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Situation

v' Chemical process usually has thousands of process variables (X)
available to predict quality-relevant variables (Y).

v How to find the features of X that are important for predicting Y
(which features of X helps predict Y) is one of the most important
problems in ML, but very messy.
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v We want to know which foods are important for predicting “sick”



Problem

v' A common way to do feature selection is compute the correlation
between feature values Xiand Y, if the correlation is above certain
value, take these features.

~ Usually gives unsatisfactory results as it ignores variable interactions:
— Includes irrelevant variables: “Taco Tuesdays”.
* |f tacos make you sick, and you often eat tacos on Tuesdays, it will say “Tuesday” is relevant.

— Excludes relevant variables: “Diet Coke + Mentos Eruption”.

* Diet coke and Mentos don’t make you sick on their own, but together they make you sick.

v To build simpler, more powerful, more interpretable model, we use
causality analysis to find causal features.
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Fig.1 Flowchart of two kinds of causality-based inferential sensors




Causality analysis methods:

Granger Causality analysis
Transfer Entropy
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Fig.1 Flowchart of two kinds of causaiity-based inferential sensors
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Regression methods:

LS, Bayesian, Decision tree, SVM,
Neural networks

Latent feature extraction
methods:

PCA ICA SFA CVA




Gy r :The introduction of the history
information of X reduces the prediction
error of Y in bivariate AR model
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Prediction error in future Y
given past values of both X and Y

Ty y:Information transferred
from X to Y(Uncertainty reduced
in Y given past values of X)

Uncertainty in future Y given
past values of both X and Y
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Results
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Symbol Description:

FI:Flow Indicator ~ TI: TemperatureIndicator ~PI:PressureIndicator LC:Level Controller CC:Conductivity Controller SC:Speed Controller
FC:Flow Controller TC:Temperature Controller PC:Pressure Controller JC:Power Controller XA~XH: Analyzethe compositionof AtoH

There are 52 different variables in this
process, among which 33 variables can
be measured in real time while another
19 variables need to be analyzed
respectively. Hence, 33 variables are
chosen as the process data and 19
variables are seen as the quality-
relevant variables to be predicted (only
use normal data, no fault data). We
choose and 33 process variables as X
and the variable 31 as Y.
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Results
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Results

PCA+GCA+LSR

)
o

[r=0.51042, RMSEi

i

0.2723!5
3
Ena

bophe
o F

XMEAS(31)/%
S
5

[
o3

o
3
-
=]
=1
-
wm
=1
8
=1
]
wm
=1
2
=1
()
o
=1
5
=1
~
(4.
=]
3
=1

Samples

i3
o

XMEAS(31)/%
M)
B

]
A

o
3
o
=]
=3
o
(%]
=]
8
5]
n
@
=]
=]
5]
(]
[41)
=]
=]
=
IS
(4]
=
3
=3

Samples
ICA+GCA+LSR

)
o

[r=-0.094444 RMSE=0.36781

XMEAS(31)/%
N
B

XMEAS(31)/%

PCA+LSR

]
W

XMEAS(31)/%
[
=

23 !
0 50 100 150 200 250 300 350 400 450 500
Samples
SFA+LSR
25

[r=0.4758,RM SE=10.2931 5!

ol
Y

XMEAS(31)/%
8]
=

]
w

=]
8
-
o
o
-
o
o
=
o
n
4l
o
=]
o
[~
o
o
=)
(=]
s
@
o
3]
o

n
@

XMEAS(31)/%
8]
=

]
w

[\s]
wu

r=0.48744,RM SE‘=0.2_884.5

Y [
By Al g o R
A0 I

XMEAS(31)/%
8]
=

11



Results
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