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ABSTRACT 

Several methods have been proposed for evaluating a person’s insulin sensitivity from an 

oral glucose tolerance test (OGTT) and the euglycemic insulin clamp technique. However, none 

are easy or inexpensive to implement since the plasma insulin concentration, a key variable for 

assessing the insulin sensitivity index (ISI), is required to be clinically measured at specific 

times. Therefore, the purpose of this study is to develop a new ISI that can be easily and 

accurately obtained by patients themselves without costly, time-consuming, and inconvenient 

testing methods. This study proposes a simple self-administered testing method, simulated on a 

computerized model of type II diabetic patients, for estimating the ISI. The test involves a 75-g 

glucose ingestion and two injections of 10 mU/kg insulin. Blood glucose is measured one and 

two hours later. The test was evaluated by using a previously developed diabetic-patient dynamic 

model. Fifteen sets of OGTT data from diabetic patients published in the literature were used for 

the model development. A simulation of the proposed self-administered test indicates that the 

proposed ISI correlates well with the ISI called M-value obtained from the gold standard but 

elaborate euglycemic hyperinsulinemic clamp (r = 0.927, p = 0.0045). The proposed ISI is 

considered to be easy to perform, time-saving, inexpensive, and accurate enough for clinical 

assessments. 

Keywords: Insulin sensitivity index, Type II diabetes mellitus, Modeling, Parameter estimation, 

Dynamic simulation 
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1. Introduction  

Insulin is a key hormone secreted from β-cells in the pancreas that regulates glucose 

homeostasis. Type II diabetes is characterized by both insulin resistance and decreasing β-cell 

mass [1]. Insulin resistance happens when the sensitivity of peripheral cells to the metabolic 

action of insulin is decreased due to genetic or environmental factors, obesity, hypertension, 

dyslipidemias, and/or coronary artery diseases. The ability of insulin to stimulate body glucose 

disposal can be characterized by an insulin sensitivity index (ISI) [2-5].  

Various methods have been developed for determining the presence and degree of insulin 

resistance. The hyperinsulinemic euglycemic insulin clamp technique has been widely used as a 

gold standard for understanding insulin resistance in vivo [6]. In this technique, the plasma 

insulin concentration is raised and maintained at a fixed level (approximately 100 mU/l) by a 

continuous intravenous insulin infusion. A measure of tissue insulin sensitivity can be reflected 

by the glucose infusion rate during the steady state of the euglycemic insulin clamp test. The 

glucose infusion rate is called the M-value. For someone with low insulin sensitivity, the M-

value will be low because the person’s body is less sensitive to insulin. Therefore, the body’s 

glucose level does not drop significantly low. On the other hand, when a person is very sensitive 

to insulin, the M-value will be high; i.e., a high glucose infusion rate is required to maintain the 

euglycemic level [6]. The hyperinsulinemic euglycemic glucose clamp method is labor-intensive, 

expensive, and limiting for large-scale clinical studies [7].  

More accurate and less labor-intensive than the glucose clamp technique is a modified 

minimal model (MINMOD) analysis in conjunction with the frequently sampled intravenous 

glucose tolerance test (FSIVGTT) [8] for the estimation of insulin sensitivity. However, the 

FSIVGTT is still restrictive for large studies [4,7]. Homeostasis model assessment (HOMA) of 



 4 

insulin resistance (HOMA-IR) [9], fasting plasma insulin [10], and the fasting-glucose-to-insulin 

ratio [11] are simple indices of insulin resistance compared with the glucose clamp test. 

However, they produce relatively low values when the insulin secretion decreases in advanced 

type II diabetic patients since all are based on fasting glucose and insulin levels [12].  

Recently, several methods have been investigated from oral glucose tolerance test 

(OGTT). Cederholm and Wibell [13] proposed a formula for ISI that uses the OGTT based on 

four timed samples of insulin and glucose (at 0, 30, 60, and 120 min). It has fairly good 

agreement with more complicated procedures, such as the clamp test and the insulin suppression 

test. Simple ISI were derived based on the OGTT by Matsuda and DeFronzo [14], Stumvoll et al. 

[15], and Gutt et al. [16]. Although these methods are relatively easy to conduct, accurate, and 

adaptable to both population studies and clinical settings, they are not inexpensive, self-

monitoring, and convenient since the plasma insulin level must be measured at a specific time as 

a key variable for calculating these indices in medical labs. 

The present study proposes a new ISI estimated from capillary blood glucose 

measurements. Our approach is to evaluate the feasibility of using the mathematical 

compartment model proposed by Vahidi et al. [17,18] to estimate insulin sensitivity. The Vahidi 

model is a much more detailed dynamic model comparing with the MINMOD approach [8]. 

MINMOD includes three nonlinear differential equations representing variations of plasma 

insulin and glucose concentrations. The Vahidi model consists of more compartments for better 

representation of the glucose and insulin concentrations in different parts of a human body. The 

application of additional compartments allows for a more accurate simulation of the 

physiological dynamics and individual abnormalities of type II diabetic patients. For our model 

development, fifteen available patterns of glucose and insulin concentrations during a 2-h 75-g 
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OGTT for diabetic and non-diabetic subjects were included. Then, we simulated the changes of 

glucose and insulin concentrations after consumption of 75-g glucose at 0 min and two injections 

of 10 mU/kg insulin into the bodies of fifteen subjects at 20 and 50 min. Based on the available 

measurements, an ISI was estimated, which is shown to correlate well with the insulin sensitivity 

measured by the euglycemic clamp technique described in Section 4. From the clamp method, 

the insulin sensitivity is reported as the body’s glucose uptake rate, called the M-value [6].  

2. Mathematical modeling of type II diabetes mellitus 

In the present work, the detailed compartmental model of glucose-insulin interactions in a 

group of type II diabetic patients developed by Vahidi et al. [18] is used. This model is based on 

the initial work by Guyton et al. [19], which was updated by Sorensen [20]. The model contains 

three sub-models, which represent blood insulin, glucose, and glucagon concentrations in the 

body, respectively; each is divided into individual numbers of compartments representing a 

specific part or organ of a human body. Section 2.1 provides a summary description of the 

Vahidi model. 

2.1 Insulin, glucose, and glucagon sub-models 

In the Vahidi model, different numbers of compartments are considered in the insulin, 

glucose, and glucagon sub-models based on the significance of the organ’s function in 

maintaining the respective solute concentrations. Figure 1 shows the overall structure of the 

insulin sub-model, which contains seven compartments: brain, liver, heart and lungs, periphery, 

gut, kidney, and pancreas [21]. The blocks represent different compartments and the arrows 

indicate the blood flow directions. Similarly, the glucose sub-model has the same compartments 

except for the pancreas compartment, since only insulin is secreted from the pancreas. Since the 
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glucagon concentration is considered to be identical in all parts of the body, only one 

compartment is considered in the glucagon sub-model.   

In each sub-model, mass balance equations are written for all individual sub-

compartments (except for the pancreas). The general form of the mass balance equation for each 

sub-compartment is as follows [22]: 

		
V

dY

dT
= Q(Y

in
-Y

out
)+r

p
-r

c
 (1) 

where V is the volume of sub-compartments, Y is the concentration of either insulin, glucose, or 

glucagon, t is time, Q is the blood flow rate, and rp and rc are metabolic production and 

consumption rates of the material balance substance, respectively. Since the glucagon sub-model 

only has one compartment, the blood flow rate is set to zero and the glucagon mass balance 

equation only has the metabolic production and consumption rates. The metabolic rate of 

different substances has the following general form [22]: 

		r = MI(t ,I)MG(G)MG(t ,G)rB  (2) 

 where I, G, and Γ represent insulin, glucose, and glucagon substances, respectively. MI, MG and 

MΓ are the multipliers representing the regulatory effect of I, G, or Γ on the metabolic rate 

respectively. rB is the metabolic rate at the basal condition. The general mathematical form of the 

multiplicative effect of each substance is [22]: 

  

		
M i = a+btanh[c(

i

iB
-d)] (3) 
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where iB is the concentration of I, G, or Γ at the basal condition and a, b, c, and d are the model 

parameters, which are estimated from the patient’s blood glucose and insulin measurements. 

As described above, the Vahidi model includes mass balance equations for each sub-

compartment within an individual compartment (e.g., the liver is subdivided into two sub-

compartments, namely the capillary space and the interstitial space). However, due to the 

complex mechanism of pancreatic insulin production, a different modeling structure was used for 

the pancreas. In the pancreas model, insulin is exchanged between a small labile insulin unit and 

a large stored insulin unit. The rate of insulin secretion from the labile insulin compartment is a 

function of the glucose concentration, the amount of labile insulin m, and the instantaneous level 

of glucose-enhanced excitation factor X and its inhibitor R. Based on earlier data analysis, the 

insulin secretion rate (S) is calculated as follows [22]: 

		

S =[N
1
X1.11 + N

2
(X - R)]m X > R

S = (N
1
X1.11)m X £ R

 

 

(4) 

 

where constants N1 and N2 are the unknown model parameters, which are estimated from the 

patient’s blood glucose and insulin measurements.  

2.2 Nonlinear optimization for obtaining Vahidi sub-model parameters  

The Vahidi model provides the detailed structure for the simulation of type II diabetes 

mellitus. For each individual patient, the Vahidi model parameters must be estimated using the 

patient’s own glucose and insulin measurements. The modified model parameters were estimated 

through an iterative optimization algorithm using a sequential quadratic programming (SQP) 

method. In this optimization problem, the deviation of model predictions from the available 
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measurements of peripheral glucose, insulin, and incretin concentrations is minimized through 

the following objective function [23]: 

		 Q
min [(G j - Ĝ j )2 +

j=1

n

å (I j - Î j )2] (5) 

where Gj and Ij are the peripheral glucose and insulin concentrations at time j obtained from the 

model, respectively; 		Ĝ
j  and 		Î

j  are the corresponding clinical measurements;  n is the number of 

samples in the clinical data set; and Q is the vector of parameters containing the glucose, insulin, 

and glucagon metabolic rates defined in Eq. (3).  

3. Clinical data used for model development 

The aim of this study is to develop a simple measure of insulin sensitivity by using a self-

assessment test without laboratory requirements. From a literature review of OGTT, it was found 

that the pattern of glucose response to insulin varies from patient to patient. To ensure that the 

proposed test for estimating the ISI is valid for all available patterns of glucose and insulin 

concentrations, different sets of blood glucose and insulin measurements must be used for the 

estimation of the Vahidi model parameters. Different sets of clinical data for type II diabetic 

patients have been published in the literature from the 2-h 75-g OGTT. Based on the Canadian 

Diabetes Association 2013 criteria [24], the diagnostic criteria for diabetes are summarized in 

Table 1. 

From our literature survey, it was found that the insulin concentration profile during an 

OGTT can be grouped in to a few patterns. Hayashi et al. [25] derived four possible patterns of 

insulin profile from a study involving 400 non-diabetic Japanese Americans. They concluded 

that the insulin concentration pattern during an OGTT strongly predicts the development of type 
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II diabetes and is correlated with measures of insulin sensitivity. Bakari and Onyemelukwe [26] 

studied the plasma insulin pattern both in the fasting state and in response to a standard OGTT in 

42 type II diabetic Nigerians and 36 healthy control subjects. They found that the type II diabetic 

patients demonstrated both fasting and post-OGTT hypoinsulinaemia. Therefore, for our model 

development, fifteen available patterns of glucose and insulin concentrations during the 2-h 75-g 

OGTT for diabetic and non-diabetic subjects were included. Table 2 shows the details of the 

fifteen patterns influenced by insulin sensitivity.  

After the Vahidi model had been developed, fifteen simulated patients were used for the 

development and evaluation of a self-assessment method for obtaining the ISI. The next section 

describes the development of the proposed method for obtaining the ISI. 

4. Proposed self-assessment method for estimation of insulin sensitivity 

Several authors proposed various indices for measuring insulin sensitivity by using 

fasting state or OGTT data and correlated the indices with the data obtained from the 

hyperinsulinemic euglycemic clamp test. Formulas proposed for calculating the ISI are based on 

the intercorrelations between the concentrations of glucose and insulin and other parameters. 

However, they all require the measurements of plasma insulin levels sampled at specific times by 

laboratory equipment, which is expensive and inconvenient. Therefore, a more practical method 

for obtaining the ISI is the focus of this research.  

A practical test for obtaining the ISI should not require plasma insulin measurements and 

only need capillary blood glucose measurements. Capillary blood glucose refers to the blood 

glucose concentration measured from capillary blood vessels. This is most commonly done by a 

finger prick test by a diabetic patient. The plasma insulin measurement refers to the actual insulin 

concentration in a person’s blood sampled and measured by a lab technician.  
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For type II diabetic patients, the body is suffering from some insulin resistance and it 

requires larger amounts of insulin either from the pancreas or from injections to lower their 

plasma glucose level compared to that of an insulin-sensitive body. For those with severe insulin 

resistance, the normal physiological response to a given amount of insulin is blunted. As a result, 

higher levels of insulin are needed to achieve a proper effect.  

In light of this, we propose a simple testing approach, in which the simulated patients 

take a dose of oral glucose ingestion followed by multiple insulin injections at different times. 

The proposed test is considered clinically acceptable and safe as the insulin dosage can be 

selected with a large safety margin. We have conducted extensive simulation with different 

combinations of testing protocols on the fifteen simulated patients using the Vahidi model. After 

the extensive simulations, we have found that the ISI can be estimated by patients completing a 

simple testing protocol, which includes two procedures on two separate occasions.  

In the first procedure, the fifteen simulated subjects were given a single dose of 75-g 

glucose. The plasma glucose concentrations of the fifteen subjects were sampled in order to 

check how their bodies suppress the plasma glucose level with no insulin injection.  

In the second procedure, a single dose of 75-g glucose was given to the fifteen simulated 

subjects. Then, 10 mU/kg insulin was injected twice subcutaneously into the body of the 

simulated subjects 20 and 50 min after glucose consumption since the major response to a 

moderate load occurs within 15 min of glucose ingestion [30,31]. The plasma glucose 

concentrations of the fifteen subjects were sampled in order to check how their bodies regulate 

the plasma glucose level with two insulin injections. 

After statistical evaluation, it was found that the differences in the plasma glucose 

concentration profile of each subject from the first and second procedures can be used to define a 
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formula for the ISI. The formula adopted for the estimation of the ISI is described in Section 5.2. 

This section also shows how well the proposed index correlates with the ISI (called M-value) 

obtained from the euglycemic insulin clamp technique.  

5. Results and discussion 

The Vahidi model includes a set of nonlinear ordinary differential equations and 

algebraic equations. The model parameters are estimated through an iterative optimization 

algorithm using an SQP method, as described in Section 2.2. The estimated parameters are then 

used to solve the Vahidi model equations. The optimization was carried out in MATLAB.  

5.1 Parameter estimation results 

Since different patterns of glucose and insulin concentrations result in different sets of 

parameters in the Vahidi model, for each subject in Table 2, a set of parameters was estimated 

using the nonlinear optimization algorithm described in Section 2.2. As an example, using the 

raw data of subject 1 in Table 2, the estimated model parameters for the glucose and insulin sub-

models presented in Eq. (3) and Eq. (4) are shown in Table 3 and Table 4, respectively.  

The model estimation results of the fifteen subjects from Table 2 are shown in Figs. 2 and 

3. The goodness of fit between the model estimation and the available clinical data set can be 

calculated using different cost functions in MATLAB. In this paper, the goodness of fit is 

calculated using the mean square error (MSE) as a cost function:  

		

MSE =
x - x

ref

2

N
s
-1

 (6) 

where x is the glucose or insulin concentration matrix estimated by the model, xref  is the 

available glucose or insulin concentration from Table 2 as the reference, and Ns is the number of 
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actual measured clinical data. From Eq. (6), the overall average goodness of fit for all fifteen 

subjects is 92%. The simulated trends are reasonably consistent with the actual clinical data from 

both a visual inspection and the average goodness of fit. 

5.2 Quantitative estimation of insulin sensitivity 

In order to validate the proposed  protocol for estimating the ISI , the M-values from the 

euglycemic insulin clamp test were obtained for the fifteen subjects from the simulated models. 

To perform the euglycemic insulin clamp test on the simulated bodies of the fifteen subjects with 

the Vahidi model, the plasma insulin concentration was acutely raised and maintained at 100 

μU/ml by a continuous infusion of insulin. Meanwhile, the plasma glucose concentration was 

held constant at basal levels by a variable glucose infusion in MATLAB. Then, proposed testing 

protocols described in Section 4 were applied to the fifteen simulated subjects.  

The plasma glucose concentration profiles of each subject from the first and second 

procedures are plotted in Fig. 4. From Fig. 4, the plasma glucose level for insulin-sensitive 

subjects 2, 5, 8, 9, and 10 were suppressed significantly after the two insulin injections. 

However, the peripheral glucose concentration profile did not change after the two insulin 

injections for insulin-resistant subjects 1, 3, 4, 6, 7, 11, 12, 13, 14, and 15.  

In the same figure, the maximum differences between plasma glucose levels in the 

insulin-sensitive subjects occur almost at 60 min and 80 min after glucose consumption because 

of the two insulin injections. In statistics, multiple linear regression is an approach for modeling 

the relationship between two or more explanatory variables denoted X and a response variable y 

by fitting an equation to observed data. To find a new ISI, step-wise multiple regression analysis 

was performed with the M-value as the dependent variable (y) and the glucose concentrations at 
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fasting (0 min), 60 min, and 80 min after ingestion of 75-g glucose as the three independent 

variables (X) in MATLAB. The obtained ISI equation from the multiple regression analysis is: 

		

ISI = 44.071-0.1534´FPG -0.1855´G
60min

+0.182´G
80min

-
1.95

FPG
+

6.81

G
60min

-
5.88

G
80min

æ

è
ç

ö

ø
÷ ´103 (7) 

where FPG, G60 min, and G80 min are the peripheral glucose concentrations in mg/dl at fasting (0 

min), 60 min, and 80 min after ingestion of 75-g glucose, respectively. 

The means and standard deviations were computed in MATLAB for the defined insulin 

sensitivity and M-values. Pearson’s r coefficient was used for the calculation of correlations 

between these two measures. The scatter plot of the relationship between the M-value and the ISI 

from Eq. (7) for each subject is shown in Fig. 5. Both the Pearson’s coefficient (r = 0.927) and 

the p-value (p = 0.0045) indicate a strong correlation between the new ISI and the M-value from 

the euglycemic clamp test.  

Previous ISIs derived from the OGTT data require the measurements of plasma insulin 

levels at specific times by laboratory equipment, which is inconvenient, time-consuming, and 

expensive. The proposed ISI can be estimated from data collected by diabetic patients who need 

to frequently monitor their status without the need for expensive laboratory facilities. In the next 

section, other estimated ISIs calculated from the OGTT data are shown in Table 2 for 

comparison.  

5.3 Comparison of various insulin sensitivity indices obtained from OGTT 

The derivations of other indices obtained during the OGTT are briefly presented here. 

The index of whole-body insulin sensitivity derived by Matsuda and DeFronzo [14] calculates 

insulin sensitivity from plasma glucose (mg/dl) and insulin (mU/l) concentrations in the fasting 
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state and during the OGTT. Stumvoll et al. [15] proposed several ISI equations, which were 

obtained from multiple linear regression analysis. The equations calculate the insulin sensitivity 

from plasma glucose (mmol/l) and insulin (pmol/l) concentrations during the OGTT. The Gutt 

index (ISI0,120) [16] was adopted from the ISI proposed by Cederholm and Wibell [13]. The 

calculation of ISI0,120 (mg·l2·mmol-1·mlU-1·min-1) only uses the fasting (0 min) and 120-min 

concentrations of glucose and insulin during the OGTT. 

These three ISIs calculated from the OGTT data are shown in Table 2 to compare the 

correlation of each index with the M-value. Table 5 shows the Pearson’s correlation of each 

measurement of insulin sensitivity with the M-value computed in MATLAB. As can be seen 

from Table 5, the correlation of the proposed ISI with the M-values is significantly stronger than 

those of the other indices, (r = 0.927, p = 0.0045). Although Table 5 shows a very promising and 

convenient ISI estimation, a proper comparison should be done by applying the proposed ISI 

protocol to real subjects. This will be part of our future work plan. 

6. Conclusion 

In this study, the feasibility of using the mathematical compartment model proposed by 

Vahidi et al. [17,18] to estimate insulin sensitivity has been evaluated. Fifteen sets of OGTT data 

from diabetic patients published in the literature have been used to estimate the Vahidi model 

parameters. From the estimated model parameters, a simple method for conveniently estimating 

insulin sensitivity by patients themselves has been developed and evaluated. It is shown that, the 

proposed method yields an ISI measure, which is strongly correlated with the M-value obtained 

from the euglycemic clamp test (r = 0.927, p = 0.0045).  
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FIGURE CAPTIONS 

Figure 1. Schematic diagram of insulin sub-model [18]. 

Figure 2. Plasma glucose concentration profile (mg/dl) for fifteen subjects (clinical data (●), 

model results (solid line)). 

Figure 3. Plasma insulin concentration profile (μU/ml) for fifteen subjects (clinical data (●), 

model results (solid line)). 

Figure 4. Effect of insulin injection in fifteen subjects, two 10 mU/kg insulin injections at 20 and 

50 min (-), respectively, and no injection (--). 

Figure 5. Correlation between proposed ISI and M-value for fifteen subjects (r = 0.927, p = 

0.0045). 

 

 

 

 

 

 

 



 19 

 

 

 

TABLE CAPTIONS 

Table 1. Diagnosis of diabetes [24]. 

Table 2. Mean plasma glucose and insulin levels during OGTT. 

Table 3. Parameter estimation results for glucose sub-model (subject 1). 
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Figures: 

 

Figure 1. Schematic diagram of insulin sub-model [18]. 

Intravenous glucose and 

insulin infusion

Brain

Heart & Lungs

Liver Gut

Kidney

Periphery

Blood measurement

Pancreas

Capillary Space

Capillary Space

Capillary Space

Interstitial Space

Capillary Space

Interstitial Space

Capillary Space

Interstitial Space

Capillary Space

Interstitial Space



 21 

 

Figure 2. Plasma glucose concentration profile (mg/dl) for fifteen subjects (clinical data (●), 

model results (solid line)). 
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Figure 3. Plasma insulin concentration profile (μU/ml) for fifteen subjects (clinical data (●), 

model results (solid line)). 



 23 

 

Figure 4. Effect of insulin injection in fifteen subjects, two 10 mU/kg insulin injections at 20 and 

50 min (-), respectively, and no injection (--). 
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Figure 5. Correlation between proposed ISI and M-value for fifteen subjects (r = 0.927, p = 

0.0045). 
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Tables: 

Table 1. Diagnosis of diabetes [24]. 

Type  FPG (mg/dl) 2-h PG (mg/dl) 

Normal (N) < 110 < 140 

Impaired glucose tolerance (IGT)  <110  140-199 

Impaired fasting glucose (IFG)  110-125   <140 

Combined IFG and IGT  110-125   140-199  

Type II diabetes mellitus (TIIDM) ≥126 ≥200 

 

 

 

Table 2. Mean plasma glucose and insulin levels during OGTT. 

Subject 

Plasma glucose during OGTT (mg/dl)  Plasma insulin during OGTT (μU/ml) 

Reference 0  

min 

30  

min 

60  

min 

90  

min 

120 

min 

 

 

0  

min 

30  

min 

60  

min 

90  

min 

120 

min 

1  175.86 249.84 315.00 338.40 323.64  4.20 5.50 6.01 6.98 9.92 [26] 

2 71.10 135.90 124.92 116.10 101.34  5.72 15.58 13.67 10.48 8.03 [26] 

3 75.29 125.71 129.13 108.50 84.67  8.18 30.00 33.05 33.47 16.77 [27] 

4 80.00 120.40 110.40 92.10 76.50  7.00 38.40 31.10 21.90 9.30 [27] 

5 71.30 130.20 145.00 122.40 91.60  9.20 23.10 34.70 41.90 21.90 [27] 

6 74.00 121.00 177.00 180.00 154.00  9.00 13.00 35.00 46.00 41.00 [27] 

7 71.00 125.00 134.00 103.00 80.00  7.00 62.00 58.00 36.00 20.00 [27] 

8 72.00 118.00 115.00 92.00 62.00  10.00 12.00 35.00 20.00 14.00 [27] 

9 89.90 160.2 134.20 - 109.00  11.30 98.90 68.40 - 43.70 [25] 

10 90.90 154.80 124.70 - 130.80  11.60 109.80 53.90 - 71 [25] 

11 93.30 166.20 171.40 - 122.10  11.70 66.80 103.90 - 58.30 [25] 

12 95.50 171.30 193.30 - 159.10  12.70 59.60 86.70 - 118.90 [25] 

13 91.30 158.10 148.50 - 144.80  14.90 96.40 74.80 - 130.20 [25] 

14 153.40 238.40 292.58 278.68 239.89  6.47 18.88 22.00 20.64 14.57 [28,29] 

15 97.75 164.68 154.54 110.50 87.61  5.52 37.75 42.63 19.58 7.89 [28,29] 
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Table 3. Parameter estimation results for glucose sub-model (subject 1). 

Multiplier in 

Eq. (3) 
a b c d 

	
M

PGU

I  7.035 6.516 0.150 4.000 

	
M

HGP

I¥  1.425 1.406 0.607 0.241 

	
M

HGU

I¥  0.001 2.000 1.500 0.001 

	
M

HGU

G  5.664 5.658 2.013 1.678 

 

Table 4. Parameter estimation results for insulin sub-model (subject 1). 

Parameter in Eq. (4) Value 

N1 (min-1) 1.096 

N2 (min-1) 0.654 

 

Table 5. Pearson correlations with M-Value and results of correlation comparisons. 

Measure Formula 
Correlation with 

M-value 
Reference 

ISI_Matsuda 

		

10000

FPG ´ FPI ´G
mean

´ I
mean

 
r = -0.43 p = 0.1 [14] 

ISI_Stumvoll 
		
0.156-0.0000459´ I

120min
-0.0000321´ FPI -0.0054´G

120min
 r = 0.47 

p = 

0.0794 
[15] 

ISI_Gutt 

		

(75000+(FPG -G
120min

)´0.19´ BW )

G
mean

´ log I
mean

 r = 

0.2965 
p = 0.28 [16] 
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Proposed ISI Eq. (7) 
r = 

0.927 

p = 

0.0045 
- 

 


