is a
variable concerned with the conditions of one feed stream entering
the plant.

3.1.2 Rigorous task definition

The task analysis provided in section 3.1.1 is a discussion of the tasks
required to diagnose the MPC using the gain matrix in domain-specific
language; it is not a generic description of the workflow. For this
task analysis to be useful in developing a visualization tool, the task
analysis is abstracted into the definitions stipulated by Munzner’s
multi-level typology3. 3 Performing a detailed and methodical

task analysis provides an additional
benefit, which is that the user
can isolate specific tasks without
performing an entire controller
diagnosis. The visualization can
therefore be designed to be used for
these individual tasks, making it more
user-friendly.

The controller diagnosis steps discussed in section 3.1.1 can be
broken down as follows:

1. Identify the problem variable (referred to as PV1 in this discussion)

2. Pinpoint the time at which PV1 is causing a problem

3. Find the row/column in the gain matrix corresponding to PV1

• Input: a variable identifier (tag name/description)

• Output: a row/column of variables with associated gains

• Why: to examine how PV1 is related to others in the model

– Discover→ Locate→ Compare

• How: Encode

4. Find all variables associated with PV1 in the gain matrix (i.e.
variables with nonzero gains)

• Input: row/column in the gain matrix
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• Output: a set of MPC variable identifiers with nonzero gains

• Why: to narrow down the possible variables that are causing a
problem

– Produce

• How: rearrange the gain matrix based on the gain values in the
row/column

– Select + Arrange

5. Examine each of those variables to find which one is exhibiting
abnormal behaviour

• Input: set of MPC variable identifiers with nonzero gains

• Output: single MPC variable that is likely to be the cause of the
problem

• Why: to identify the variable that is causing the problem, and to
set up the process of digging further

– Discover→ Lookup→ Identify for each variable

– Compare→ Summarize when variable characteristics have
been identified

• How: Lookup the variable and present its data; Analyze its
behaviour; Decide if the behaviour is ‘abnormal’

– Encode + Introduce→ Import→ Manipulate→ Navigate +
Filter

6. Repeat this process until a reasonable root cause of the problem is
identified

The task analysis definition can be summarized as a flowchart.
This representation is shown in figure 3.6.

3.2 Visualization development process

Each layer of the nested model mentioned in section 2.1 is addressed.
Characterizing the domain problem consists of framing the problem

statement in a way that outlines why the visualization is necessary,
using domain-specific jargon. The domain problem here is that
engineers4 working with MPC systems need to monitor and diagnose 4 Specifically, those involved in

operational monitoring.MPCs using process data and process knowledge.
Data and task abstraction involves identifying data sources and

tasks, and expressing them in a generic, computer science-based
language. There are three sources of data for this project:

1. Time-series process data, with both continuous and discrete
values;
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Figure 3.6: Defined task
analysis based on the
multi-level typology. Yellow
blocks indicate the why of a
task, grey ones indicate the
what, and green ones indicate
the how. Red dashed arrows
represent transitions from one
task to the next; note that, as
defined in step 6, this process
involves repetition of steps.
Steps 1 and 2 are not defined in
this way.

2. MPC variable metadata (i.e. tag names, descriptions, variable
types, etc.);

3. Gain matrix data.

Abstracting the data into generic computer-science based data
sources was not a trivial task, and required in-depth understanding
of the principles of Object-Oriented Programming (OOP). OOP is
based on the idea of designing programs to manipulate user-defined
‘objects’ rather than functions and logic. These objects are data
structures that each have their own attributes and methods, allowing
large data sets like the ones used here to be broken down into more
intuitive and workable chunks. OOP was used to create an MPC
variable ‘class’ that contains its measurements (raw value, steady-state
target, engineering limits) as well as its metadata (description, type,
LP cost, etc.)5. The process of creating these classes and ensuring 5 For instance, the process data from

Parkland was provided as a single
tabular file with the tag name,
timestamp, and value as columns.
Each MPC ‘variable’ has numerous
tag names that represent the measured
value, engineering limits, etc.

that each dataset is in the correct form was particularly tedious,
since there were some discrepancies between variable names in the
metadata and the process data. The final class structure included all
relevant data to the specific MPC variable, as well as functions for
plotting, filtering, and normalizing that dataset. The end result is a
set of MPC variable objects, each representing a physical variable
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in the plant, that have their respective datasets attributed to them.
This is similar to how process variables are structured in Supervisory
Control and Data Acquisition (SCADA) systems, where each process
variables has a set of tags that each represent a type of measurement
(value, SS, UL, etc.). The task abstraction is discussed in section 3.1.

Visual encoding and interaction are especially important because
the project itself is based on the lack of visual encoding and interactivity
in existing tools for MPC visualization. There are two principal
datasets for which the design of visual encoding and interaction is
especially relevant: the gain matrix and the variable constraint data.
The chosen encoding for both of these datasets is a colour-coded heat
map, and these decisions are justified in section 3.2.1.

Algorithm design is the creation of code that accomplishes the
goals set out by the previous layers. As mentioned in the section
discussing data abstraction, MPC variables are expressed as objects
belonging to a user-defined class, each containing all necessary
attributes and functions. Python code was used to accomplish this,
using numerous libraries such as Dash, Pandas, and Numpy. Jupyter
notebooks were used extensively in testing the created classes and in
creating the data structures to be presented in the final visualization
tool. The chosen form of the final tool is a web application hosted
through the Dash library in Python, which combines Plotly objects
and HTML/CSS components to create an interactive interface.
The reason why Dash and Python were chosen to create this tool
is because of my familiarity with Python. An initial attempt was
made to leverage existing open-source tools like Clustergrammer [31]
to eliminate the need for creating visualization tools from scratch.
However, due to my limited fluency in Javascript and relative proficiency
in Python, I used Plotly and Dash to create these tools.

3.2.1 Design decisions and justifications

Decisions regarding visualization design are mostly relevant to the
‘visual encoding and interaction’ layer of the nested model. The first
dataset discussed in section 3.2 is the time-series process data for
each variable. These are represented as line plots, with the various
tags relevant to each MPC variable represented in different colours.
Figures 3.1 - 3.5 show this colour scheme.

Gain matrix

As shown in section 3.1.2, the gain matrix plays a crucial role in
aiding controller diagnosis. Hence, its representation and interactivity
are essential components of the visualization tool.

The gain matrix is a 2-dimensional matrix containing numerical
values in each cell. The raw gain data are continuous numerical
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values, making it a quantitative dataset. The chosen representation
for this is a heat map, since it is, by definition, a matrix. Additionally,
the gain matrix uses nominal labels, rather than quantitative ones.
The choice to use a heat map was also verified by the extensive
use of heat maps to represent gene expression data in the area of
bioinformatics, which involves similar datasets. The first iteration
of the heat map representation used a continuous colour scale to
represent raw gains, with negatives in red, positives in green, and
zeros in white. Some additional background is required in order to
justify this choice of colours.

Visualization literature commonly defines a colour ramp as an
encoding of ordinal or continuous numeric data associated with a
specific colour scheme, either using sequential or diverging colours.
The specific colour ramp chosen should effectively encode the numerical
data in the gain matrix, and present the data in a way that is easily
comprehensible and aesthetically pleasing. The chosen colour map is
meant to adhere to the concept of perceptual uniformity: “the concept
that colors should convey the differences between the values they are
representing." [32]. Smart et al (2020) also outline other guidelines for
colour maps:

“Perceptual guidelines emphasize ways to make ramps intuitively
mirror the underlying data. Sloan & Brown [70] stress that colors in
a ramp should be maximally distinguishable and follow an easily
remembered order.” [32]

Green and red are traditionally complementary colours, so it
follows that they can be sufficiently distinguishable. The chosen
colours also maintain similar saturation and luminosities, making
for a smooth transition between them. Additionally, using a ‘neutral’
colour like white to represent zero values allows the heat map to
blend with the visualization background more effectively, which
makes for a nicer-looking visualization.

Representing the gain matrix as a continuous heat map provided
an improvement to the raw display, but presented a new issue. The
real FCC gain matrix is fairly sparse and exhibits a large spread of
values6. The large spread of values, combined with the sparsity of 6 ‘Real’ is used here because the gain

matrix needed to be normalized in
order to comply with data distribution
agreements. The gains shown here
range from 0 to 1, but their spread is
proportional.

the matrix, cause most of the cells in the heat map to be white or
near-white in colour. Choosing a different colour to represent zero
values presented the same problem, where one neutral colour takes
up most of the visualization and a handful of cells are distinguishable.
The issue here is that a colour-coded heatmap representing raw gains
did not actually improve the usability of the display; rather, this
made the display unusable. The continuous representation of the
raw FCC gain matrix is shown in the leftmost heat map of figure
3.7. Even though this issue may seem specific to this context, this
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is likely not the case. In any industrial process, large multivariable
control systems often have sparse gain matrices [23], so it is likely
that the issue of having indistinguishable white/near-white cells
would persist.
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Figure 3.7: Heat map
representations of the FCC
gain matrix as the project
progressed. Following the
arrows (left to right, top
to bottom) the heat maps
represent the following
forms of the FCC gain
matrix: raw FCC gain matrix,
log-transformed matrix„
tanh-transformed matrix,
discrete matrix. Note the
variability in distinguishable
cells as the heat maps progress.

As seen in figure 3.7, encoding the raw FCC gain matrix using
a continuous colour scale does not provide a more interpretable
representation of the system. Rather, it now requires the user to
hover over each cell in order to obtain the gain value, which undermines
the original purpose of the heat map representation. Looking at the
data, this issue was found to be caused by an unusually skewed
data distribution. It is important to understand the raw gain data
distribution in order to obtain a transformation that is suitable to
the dataset. The raw gain data range from around −1000 to +2500
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with around 13% nonzero values and a very small proportion of
gain values with magnitudes above 507. Consequently, the heat 7 The raw gain data have a standard

deviation of 71.50, and only 0.46% have
magnitudes greater than 50.

map encoding of the raw gain matrix shows most cells as either
white or near-white. This issue of having an unusable heat map
due to numerous indistinguishable values in the heat map may be
solved by performing a nonlinear transformation on the dataset,
such that the distribution is ‘squashed’. Bringing the distribution
closer to normality in this way results in data that do not skew the
colours being used, thereby making cells in the heat map more easily
distinguishable. This transformation must effectively compress the
data such that near-zero values are distinguishable from zero, while
extreme values are not emphasized. Eisemann et al (2011) discuss
various transformations common to non-normal distributions:

“However, real data of a variety of fields present a non-normal behavior
[Mic89]. There is a great variety of transformations that are used to
improve normality of variables, e.g. adding or multiplying constants,
taking the square root or converting to logarithmic scales... [The
logarithmic transformation] can be used to transform variables that are
right skewed and generate pleasing visualizations with an otherwise
bad resolution distribution. In such visualizations, a few large values
take up most of the color map scale and the rest of the data points are
squashed into a small part of the scale with low resolution.” [33]

In their discussion, Eisemann et al (2011) propose an alternative
method for data transformation that is specifically geared towards
the data being encoded. Their method involves sorting and normalizing
the data, then projecting each data point onto a vector with a user-specified
angle; the choice of angle decides which points are to be emphasized
in the transformation. This method may provide an effective data
transformation; however, due to relative simplicity and time constraints,
we first chose to investigate a logarithmic transformation. In this
case, the log transformation is not simply taking the logarithm of
each data point, because there are negative values in the gain matrix.
The relation used to transform the gain matrix is shown in equation
3.1.

K′ij = sign
(
Kij
)
× log10

(∣∣Kij
∣∣+ 1

)
(3.1)

Where:

• Kij = the gain matrix entry in row i and column j

• K′ij = log-transformed gain

• sign(x) =the sign function, which returns either −1, 0, or 1

1 is added to the gain value in the logarithm term so that any zero
gain values result in a log-transformed value of 0 instead of −∞.
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After transforming the gain matrix using a logarithm function, the
heat map representation becomes marginally clearer. The modified
heat map is shown at the top-right of figure 3.7. The logarithmic
transformation reveals many more nonzero gain values compared
to the raw gain heat map, but the number of distinguishable cells is
still insufficient for the presentation of underlying patterns in the
data. The logarithmic display improves discriminability of cells
in the lower-left section of the gain matrix, but the top-left and
top-right sections exhibit poor discriminability. We can confirm this
by comparing the log-transformed gain matrix to the discretized
gain matrix in the bottom-right heat map in figure 3.7. While the
logarithmic transformation is a useful nonlinear computation, it does
not appear to effectively squash the spread of data.

One other data transformation that is useful in squashing datasets
with unpredictable distributions is the hyperbolic tangent function,
or tanh. The hyperbolic tangent is defined in equation 3.2.

f (x) = tanh(x) =
ex − e−x

ex + e−x (3.2)

A graphical representation of the hyperbolic tangent, along with
the logarithmic transformation, is shown in figure 3.8.

−10 −5 0 5 10

−1

−0.5

0

0.5

1 Tanh
Log 10

Figure 3.8: Transformation
functions for the hyperbolic
tangent (blue) and base-10

logarithm (red). The hyperbolic
tangent transformation is the
same as its function, whereas
the logarithmic transformation
is described by equation 3.1.
Note the larger magnitude of
the tanh function for small
nonzero values compared to
that of the logarithm function.

The hyperbolic tangent is more useful than the logarithm, in this
case, because the range of its output is [−1, 1], while that of the
logarithm is (−∞,+∞). Both transformations are approximately
linear at zero; this is important because most gain values are at or
near zero. At zero, the approximately linear hyperbolic tangent has
a higher slope than the logarithmic transformation. The combination
of these factors means that near-zero values are emphasized, while
extremely large values are squashed8. For instance, the hyperbolic

8 For this reason, hyperbolic tangent
functions and similar functions
(such as the sigmoid function) are
sometimes used in machine learning
as ‘activation functions’, especially
in neural networks. Inputs to the
activation functions are unknown
because they are calculated iteratively
through the ‘learning’ process, so
having this bounded output can be
useful.

tangent would yield a larger transformed value for a gain of 1, but
for a gain of 10 or higher, the transformed value would be 1. On
the other hand, a gain of 1 would yield a smaller transformed value
through the log-transform, while a gain of 10 or higher would be
greater than 1.

There are myriad other nonlinear transformations that may effectively
present all nonzero gain values. The limitation of using the logarithmic
transformation, along with the alternative transformation methods,
are discussed in chapter 4.

An alternative solution to this issue is not through finding a
different visual encoding or data transformation, but by changing
the type of dataset used. The gain matrix contains quantitative data,
but this form is not necessarily the most effective. Discussions with
industry partners revealed that, for understanding the relationships
between variables in the context of the LP optimization, users are
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often more concerned with the gain direction than with the actual
gain value. The direction refers to the sign of the gain in a particular
MV/CV pairing, where all possible direction values are either positive
(+1), negative (-1), or zero. Note that, for the general controller
diagnosis procedure in section 1.3.6, example gain values are classified
as either positive, negative, or zero. The raw gain matrix can therefore
be transformed using a sign function to reflect the direction of each
pairing. Transforming the gain matrix in this way changes it from
a quantitative dataset to an ordinal dataset, and greatly simplifies
the visualization while retaining much of the information being
conveyed. The resulting heat map presents process gains as one of
three colours: red represents negative values, white represents zero,
and green represents positive, as shown in figure 3.9.

Comparing figure 3.9 to the original gain matrix display and to the
other displays in figure 3.7, some benefits of implementing this type
of design study appear. It is apparent that by simply transforming
the dataset using a sign function and encoding the values as colours,
end users can perform required tasks without an intense cognitive
load. Sorting the discrete heat map causes zero and nonzero gains
to be sufficiently distinguishable, as there would be a very clear
boundary in the colours of the sorted cells. Correll et al (2018)
provide a comparison of discrete and continuous colour mappings:

“While continuous color maps afford greater fidelity in presenting
values, non-linearity in human color perception introduces errors
in extracting numeric values from continuous colors. Quantizing a
color map is therefore an exercise in balancing perceptual error and
quantization error. Discrete maps offer finer control over this balance,
which can result in better performance in tasks involving heatmaps.”
[34]

In presenting continuous forms of the gain matrix - with both raw
data and transformed data - it is difficult to predict exact values or
even approximate values just by looking at the colour. Even knowing
where the maximum, minimum, and zero lie on the colour scale,
predicting gain values accurately from the colour scale is difficult.
This is made more difficult in the logarithmic scale, where the colour
ramp encodes some nonlinear transformation of the original data.
Overall, the continuous colour ramps shown here are the cause of
this perceptual error, and may actually increase the cognitive load
required of the users when coupled with complex, nonlinear data
transformations. Using a discrete colour ramp to encode an ordinal
version of this dataset eliminates much of this perceptual error,
as the boundaries between different values become much clearer.
However, discretizing the gain matrix in this way also means that
all information regarding the magnitude of gains is lost (quantization
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Figure 3.9: Discrete heat map
showing the gain matrix as an
ordinal dataset. Positive values
are in green, negatives in red,
and zeros in white.
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error). A comparison of the colour ramps in continuous and discrete
form is shown in figure 3.10.

Figure 3.10: Comparison
between discrete and
continuous colour ramps. From
left to right, the colours encode
negative (red) to zero (white) to
positive (green) values.

This is an important tradeoff to consider; encoding more information
(i.e. direction + magnitude of gain values) may reduce the discriminability
of points in the display, but reducing the data to only the directions
means that the user cannot obtain gain values from the visual encoding
of the gain matrix. It may therefore be better to explore alternative
data transformations, such that each gain value in the matrix is
sufficiently distinguishable while retaining all information present
in the raw gain matrix. Another alternative could be to use different
visual channels to encode gain magnitude and direction, similar
to the Bertin reorderable matrix [28]. For instance, directions can
be encoded as a colour (as in the discrete heat map here), while
magnitude is encoded by the size of a shape in the display. Siirtola
et al (2005) describe this feature of Bertin’s matrix:

“The actual data values are replaced with symbols, say circles or
rectangles, which have a size relative to the actual data value. The
smallest value is represented as a 0-sized symbol and the largest value
as a symbol filling the whole area available. While interacting with
the visual presentation, the user has a chance to detect patterns in the
presentation and to gain insight into the data. This kind of pattern
recognition is something that human vision is known to do remarkably
well." [35]

Using a combination of visual encodings in this way was not
implemented in this project, but may prove to be useful in visualizing
gain matrix data. Further investigation is needed to evaluate such
designs and this is discussed in more detail in chapter 4.

Aside from the encoding strategies used for the gain matrix, the
interactivity of the interface must be addressed. The interactivity
required from the gain matrix display pertains to steps 3 and 4 in
section 3.1.2. Step 3 is not exactly a physical task performed on
the matrix; rather, it represents a more cognitive task, where the
user identifies a location in the matrix to be used as an input for
the next step. Step 4 involves sorting the gain matrix based on gain
values paired with the variable being investigated, and filtering out
variables that have zero gain. Currently, this functionality is provided
by selection of a particular variable using one of two dropdown lists,
where each dropdown list represents the labels along one dimension
of the gain matrix (in other words, one dropdown for MVs/FFs
and one for CVs). It is likely that there are better alternatives to
the dropdown setup, and these are discussed in chapter 4. At the
moment, no functionality has been implemented to automatically
filter out rows/columns with zero gain, due to limitations in the
algorithms employed as well as time constraints. Nevertheless,
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the functionality to sort the gain matrix based on an individual
variable is novel in this field, and so is an essential component of
this visualization tool.

Constraints

To describe and justify the design decisions made in encoding the
constraint data, the structure of the data must first be discussed in
detail. The constraint data for a given MPC variable describe the state
of the variable with respect to the LP, and are in the form of integers.
Each integer is linked to a specified state, as outlined in table 3.1.

Number Variable state Colour on heat map
0 Unconstrained White
1 Constrained at upper limit Red
2 Constrained at lower limit Blue
5 Lower SSSTEP limit Blue-gray
6 Upper SSSTEP limit Dark blue-gray
8 Out of service Black
9 Ramp Grey

11 Not in LP solution Yellow

Table 3.1: DMC constraint data
and the associated variable
states with respect to the LP.
Each non-FF MPC variable has
a constraint tag.

Table 3.1 provides a clear indication that this is a nominal dataset.
Despite the states being represented by integers, the ordering of
integers has no relation to the information they convey. It is important
to consider that this dataset is also a time series. Since the constraint
data are not quantitative, there is no real benefit in encoding them in
quantitative visual forms, like length or area. Using similar principles
as those in gain matrix encoding, a heat map is chosen to encode
constraint data. White is chosen to represent unconstrained values,
as is red for values constrained at the upper limit, and blue for
values constrained at the lower limit. This is to maintain consistency
with the colour scheme of the process data plots. Black represents
variables that are out of service, and the remaining colours are
chosen based on aesthetic preferences; this decision is justifiable
because the constraints are at these points (5, 6, 9, 11) for small
amounts of time. The final constraint heat map result is shown in
figure 3.11.

Constraint data need to be visualized because they may provide
an easier method for controller diagnosis and investigation than
the method presented in section 3.1. By nature, multivariable control
systems are often operating at some intersection of process constraints,
as explained in section 1.3.4. Specifically, in this plant, feed rate is
often constrained at its upper limit. This can be seen in figure 3.11

near the centre, shown by the ‘CV-1’ row; this variable shows red
cells for the majority of the time span. Consequently, when one CV
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Figure 3.11: Heat map design
chosen to encode constraint
data. Colours are defined in
table 3.1.

goes from being constrained to being unconstrained, that means that
one MV has hit its constraint.

The constraint heat map can therefore be used to quickly identify
problem areas when diagnosing the controller. From the task analysis
in section 3.1.2, when a problematic time period is identified (at the
end of step 2), the user can simply highlight that time period in the
constraint heat map. From there, the user would need to visually
locate variables that go from white to red or blue. This would allow
the user to go from step 2 to step 5 in a single task, without the need
to go through the gain matrix.

There are some drawbacks to using this method, firstly that the
amount of variables the user needs to go through is larger than that
of the gain matrix. This is because the constraint heat map has all
variables on the y-axis, whereas the tasks presented here involve
successive filtering of variable sets. To address this, the constraint
heat map can use filtering functionality based on variable type or
relation to the problem variable. Secondly and, more importantly, the
current form of constraint data does not represent the relationships
between variables. For users who are familiar with the process
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and the physical meanings of each variable, this poses no issue; for
those who are not as familiar, they would require a way to relate the
variables they are investigating to each other. There is a relationship
between the gain matrix and the variable constraints, which is explored
in section 1.4, but it has not been incorporated into this visualization
tool. One important component of the future work discussed in
chapter 4 is the investigation of this relationship, as it may provide
more effective methods for performing controller diagnosis. The
results of this investigation can also be incorporated into a visualization
to provide additional benefits.

3.3 Final visualization tool

3.3.1 Features

This section does not provide a detailed workflow of the application;
rather, it discusses the important features provided in the application.

The application begins with a representation of the gain matrix
heat map, along with two dropdown lists and two checklists containing
the names or identifiers of each MPC variable (there is one dropdown
and one checklist for MVs/FFs and one of each for CVs). The checklists
represent variables that are plotted on the left side of the screen,
while the dropdown lists represent the variable on which the gain
matrix sorting is based. There is also a “Reset" button, which removes
any process plots on the screen.

In addition to the reordering functionality, users have the ability to
examine plots for specific MV/CV pairs in the gain matrix. Selecting
a cell in the gain matrix highlights the gain of that particular MV/CV
pairing, and automatically plots the process data of each variable
in said pairing on the left side of the screen. This is shown in figure
3.12.

The selection tool is shown by the red arrow in figure 3.12; this
highlights which MV and which CV are being selected. The z value
of the pairing is the gain, but since this is simply a sign function, its
presence may be redundant. Selecting variables to plot in this way
automatically updates the checklists below with the variables being
plotted.

Selecting a variable from either dropdown list rearranges the
gain matrix based on the values in the row/column of that variable.
Rearranging using a dropdown list requires the user to know which
variable they are looking for, which may not be an effective way to
perform this task. This limitation is discussed further in chapter 4.

The checklists contain all variable names, sorted as either MVs/FFs
or CVs. Selecting a variable in the checklist displays its process data
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Figure 3.12: Selecting the gain
matrix to produce process
plots. The red arrow indicates
where the cursor was clicked,
showing the relevant process
plots on the left. Notice the
pop-up at the selection point;
this indicates which variables
are being selected (x and y
values), as well as the gain (z
value).

on the left side of the screen.
The combination of the gain matrix heat map, checklists, and

dropdown lists provide the functionality required to accomplish the
tasks presented in section 3.1.2. The methods by which these tasks
are accomplished in this display may not be the most effective, but
the idea is to introduce this functionality into APC applications.

The next major feature is the constraint heat map, displayed as a
secondary tab on the same screen. This heat map is always present
and is not currently permutable; due to time constraints, we did not
undertake an in-depth task analysis that uses this dataset. A display
showing the ‘Constraints’ tab is shown in figure 3.13.

Presenting the constraint heat map is expected to ‘set the stage’
for including constraint data in the process of controller diagnosis, as
discussed in chapter 4.
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Figure 3.13: Application display
showing process plots on
the left as selected from the
checklists, and the constraint
heat map on the right.





4
Limitations and Future Work

The limitations of this research can be split into two broad categories:
conceptual, and practical. Conceptual limitations refer to the pitfalls
of the ideas behind the research, while practical limitations refer to
issues caused by the specific methods and tools employed.

One major conceptual limitation in this project is the use of raw
gain values. This does not refer to the usage of raw gains in the
heat map; rather, this limitation is related to the presence of the raw
FCC gain matrix altogether. Raw gain values are often dependent
on the engineering units in the Distributed Control System (DCS),
meaning that the gain values scale according to the relevant units
of measurement. For instance, if one CV is measured in barrels
per day (BPD) and another is measured in thousands of barrels
per day (MBPD), the magnitude of their gains would differ by
a factor of 1000. In reality, their gains are equal, and so the raw
gain matrix may not always provide a good representation of the
system. Furthermore, during controller commissioning, control
engineers analyze the gain matrix in order to assess how well the
model matches the plant. Some of these methods of analysis, such
as SVD, scale with the units of measurement chosen. The choice of
units can therefore affect how engineers analyze and modify the
model, and so the use of a unit-independent representation of the
system can provide significant benefits. One such representation
uses each variable’s ‘Typical Move’: this is the amount by which the
controller typically moves a given MV [36]. Using this to scale gain
values should yield a better representation of what the ‘real’ gains
are, because it allows different variables to be compared on an equal
scale. Visualizing the raw gain matrix thereby provides little benefit,
as shown in figure 3.7.

This limitation was introduced in the discussion of various data
transformations to be performed on the raw gain matrix in section
3.2.1. Since the raw FCC gain matrix is far from normal1, there are 1 A histogram of the raw FCC gain

matrix exhibits one large peak
(around a gain value of zero) and
two distant outliers. Most gain values
are around or exactly zero, while a
small number of MV/CV pairings has
extremely high/low gains, making this
distribution highly skewed.

numerous options for transforming the dataset to make it more
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normal. Examples of alternative transformations include typical
move scaling and the sigmoid transformation. The spread of data
was somewhat improved by logarithmic transformation, but this
did not result in a much better visualization. This is because the
logarithmic scaling greatly reduced the emphasis on outliers, but did
not increase its emphasis on small nonzero values. Consequently,
the issue of distinguishing between near-zero and nonzero values
persists, so an alternative transformation may provide an improvement.
One such transformation is that presented by Eisemann et al (2011),
which uses the dataset and user-defined parameters to create a
transformed dataset that is geared towards the goals of the user.
For example, the main design parameter in this transformation is an
angle α, which determines how each data point is projected; some
values of α favour the emphasis of outliers, while others put less
emphasis on outliers and focus on more central data points.

Another major limitation is the lack of a data pipeline2. A data 2 A data pipeline is a set of data
processing elements that transport
data between systems, and that filter
and modify data as necessary.

pipeline would allow transfer of data from the plant itself (from the
DCS) through databases and IT systems to the designers and users
of visual/analytical tools. Consequently, without a data pipeline, it
is not possible to build tools for visualization or analysis that use
real-time data; such tools would only involve historical data.

Finally, the lack of a process model gives rise to another limitation,
in that there is no information on the dynamics of the process.
The gain matrix provides steady-state data, and so the tool cannot
provide information regarding how quickly or aggressively one
MV would affect a particular CV. This is a minor limitation, and
incorporating process dynamics may provide some benefit in the
future3. 3 AspenTech DMCPlus plots process

response curves in the gain matrix,
but with large controllers, it is difficult
to navigate through specific MV/CV
pairings.

The practical limitations of this project are related to the use
of Python and Plotly in developing the visualization. One major
limitation is the use of dropdown lists to provide sorting functionality
on the gain matrix. While the user can sort the gain matrix using
dropdown lists, the user needs to keep track of the variables they are
investigating in order to do so. The previous attempt to create this
functionality in Clustergrammer allowed the user to double-click a
variable name on the axes to reorganize the matrix in this way, which
was much faster and more effective. Tools like Clustergrammer
provide greater customizability; Clustergrammer is especially useful
because it is designed specifically to handle heat maps. Because
Clustergrammer is built for bioinformatic data, it allows designers
to easily provide additional categories to link variables on both axes;
for instance, all variables that operate under a specific subcontroller
can be grouped together in the heat map. Users can also sort the heat
map based on LP cost or variable type. Dash does not provide tools
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to build this functionality.
There are four important issues that should be addressed in the

future. Firstly, we need to test the visual encodings in the tool more
extensively, as well as test other types of encodings to ensure that the
design decisions made result in an effective interface. This stage will
include investigating various data transformations to be performed
on the gain matrix, such that the spread of data can be adjusted to
make it suitable for a wider variety of visual encodings. This stage
will also include testing different visual encodings and strategies
to represent gain matrix data, such as using a matrix similar to
the Bertin matrix as discussed in section 3.2.1. At the end of this
stage, we should be confident in that the chosen visual encoding
and interaction strategies effectively represent the data, and that
the data have been modified to be suitable for visualization. This
form of evaluating the designed tool can be classified as a formative
evaluation, which is “intended to provide guidance to the designers
on how to improve a system and answer the question ‘can I make it
better?’" [4]. To answer this question requires regular consultation
with users, such that their needs are being prioritized in the design of
the tool.

Secondly, we need to extensively test the visualization tool to
vary the datasets being used, the plants, and the controllers being
investigated. Testing with more variable sources of data and more
variable use cases will allow us to confirm, with a greater degree of
certainty, how applicable this tool is. These sources of data include,
but are not limited to: MPC data from different software packages
(Shell SMOC, Honeywell RMPCT), data from different plants, and
different case studies for controller diagnosis. To summarize, these
tasks comprise a process used to evaluate the visualization tool,
which can be considered a summative evaluation process4. This stage 4 Summative evaluation is “intended to

measure the performance of a system
and answer the question ‘is it right?’”
[4]

would involve more formal consultation with users than that of the
first stage, as this summative evaluation is a measure of the tool’s
performance.

The third major point that will be addressed is the incorporation
of constraint data in the process of controller diagnosis. The tasks
provided in section 3.1.2 require users with process knowledge to
perform steps 5 and 6. Using the constraint data as part of controller
diagnosis may reduce the required amount of process knowledge
necessary to diagnose the controller, because the variable constraints
and their changes indicate potential problem areas in the plant.
Doing so would require investigating the relationships between
variable constraints and the gain matrix, which adds another layer
of complexity to the problem.

The gain matrix and variable constraints can be correlated in order
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for operators to deepen their understanding of the process. These
correlations can be used to quantify, for example, how much one
MV can be changed before the variable becomes constrained and the
controller moves to a different operating point. Another example
would be how much one MV can be changed before a correlated
and constrained CV becomes unconstrained, causing the controller
to move to a different set of constraints. These analyses need to be
explored extensively, and the data and tasks involved need to be
analyzed in order to provide greater analytical capabilities that
use the constraint data. For example, in their patent for a solution
analysis process for MPC systems, Peterson et al (2011) outline
methods by which to calculate how much operators can relax variable
constraints [20].

The next major point that will be addressed in future is the investigation
of different software packages to create this tool, which was mentioned
in chapter 4. Tools like Clustergrammer, which provide greater
functionality with heat maps, can be immensely beneficial, as Dash
and Python do not provide much customizability in presenting heat
maps5. For example, the first attempt to create a visualization tool 5 For instance, the Plotly library reserves

double-click events for resetting the
display after the user zooms or pans
any graph display.

using Clustergrammer allowed the user to double-click a variable
name on an axis, causing the matrix to rearrange based on that
row or column. This may seem like a trivial difference, but using
dropdowns instead of a simple double-click complicates the reordering
functionality, thereby undermining the overarching idea of the
project. Thus, it is necessary to explore different software packages
such that the required functionality is present.

There are some additional considerations for future work that
may prove relevant. Parallels can be drawn between the diagnosis
process and the design process employed by Lim et al (2018) in
the creation of Ply, a visual web inspection tool for learning the
principles of Cascading Stylesheets (CSS). Akin to our ‘pruning’ of
irrelevant process variables in the final controller diagnosis process,
Ply implements pruning functionality that eliminates irrelevant CSS
elements from view, in order to “minimize information overload
and support novices’ visual approach to sense-making” [37]. For
novice users, the presence of irrelevant CSS settings in common web
inspection tools (such as Chrome Developer Tools, or CDT) imposes
a major barrier to learning, as it is unclear which CSS settings are
in control of the display. Similarly, we can use such principles to
improve the efficacy of our visualization tool, by finding a way to
visually prune out irrelevant variables in the controller diagnosis
process. Currently, our diagnosis process involves pruning out
variables by investigating their constraints, but incorporating this
feature in a more visual form can prove useful, especially to novice
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users of MPC systems. Another feature in Ply that can be useful
in aiding controller diagnosis is embedding “expert guidance into
the sense-making process to provide missing domain knowledge”6 6 Sense-making refers to “the process of

building an understanding of an artifact
or example by constructing mental
representations of what is known”.
It shares some similarities with the
analysis of controller diagnosis; all
representations of the diagnosis process
here were all developed by following
the example of control engineers in
their work.

[37]. Providing this domain knowledge as part of the tool can yield
significant benefits, especially to novice users. As shown in the
controller diagnosis, process knowledge allows users to eliminate
irrelevant variables effectively, helping users to understand the
system in a clearer fashion.

An additional consideration for future work is making the design
more learner-oriented, such that it is easier to learn for novice users.
Ko et al (2004) explore this concept by investigating common barriers
to learning, using Microsoft Visual Basic (VB) as a case study. Their
discussion is focused on the barriers presented in the programming
interfaces in VB applications. While a VB programming interface is
very different from an APC system, one barrier to learning seems to
be especially applicable in the research presented in this thesis. The
relevant barriers in their discussion are the ‘information barriers’,
which: “are properties of an environment that make it difficult to
acquire information about a program’s internal behavior (i.e., a
variable’s value, what calls what)” [38]. It is easy to see how the
information barrier applies in this visualization application; the use
of static, dense sheets of raw data that is common in APC systems
imposes major difficulties for diagnosis, especially for novice users.
Taking these barriers into consideration can therefore result in a more
user-friendly product.





5
Conclusion

The over-arching goal of the project is to investigate typical issues
involved in diagnosing MPC systems; specifically, issues that relate to
the interactions between operators and controllers. A task analysis
is performed in order to define the specific workflow involved
for controller diagnosis using Munzner’s multi-level typology.
The defined tasks, along with all sources of data, are compiled,
reorganized, and expressed in terms of the nested model for visualization
design and validation.

There are three principal tasks involved in controller diagnosis.
These are combined with the three primary sources of data in order
to methodically develop a visualization tools that addresses the
issues faced by target users. We iterated through ideas and designs
through regular consultation with industry partners.

The interactivity in the gain matrix is an especially important
concept here, as it illustrates much of the novelty of this research.
The sorting functionality allows users to quickly and easily filter out
variables that are not used in the controller diagnosis process.

Extensive user testing is required in order to validate the feasibility
of implementing this project in industry. Visualization can be a
useful tool to assist control engineers, but testing this tool in a more
rigorous way using various datasets and processes is necessary to
validate its design.
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