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Overview

* Deep Reinforcement Learning as a (model-free) framework for
control in industrial settings

= Utilize new and historical data

= Control with minimal disruptions to the plant and minimal
human intervention
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Initial work

 Deep RL for set-point tracking

= Actor = controller = deep neural network

* Tracking performance and adaptability is promising, but
Issues with sample efficiency, stability, interpretabillity,

compatibility, tuning of hyper-parameters

ai

(St,at,"”t,st+1)

s/ Process

2 Actor

Zt+1

Policy Updates

Update

Replay Memory

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D. Continuous control with deep reinforcement learning. arXiv preprint arXiv:

1509.02971. 2015 Sep 9.

Spielberg S, Tulsyan A, Lawrence NP, Loewen PD, Bhushan Gopaluni R. Toward self-driving processes: A deep reinforcement learning approach to control. AIChE J.

2019;e16689.

Target Network )

o

Update Actor

A

Update Critic




Back to basics

!

d
e PID u(r) = ke(r) + kl-[ e(t)dr + kdEe(t),

0

fits naturally in the actor-critic framework

e Simple, industrially-accepted control structure with
straightforward initialization
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Anti-windup

* |ntegral action with actuator constraints can lead to
integral windup

e PID + AW is the (nonlinear) actor

a, = sat(ke + kI, + k,D + pl, )

(performance)
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