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Consumer electronics, wearable and personal health devices, power networks, microgrids, and hybrid electric vehicles (HEVs) are
some of the many applications of lithium-ion batteries. Their optimal design and management are important for safe and profitable
operations. The use of accurate mathematical models can help in achieving the best performance. This article provides a detailed
description of a finite volume method (FVM) for a pseudo-two-dimensional (P2D) Li-ion battery model suitable for the development
of model-based advanced battery management systems. The objectives of this work are to provide: (i) a detailed description of the
model formulation, (i i) a parametrizable Matlab framework for battery design, simulation, and control of Li-ion cells or battery packs,
(i i i) a validation of the proposed numerical implementation with respect to the COMSOL MultiPhysics commercial software and
the Newman’s DUALFOIL code, and (iv) some demonstrative simulations involving thermal dynamics, a hybrid charge-discharge
cycle emulating the throttle of an HEV, a model predictive control of state of charge, and a battery pack simulation.
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The increasing demand for portable devices (e.g., smartphones)
and hybrid electric vehicles (HEVs) calls for the design and manage-
ment of storage devices of high power density and reduced size and
weight. During the many decades of research, different chemistries
of batteries have been developed, such as Nickel Cadmium (NiCd),
Nickel Metal Hydride (NiMH), Lead Acid and Lithium ion (Li-ion)
and Lithium ion Polymer (Li-Poly) (e.g., see Refs. 1–4). Among elec-
trochemical accumulators, Li-ion batteries provide one of the best
tradeoff in terms of power density, low weight, cell voltage, and
low self-discharge.5 Mathematical models can support the design of
new batteries as well as the development of new advanced battery
management systems (ABMS).6–8 According to the literature, math-
ematical models for Li-ion battery dynamics fall within two main
categories: Equivalent Circuit Models (ECMs) and Electrochemical
Models (EMs). ECMs use only electrical components to model the
dynamic behavior of the battery. ECMs include (i) the Rint model
where only a resistance and a voltage source are used to model the
battery, (i i) the RC model (introduced by the company SAFT9) where
capacitor dynamics have been added to the Rint model,10 and (i i i) the
Thevenin model, which is an extension of the RC model (e.g., see
Refs. 11, 12 and references therein). In contrast, EMs explicitly rep-
resent the chemical processes that take place in the battery. While
ECMs have the advantage of simplicity, EMs are more accurate due
to their ability to describe detailed physical phenomena.13 The most
widely used EM in the literature is the porous electrode theory-based
pseudo-two-dimensional (P2D) model,14 which is described by a set
of tightly coupled and highly nonlinear partial differential-algebraic
equations (PDAEs). In order to exploit the model for simulation and
design purposes, the set of PDAEs are reformulated as a set of ordinary
differential-algebraic equations (DAEs). The model reformulation is
very challenging to carry out in a way that is simultaneously compu-
tationally efficient and numerically stable for a wide range of battery
parameters and operating conditions. To the authors’ best knowledge,
no publication is available in the literature that provides a detailed step-
by-step description of the numerical implementation of the P2D model
or a freely available Matlab framework suitable for simulation, design,
and development of ABMS for Li-ion batteries. In this article, start-
ing from the P2D model, a computationally efficient and numerically
stable finite volume DAE formulation is described in detail in order to
facilitate implementation by the reader, while also addressing potential
pitfalls and relative loopholes. Boundary conditions used to enforce
physical meaningfulness of the system are thoroughly discussed and
their numerical implementation is explained. Particular attention is di-
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rected to the handling of interface boundary conditions in the three pri-
mary sections of the battery - positive and negative electrodes and the
separator. Due to possible discontinuities between adjacent sections,
a mishandling of such conditions may lead to physically inconsistent
solutions. Due to its intrinsic properties, the finite volume method has
been chosen to easily deal with these particular interface conditions.
Finally, based on the proposed finite volume discretization, we provide
the Li-ION SIMulation BAttery Toolbox (LIONSIMBA), a set of fully
customizable Matlab functions suitable for simulating the dynamic be-
havior of Li-ion batteries. These functions are freely downloadable
from the website http://sisdin.unipv.it/labsisdin/lionsimba.php. This
article describes the features of our software. The user can implement
his/her own custom-defined control algorithm to test different ABMS
strategies, simulate cell behavior, optimize manufacturing parameters
or test battery packs composed of series-connected cells. The pack-
age also allows the ready implementation of algorithms to estimate
indexes such as the State of Charge (SOC) and the State of Health
(SOH). The SOC is an important property of batteries that quantifies
the amount of remaining charge (e.g., Ref. 15) and can be used to pre-
vent damage, ensure safety, and minimize charging time.16 The SOH
index measures the ability of the battery to store and deliver electrical
energy; similar to the SOC, estimation-based approaches are used to
predict the value of the SOH (e.g., see Refs. 17–19). The SOH tracks
the long-term changes in a battery and its knowledge can help ABMS
to anticipate problems through online fault diagnosis while providing
charging profiles to slow down the battery aging. The package comes
with the experimental parameters of the battery reported in Ref. 20.
An initialization file allows changes in battery and simulator param-
eters. The simulator works under Matlab using IDA21 to solve the
set of resulting DAEs with a good trade-off between accuracy and
computational time.

The battery model and its numerical implementation is described
first. Then the proposed framework is validated with respect to
the results obtained using the COMSOL MultiPhysics commercial
software22 and the Newman’s Fortran code named DUALFOIL.23

Finally, to demonstrate the effectiveness of the proposed software,
thermal dynamics, model predictive control of state of charge, hybrid
charge-discharge cycles, and a battery pack of series-connected cells
are simulated. The toolbox is equipped with all the Matlab source files
able to reproduce the simulations presented in this article.

Battery Model

The P2D model consists of coupled nonlinear PDAEs for the
conservation of mass and charge in the three sections of the
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Table I. Li-ion P2D model governing equations.
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battery – cathode, separator, and anode – denoted respectively by
the indexes p, s, and n. The positive and negative current collectors
are denoted by a and z. The index i ∈ S is used to refer to a par-
ticular section of the battery, where S := {a, p, s, n, z}. All model
equations are reported in Tables I and II. Variables ce(x, t), cavg

s (x, t),
and c∗

s (x, t) ∈ R
+ denote the electrolyte concentration, the average

concentration in the solid particles, and the surface concentration in
the solid particles of Li-ions respectively, where time t ∈ R

+ and
x ∈ R is the spatial direction along which the ions are transported.
Diffusion inside solid spherical particles with radius Rp is described
by Fick’s law,
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where r is the radial direction along which the ions intercalate within
the active particles. This model introduces a pseudo-second dimen-
sion (r ). To reduce complexity and computational burden, Refs. 24
and 25 proposed different efficient reformulations for the solid-phase
diffusion equation. As discussed in Ref. 26, according to the particu-
lar application, different model reformulations can be employed while
maintaining good accuracy. For low to medium C rates, the diffusion
length method27 or the two-term polynomial approximation method
are accurate. At high C rates, higher-order polynomial approximations
or the Pseudo Steady State (PSS)28 approximation can be employed.
For more details, refer to Ref. 26 and the references therein.

In the two-term polynomial approximation, concentration profiles
inside the particle are assumed to be quadratic in r and 1 is approx-

imated by means of average and surface concentration of the solid
particles,

∂cavg
s (x, t)
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= −3

j(x, t)
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,

c∗
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s (x, t) = − Rp

Ds
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5
.

This reformulation leads to a one-dimensional problem in x by re-
moving the pseudo-second dimension r . Despite the reduced com-
putational burden, such approximation could lead to a decrease of
the prediction accuracy for high rates, short time responses or pulse
currents.26 For these applications, higher-order polynomials or Fick’s
law are recommended, as discussed in Solid-phase diffusion models
section.

The electrolyte and solid potential are represented by �e(x, t) and
�s(x, t) ∈ R, while T (x, t) and j(x, t) represent the temperature and
the ionic flux. Note that the ionic flux is present only in the positive
and negative electrodes, and not in the separator. The open circuit volt-
age (OCV) is denoted by U while the entropic variation of the OCV
is denoted by ∂U

∂T . The cathode, anode, and separator are composed
of different materials; for a given section i , different electrolyte diffu-
sion coefficients Di , solid-phase diffusion coefficients Ds

i , electrolyte
conductivities κi , porosities εi , thermal capacities Cp,i , thermal con-
ductivities λi , densities ρi , solid-phase conductivities σi , particle sur-
face area to volumes ai , maximum solid phase concentrations cmax

s,i ,
overpotentials ηi , and particle radiuses Rp,i can be defined. The terms
R and F are the universal gas constant and the Faraday constant, re-
spectively, with t+ representing the transference number. The applied
current density is Iapp(t), and Tref denotes the environment tempera-
ture. In order to take into account the properties of different materials

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 18.189.97.209Downloaded on 2016-09-09 to IP 

http://ecsdl.org/site/terms_use


A1194 Journal of The Electrochemical Society, 163 (7) A1192-A1205 (2016)

Table II. Additional equations.

Open Circuit Potential (Thermal dependence)
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used in the battery, effective diffusion and conductivity coefficients
are evaluated according to the Bruggeman’s theory, with “eff” suffixes
representing effective values of such coefficients. The thickness of the
overall battery is L , where L = ∑

i li and li , represents the length
of each battery section. Due to physical constraints, it is necessary to
impose (i) zero-flux boundary conditions for the ce diffusion equa-
tion at the two ends of the battery, (i i) Newton’s cooling law for the
dissipation of heat in the system, and (i i i) null-flux conditions for �s

at the interface between electrodes and the separator as well as the
enforcement of Ohm’s law at the end of the electrodes. Given that
only potential differences are measurable, without loss of generality,
�e can be set to zero at the end of the anode. Similarly, on the cathode

side, zero-flux conditions are imposed. Within the battery, interface
conditions are imposed across the different materials. In order to get a
more detailed description of the conductivity and diffusion phenom-
ena inside the electrolyte, all the related coefficients are determined
as a function of ce and T , as discussed in Ref. 29.

Excessive heat generation may lead to performance degradation
and, in extreme cases, thermal runaway of the cell.30,31 In order
to address these possible safety issues, thermal dynamics are in-
cluded with the set of conservation equations describing the sys-
tem. The thermal equations include different source terms, which are
the ohmic, reversible, and reaction generation rates Qohm, Qrev, and
Qrxn, respectively.32 The ohmic generation rate takes into account heat
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generated as a consequence of the motion of Li-ions in the solid/liquid
phase. The reaction generation rate accounts for heat generated due to
ionic flux and over-potentials, and the reversible generation rate takes
into account the heat rise due to the entropy change in the electrodes’
structure. The next section uses the notation x̂0 = la , x̂ p = la + l p ,
x̂s = la + l p + ls , and x̂n = la + l p + ls + ln . For a clearer compre-
hension, bold is used in tables for coefficients whose dependence on
other variables is made explicit in other equations. The nomenclature
of the variables is reported in List of symbols section. The model
equations are from Ref. 14, where for convenience the electrolyte
potential is related to the ionic flux j(x, t) rather than to the applied
current density.33,34 The thermal model is taken from Ref. 32 while all
of the parameters describing the particular chemistry are taken from
Ref. 20.

Numerical Implementation

Most numerical methods for model-based estimation and control
algorithms require the model to be formulated in terms of AEs or
DAEs rather than PDAEs. Different numerical methods can be used
to achieve this objective. The reformulation process from PDAEs to
AEs or DAEs is carried out by discretizing the domains of the in-
dependent variables (e.g., the time domain t and the n-dimensional
spatial domain x ∈ R

n). The discretization can involve both time and
space, to produce AEs, or only space, to produce DAEs. An example
of discretization in time and space is given by the FTCS (Forward-
Time Central-Space) approach.35 Other techniques, like the method
of lines (MOL),36 discretize only the space domain and leave the time
as a continuous variable. When this latter approach is used, finite
volume, finite difference, or finite element methods can be employed
to obtain the set of DAEs. Alternative approaches can be used. For
example, orthogonal collocation can be used with an efficient coordi-
nate transformation to solve the set of resulting DAEs.20 In this paper,
in order to exploit the properties of variable-step solvers, MOL is
used to reformulate the original set of PDAEs. In particular, the finite
volume method (FVM) is employed. Due to its ability to conserve
properties with high accuracy (within numerical roundoff errors), the
FVM has been used in literature to discretize models in a wide range
of applications, such as heat transfer problems,37 flow and transport
in porous media,38 or more general applications for hyperbolic prob-
lems as discussed in Ref. 39. In particular, the FVM together with the
harmonic mean (HM) have been used to deal with possible disconti-
nuities across different sections of the cell. To the authors’ knowledge,
no published work addresses in detail the numerical issues related to
the implementation of the Li-ion cell model and, in particular, the
handling of boundary conditions that ensure physical meaningfulness
of the obtained solutions. For this reason, all the numerical details are
addressed below.

Finite volume formulation.—Consider a general diffusion-
convection equation defined on a domain in R

N of the form

∂φ

∂t
+ ∇(ηφ) = ∇(�∇φ) + s [2]

where φ is the unknown variable, η is the velocity, � is a diffusion
coefficient and s a source term. Both the unknown φ and the source
term s depend on time t and space x ∈ R

N . For convenience define
f (φ) := ηφ − �∇φ. Integrating 2 over a spatial domain � ⊂ R

N

and applying the divergence theorem produces the integral form of
the conservation law:∫

�

∂φ

∂t
dV +

∮
d�

( f (φ) · n) d S =
∫

�

sdV [3]

where d� is the boundary of the domain �, n is the outward pointing
unit normal on the boundary of the domain, and dV and d S repre-
sent the infinitesimal volume of � and the infinitesimal surface of
the boundary d� respectively. Alternatively, this integral equation
could be written directly as an exact conservation equation over any
prescribed spatial domain.

Figure 1. Example of a 2D FVM mesh where the set of neighbor cells C(k)
is represented by the green cells.

According to the FVM, the spatial domain � is divided into a set
of disjoint control volumes (CVs) �k centered in xk ∈ R

N , such that
� = ∪k�k and �i ∩ � j = ∅ , ∀i 
= j . The average value of the
unknown variables for each CV is

φ̄k(t) ≈ 1

Gk

∫
�k

φ(x, t) dV

where Gk represents the volume of �k . Using this equation, the inte-
grals in 3 can be reformulated as

˙̄φk(t) +
∑
j∈C(k)

(F(φ̄) · n)k, j ≈ s̄k(t) [4]

where C(k) is the set of the neighbor cells to the kth CV and (F(φ̄)·n)k, j

is the normal component of the numerical approximation of f (φ) · n,
directed toward x j starting from xk . An illustrative example of the
set C(k) is given in Fig. 1. Suitable numerical approximations need
to be employed for the term F(φ̄); given that the average values of
the unknown variables φ̄ are computed in the FVM, interpolation
techniques are employed to recover the value of such unknowns at the
edges of the CVs.40 The approximation of F(φ̄) is discussed in the
next section.

Discretization of the governing equations.—The discretization
method introduced in Finite volume formulation section is exploited
to reformulate the set of governing equations summarized in Table I.
Given that all the unknowns of the Li-ion cell model are functions of
the variables t ∈ R

+ and x ∈ R, the development of a 1D FVM model
is addressed. In order to correctly carry out the discretization process,
a mesh structure is defined by subdividing the spatial domain into
Na + Np + Ns + Nn + Nz non-overlapping volumes with geometrically
centered nodes (as depicted in Fig. 2). Every CV is associated with a

Figure 2. One-dimensional finite volume mesh.
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Table III. FVM P2D equations.

Current Collectors, i ∈ {a, z} Boundary Conditions

(T) ρi C p,i
∂ T̄k (t)

∂t = 1
�xi

[
λi

∂T (x,t)
∂x

]∣∣∣x
k+ 1

2
x

k− 1
2

+ I 2
app(t)
σeff,i

[
λi

∂T (x,t)
∂x

]∣∣∣
0

= h(Tref − T̄1(t))[
λi

∂T (x,t)
∂x

]∣∣∣
L

= h(T̄end(t) − Tref )

Positive and Negative Electrodes, i ∈ {p, n}
(M1) εi

∂ce,k (t)
∂t = 1

�xi

[
Deff,i

∂ce(x,t)
∂x

]∣∣∣x
k+ 1

2
x

k− 1
2

+ ai (1 − t+) j̄k (t) ∂ce(x,t)
∂x

∣∣∣
x̂0

= 0

∂ce(x,t)
∂x

∣∣∣
x̂n

= 0

(M2) ∂ c̄avg
s (t)
∂t = −3 j̄k (t)

Rp,i

(M3) c̄∗
s (t) − c̄avg

s (t) = − Rp,i
Ds

eff,i

j̄k (t)
5

(C1)
[
σeff,i

∂�s (x,t)
∂x

]∣∣∣x
k+ 1

2
x

k− 1
2

= ai F j̄k (t) �xi

[
σeff,i

∂�s
∂x

]∣∣∣
x̂0,x̂n

= −Iapp

∂�s (x,t)
∂x

∣∣∣
x̂ p ,x̂s

= 0

(C2)
[
κeff,i

∂�e (x,t)
∂x

]∣∣∣x
k+ 1

2
x

k− 1
2

−
[
κeff,i T (x, t)ϒ ∂ ln ce(x,t)

∂x

]∣∣∣x
k+ 1

2
x

k− 1
2

= �xi ai F j̄k (t)
∂�e (x,t)

∂x

∣∣∣
x̂0

= 0

�̄e,end = 0

(T) ρi C p,i
∂ T̄k (t)

∂t = 1
�xi

[
λi

∂T (x,t)
∂x

]∣∣∣x
k+ 1

2
x

k− 1
2

+ Q̄source,k

j̄k (t) = 2keff,i

√
c̄e,k (t)(cmax

s,i − c̄∗
s,k (t))c̄∗

s,k (t) sinh
[

0.5R
FT̄k (t)

η̄i,k (t)
]

η̄i,k (t) = �̄s,k (t) − �̄e,k (t) − Ū i,k

Separator, i = s

(M1) εi
∂ce,k (t)

∂t = 1
�xi

[
Deff,i

∂ce(x,t)
∂x

]∣∣∣x
k+ 1

2
x

k− 1
2

(C2)
[
κeff,i

∂�e (x,t)
∂x

]∣∣∣x
k+ 1

2
x

k− 1
2

−
[
κeff,i T (x, t)ϒ ∂ ln ce(x,t)

∂x

]∣∣∣x
k+ 1

2
x

k− 1
2

= 0

(T) ρi C p,i
∂ T̄k (t)

∂t = 1
�xi

[
λi

∂T (x,t)
∂x

]∣∣∣x
k+ 1

2
x

k− 1
2

+ Q̄ohm,k

center xk and spans the interval [xk− 1
2
; xk+ 1

2
]. To facilitate the treatment

of boundary and interface conditions, the edges of each CV are aligned
with the domain boundaries and internal interfaces. The width of every
CV is defined as �xi = li/Ni , where i represents a particular section
of the battery.

Once the discretization mesh is structured, the governing equa-
tions are discretized as summarized in Table III. All the interface
conditions used to enforce continuity between adjacent materials are
discussed in Implementation of Boundary and Interface conditions
section.

Particular attention is required for the thermal dynamics. The re-
versible and reactive heat sources can be discretized as

Q̄rev,k = Fai j̄k(t) T̄k(t)
∂Ui,k

∂T

Q̄rxn,k = Fai j̄k(t) η̄i,k(t)

whereas the derivatives present in the ohmic source are numerically
approximated as

∂�s(x, t)

∂x

∣∣∣
xk

≈ �̄s,k+1(t) − �̄s,k−1(t)

2�xi

∂�e(x, t)

∂x

∣∣∣
xk

≈ �̄e,k+1(t) − �̄e,k−1(t)

2�xi

∂ ln ce(x, t)

∂x

∣∣∣
xk

≈ c̄e,k+1(t) − c̄e,k−1(t)

2�xi c̄e,k(t)

using a central differencing scheme. Finally the term Q̄source,k :=
Q̄ohm,k + Q̄rev,k + Q̄rxn,k .

Equation (C2) in Table III requires the evaluation of T (x, t),
ce(x, t), and κeff at the edges of the CVs. For example, consider Fig. 3,
where the value of the unknown T̄ has to be evaluated at the interface

between two CVs. In order to recover such value, linear interpola-
tion techniques are used. The same approach is also applied for ce

and κeff .
As discussed in Finite volume formulation section, a suitable nu-

merical approximation for F(φ̄) is needed. Given that no convective
terms are present in the set of governing equations, numerical ap-
proximation is only required for the diffusive terms (e.g., −�∇φ). In
this work, all the diffusive terms are numerically approximated with
a first-order scheme:

∂φ(x, t)

∂x

∣∣∣
x

k+ 1
2

≈ φ̄k+1(t) − φ̄k(t)

�x

∂φ(x, t)

∂x

∣∣∣
x

k− 1
2

≈ φ̄k(t) − φ̄k−1(t)

�x

All the values coming from the additional equations in Table II are
obtained as a function of the average values of the unknowns. Equation
(T) is used to obtain the values of T , while equations (M1), (M2), and
(M3) are used to obtain the values of ce, cavg

s , and c∗
s respectively.

Figure 3. Interpolation technique to recover edge values of the unknowns.
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Figure 4. Electrolyte diffusion process: interface across the cathode and
separator.

The values of �s are obtained from (C1) while the values of �e are
calculated through (C2).

Implementation of boundary and interface conditions.—Bound-
ary conditions must be enforced to have a physically meaningful
solution. As shown in Table I, null-flux boundary conditions on the
electrolyte diffusion equation ce can be straightforwardly enforced by
imposing ∂ce

∂x = 0 at x = x̂0 and x = x̂n . The same procedure can
be used to enforce ∂�e

∂x = 0 at x = x̂0, while �e = 0 at x = x̂n is
enforced by setting to zero the value of �e at the last CV of the anode.
Solid-phase potential boundaries are enforced by substituting ∂�s

∂x at
x = x̂0 and x = x̂n the value of −Iapp/σeff,i . Similarly, at x = x̂ p and
x = x̂s , ∂�s

∂x is replaced by the value 0. To enforce heat exchange with
the surrounding environment, the terms ∂T

∂x evaluated at x = 0 and
x = L are substituted with the terms h(Tref − T̄1) and −h(T̄end − Tref )
respectively. The suffixes 1 and end refer to the first and last CV of the
entire mesh. All these conditions have been formulated also for the
FVM discretization as shown in Table III.

Due to changes in material properties along the length of the
battery, interface conditions are required to enforce continuity of the
solution. For this reason, the values of different coefficients (e.g.,
Deff,i , κeff,i , λi ) need to be evaluated at the interface between two
different materials. The easiest way would be to use an arithmetic
mean; however, in some cases, this approach cannot accurately handle
the abrupt changes of coefficients that may occur. Instead, the HM is
employed to evaluate the value at the edges of the CVs. The HM of
two generic coefficients (k1 and k2) can be expressed as

k1k2

βk2 + (1 − β)k1

where β represents a weight to account for the difference between the
different CV widths. A common value for β is β = �x1

�x2+�x1
, where

�x1 and �x2 represent the CV widths. This formulation produces
results that are more robust in presence of the abrupt changes of the
coefficients, without requiring an excessively fine grid in the vicinity
of the interface.41

Consider Fig. 4 where the interface across the last volume of the
cathode and the first volume of the separator is depicted. Remember
that, as discussed in Discretization of the governing equations section,
the mesh structure has been chosen in order to align the CV edges
with the interfaces or physical boundaries of the battery. The value of
Deff,k+ 1

2
can be obtained using the HM as

Deff,k+ 1
2

= Deff,k Deff,k+1

βDeff,k+1 + (1 − β)Deff,k

where β = �x p

�x p+�xs
. The electrolyte diffusion in the last volume of

the cathode is

εp
∂ c̄e,k(t)

∂t
= Deff,k+ 1

2

(c̄e,k+1(t) − c̄e,k(t))

�x p(�x̃)

− Deff,k− 1
2

(c̄e,k(t) − c̄e,k−1(t))

�x2
p

+ ap (1 − t+) j̄k(t)

whereas

εs
∂ c̄e,k+1(t)

∂t
= Deff,k+ 3

2

(c̄e,k+2(t) − c̄e,k+1(t))

�x2
s

− Deff,k+ 1
2

(c̄e,k+1(t) − c̄e,k(t))

�xs(�x̃)

in the first volume of the separator, with �x̃ = �xs+�x p

2 . The
same approach is used to enforce interface conditions where
needed.

When dealing with battery packs, in particular with series-
connected cells, all the aforementioned numerical schemes have to
be replicated for each cell. Moreover, when temperature dynamics
are considered, the numerical scheme has to be adapted in order to
account for continuity fluxes across the cells. Indeed, if two cells are
connected in series,

−λz,1
∂T1(x, t)

∂x

∣∣∣
x=x∗

= −λa,2
∂T2(x, t)

∂x

∣∣∣
x=x∗

must hold at the interface of the current collectors across the two
cells (e.g., at x = x∗), where Ti (x, t) is the temperature of the current
collector of the i th cell. Finally, Newton’s law of cooling has to be
enforced respectively at the positive current collector of the first cell
and at negative current collector of the second cell.

Li-ion Simulation Battery Toolbox (LIONSIMBA)

Different implementations of Li-ion cell simulation have been re-
ported in the literature written in such languages as Maple and Fortran
(DUALFOIL23), and in numerical analysis commercial software such
as COMSOL Multiphysics22 and Modelica42 which provide a variety
of models to simulate the behavior of a Li-ion cell. Matlab, how-
ever, is the software language most commonly used by researchers
for the development and evaluation of different identification, es-
timation, and control algorithms, as Matlab has by far the largest
number of toolboxes that implement the widest variety of such al-
gorithms. Combined with its Instrument Control Toolbox that has
a very extensive suite of protocols for directly communicating and
controlling laboratory equipment, Matlab has the maximum flexi-
bility for evaluation of control algorithms through simulations and
experiments.

Based on the aforementioned Li-ion cell model, this work provides
a freely available Matlab based software for the simulation of Li-ion
cells, Li-ION SIMulation BAttery Toolbox (LIONSIMBA), to serve
as a reference simulation environment for the facile development and
evaluation of different ABMSs. Due to its native integration with the
Matlab environment, the software facilitates the development of new
algorithms, such as for the identification of Li-ion cell parameters,
State of Charge, and optimal charging. LIONSIMBA is freely down-
loadable at: http://sisdin.unipv.it/labsisdin/lionsimba.php.

The package comes with different Matlab editable .m
scripts:d

� electrolyteDiffusionCoefficients.m: computes the electrolyte
diffusion coefficients.

� electrolyteConductivity.m: computes the electrolyte conduc-
tivity coefficients.

� openCircuitPotential.m: used to compute the Open Circuit
Potential (OCP).

� reactionRates.m: computes the reaction rate coefficients for
the ionic flux.

� solidPhaseDiffusionCoefficients.m: computes the solid phase
diffusion coefficients.

dThis set of scripts refer to version 1.02 of the software; modifications or other scripts can
be added in future releases of the software.
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All the parameters related to the simulator and to the battery are
managed through the script Parameters_init.m. The customization
of this script allows the user to disable features such as the thermal
dynamics, change the number of CVs of the mesh, enable real-time
display of results, and change the battery section lengths, thermal con-
ductivities, porosities, and so on. The user can define the operating
mode of the charge/discharge cycle by selecting between galvanos-
tatic, potentiostatic, or variable current profile operations.

The script getInputCurrent.m contains an example for the def-
inition of the variable current profile, and can be used to apply a
customized current profile during the simulation of the Li-ion battery.
A generic nonlinear function can be used for this purpose; extra pa-
rameters can be used inside this function: current time instant t , initial
integration time t0, final integration time t f , and a structure-containing
extra user data. For example, a possible implementation is

I (t) = α
t − t0

t f − t0
+ ξ, [α, ξ] ∈ R

More sophisticated control strategies such as model predictive control
(MPC) can also be implemented in this framework (see the next
section for an example). An additional degree of freedom is set by
the possibility of defining a custom algorithm for the estimation of
SOC and SOH. Within the Parameters_init.m script, the user can set
custom functions to be externally called after each integration step;
these functions will receive all the integration data of the battery and
an extra structure-containing user-defined data.

A simulation can be initiated by calling from the Matlab command
line:

out = startSimulation(t0, tf, initialStates, I, param)
where

� t0: represents the initial integration time.
� tf: represents the final integration time.
� initialStates: represents the structure of initial states.
� I: represents the value of the applied input current.
� param: represents the cell array of parameters structures to be

used in simulation.

The structure initialStates can be used as initial state from which
to start a simulation. If left empty, LIONSIMBA will automatically
compute a set of consistent initial conditions (CICs) starting from
which the simulation will run. If initialStates is used as a parameter,
it has to be a set of CICs for the battery model in Table III. In case
it is not a set of CIC, the numerical integrator will fail to converge
and no results will be provided. The param array, if passed, is used
as the set of parameters for the simulation. If empty, the software
will use a set of parameters according to the settings defined by the
user in the script Parameters_init.m. When designing ABMSs for
battery packs with series-connected cells, a cell-wise balancing must
be ensured during charging.43,44 LIONSIMBA can support the user
in this task by providing a full independent parametrization of each
cell of the series. If the param array contains a multiple parameters
structure, the software will perform a simulation of a battery pack
composed of several cells connected in series as shown in Battery
pack of series-connected cells section. Each element of the pack can
be parametrized individually, leading to independent simulations of
each cell. Finally, the out structure will contain the values of all
the dependent variables and parameters used in the simulations. The
package requires the SUNDIALS21 suite to be installed and correctly
configured with Matlab; in particular, the solver IDA is used.

To obtain further help on any single script, the user can type

help <scriptname>

from the Matlab command line or refer to the software manual.
The numerical implementation of the LIONSIMBA has been car-

ried out according to the rules outlined in Numerical Implementation
section and the cell considered is a LiCoO2 and LiC6 system. All the

parameter values have been taken from the real battery data in Ref.
20, and are summarized in Table IV.

LIONSIMBA validation.—The P2D model has been experimen-
tally validated numerous times since,14 this section validates the nu-
merical implementation of LIONSIMBA by comparing the results
coming from the proposed framework with COMSOL MultiPhysics
and DUALFOIL. While COMSOL has been supplied with the same
model used in our framework, where a heat diffusion PDE is used to
describe the thermal dynamics, DUALFOIL neglects the spatial distri-
bution of the temperature and averages the heat generation rates over
the cell.45 For this reason, the comparison among the three different
codes is carried out considering isothermal conditions. The thermal
model is included in the comparison with COMSOL. For isothermal
and thermal enabled scenarios, a 1C discharge cycle is performed,
while the same set of parameters are maintained across the different
codes.

The cell potentials V (t), electrolyte concentrations ce(x, t), poten-
tials φe(x, t), and surface solid-phase concentrations c∗

s (x, t) for the
isothermal battery are nearly identical for LIONSIMBA, COMSOL,
and DUALFOIL (see Fig. 5). For the thermal enabled scenario, the
cell potentials, temperature, and other internal states for LIONSIMBA
are nearly identical to COMSOL (see Fig. 6).

Solid-phase diffusion models.—As introduced in Battery model
section, according to the P2D model developed in Ref. 14, diffusion
inside the solid particles is described using Fick’s law, where the pres-
ence of a second-pseudo dimension (r ) can significantly increase the
computational burden. According to the particular application under
study, different approximations of 1 can be employed without signif-
icant loss of accuracy. The choice of the solid-phase diffusion model
should be cautious, as approximate models can have poor accuracy in
scenarios comprising high rate of charge/discharge, short time simu-
lations, or pulse currents.26 For this reason, LIONSIMBA allows the
user to chose among three different models for solid-phase diffusion:

� Fick’s law (including the pseudo-second dimension r ):

∂cs(r, t)

∂t
= 1

r 2

∂

∂r

[
r 2 Ds

eff

∂cs(r, t)

∂r

]

with boundary conditions

∂cs(r, t)

∂r

∣∣∣
r=0

= 0
∂cs(r, t)

∂r

∣∣∣
r=Rp

= − j(x, t)

Ds
eff

� two-parameter polynomial approximation:25

∂cavg
s (x, t)

∂t
= −3

j(x, t)

Rp

c∗
s (x, t) − cavg

s (x, t) = − Rp

Ds
eff

j(x, t)

5

� higher-order polynomial approximation:25

∂cavg
s (x, t)

∂t
= −3

j(x, t)

Rp

∂q(x, t)

∂t
= −30

Ds
eff

R2
p

q(x, t) − 45

2

j(x, t)

R2
p

c∗
s (x, t) − cavg

s (x, t) = − j(x, t)Rp

35Ds
eff

+ 8Rpq(x, t)

The prediction accuracy of each approximate model is assessed by
comparison of the cell potential vs. time profiles for different C rates
for Fick’s law with the two approximate models (see Fig. 7). The
two-parameter approximation accurately describes the cell potential
for low to medium C rates (1C to 2C, Figs. 7a and 7b) and the
higher order polynomial approximation is accurate up to the 5C rate
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Table IV. List of parameters used in simulation.20

Parameter Description Aluminium CC Cathode Separator Anode Carbon CC

cinit
e [mol/m3] Initial concentration in the electrolyte – 1000 1000 1000 –

cavg,init
s [mol/m3] Initial solid-phase concentration – 25751 – 26128 –
cmax

s [mol/m3] Maximum solid-phase concentration – 51554 – 30555
Di [m2/s] Electrolyte diffusivity – 7.5 × 10−10 7.5 × 10−10 7.5 × 10−10 –
Ds

i [m2/s] Solid-phase diffusivity – 10−14 – 3.9 × 10−14 –
ki [m2.5/(mol0.5 s)] Reaction rate constant – 2.334 × 10−11 – 5.031 × 10−11 –
li [m] Thickness 10−5 8 × 10−5 2.5 × 10−5 8.8 × 10−5 10−5

Rp,i [m] Particle radius – 2 × 10−6 – 2 × 10−6 –
ρi [kg/m3] Density 2700 2500 1100 2500 8940

C p,i [J/(kg K)] Specific heat 897 700 700 700 385
λi [W/(m K)] Thermal conductivity 237 2.1 0.16 1.7 401
σi [S/m] Solid-phase conductivity 3.55 × 107 100 100 5.96 × 107

εi – Porosity – 0.385 0.724 0.485 –
ai [m2/m3] Particle surface area to volume – 885,000 – 723,600 –

E
Ds

i
a [J/mol] Solid-phase diffusion activation energy – 5000 – 5000 –

Eki

a [J/mol] Reaction constant activation energy – 5000 – 5000 –
brugg – Bruggeman’s coefficient – 4 4 4 –

F 96485 [C/mol] Faraday’s constant – – – – –
R 8.314472 [J/(mol K)] Universal Gas constant – – – – –
t+ 0.364 Transference number – – – – –
ε f,i – Filler fraction – 0.025 – 0.0326 –

Figure 5. Validation of the LIONSIMBA numerical implementation in
isothermal conditions, with the legend given in part a. (a) Cell potential. (b)
Electrolyte Li-ion concentration. (c) Solid phase Li-ion concentration. (d)
Electrolyte potential.

(Fig. 7c), with increased error at the 10C rate typical of HEV appli-
cations (Fig. 7d).

The performance of each approximate model are quantified by
root-mean-square error (RMSE) and normalized time index (NTI) in
Table VI, where the RMSE is evaluated by comparing an approximate
model solution with respect to the full model, while the normalized
time index is the ratio between the computational time required by
an approximate model and the time required by the full model with
Fick’s law to simulate different scenarios. The two-term polynomial
approximation has much less than 1% error for the 1C and 2C rates,
with more than 1% error for higher rates. In all of the scenarios,
this approximate model takes ≈80% less time than the full model to
simulate the cell.

The higher-order polynomial approximation has a factor of 4 to
5 lower RMSE for each scenario than for the two-term model, but
an increase in computational time by a factor of two or more due to
the inclusion of another set of PDEs. Although the RMSE of 1.9%
at 10C could be small enough for some applications, the reduction in
computational time is only about 37% compared to solving the full
Fick’s law model.

Simulations

Simulation results were obtained using Matlab R2014b on a Win-
dows 7@3.2GHz PC with 8 GB of RAM for the experimental battery
parameters in Ref. 20 with a cutoff voltage of 2.5 V and environ-
mental temperature of 298.15 K. For the proposed chemistry, the 1C
value is ≈30 A/m2. The effectiveness and ease of use of the proposed
framework are shown in a series of simulations.

In the first scenario (Fig. 8), 1C discharge simulations are compared
for a very wide range of heat exchange coefficient h, with high h being
the most challenging for retaining numerical stability in dynamic
simulations. As expected, decreasing the value of the parameter h
leads to a faster increase of the cell temperature. Moreover, due to the
coupling of all of the governing equations, it is possible to note the
influence of different temperatures on the cell voltage.

In the second scenario (Fig. 9), for a fixed value of h = 1 W/(m2K),
different discharge cycles are compared at 0.5C, 1C, and 2C. Accord-
ing to the different applied currents, the temperature rises in different
ways; it is interesting to note the high slope of the temperature during
a 2C discharge, mainly due to the electrolyte concentration ce being
driven to zero in the positive electrode by the high discharge rate.
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Figure 6. Validation of the LIONSIMBA numerical implementation with
thermal dynamics, with the legend given in part a. (a) Cell potential. (b)
Electrolyte Li-ions concentration. (c) Solid phase Li-ions concentration. (d)
Electrolyte potential. (e) Temperature.

Figure 7. Comparison of the three different solid-phase diffusion equations
implemented in LIONSIMBA. (a) 1C rate comparison. (b) 2C rate comparison.
(c) 5C rate comparison. (d) 10C rate comparison.

In the third scenario, the framework is used to simulate a hybrid
charge-discharge cycle, emulating the throttle of a HEV. During brak-
ing, the battery is charged. Table V resumes the configuration of the
car throttle during simulations. In Fig. 10 it is possible to analyze
the response of a single cell inside an HEV pack under a hybrid
charge-discharge cycle. In this case, the effects of temperature among
the different cells have been neglected. The solid potential behavior
is primarily due to the different applied C rates, with discontinu-
ous changes producing voltage drops. Different slopes of the voltage
curve are related to the different C rates applied. Temperature rise is
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Figure 8. 1C discharge cycle run under different heat exchange parameters:
blue line h = 0.01W/(m2 K), dashed orange line h = 1 W/(m2 K) and dot-
dashed yellow line h = 100 W/(m2 K).

recorded in the first 50 seconds of simulations, which are followed
by a slight decrease of the temperature mainly due to the exchange of
heat with the surrounding environment (h = 1 W/(m2K)) and due to
the lower current density applied. At around 250 s, the temperature
starts to increase due to the 1C rate applied during moderate speed;
the high slope of increase at around 410 s is due to the higher value of
the discharge current which during an overtake reaches the value of
2C. Returning to moderate speed makes the temperature slope more

Figure 9. Full discharge cycle run under different C rates: 2C (dot-dashed
yellow), 1C (dashed orange line), and 0.5C (blue line).

Table V. Throttle configuration for hybrid charging-discharging
simulation.

Time (s) C rate Description

0–50 −1 C Moderate speed
50–60 0.5 C Charge
60–210 −0.5C Normal speed

210–410 −1C Moderate speed
410–415 −2C Overtaking
415–615 −1C Moderate speed
615–620 0.5C Charge

Figure 10. Hybrid charging-discharging cycle.
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gentle. During the last 10 seconds, temperature decreases due to the
significant change in applied current and due to dissipation of heat
with surrounding ambient. A sketch of the code used for this simula-
tion is presented in Algorithm 1.

Algorithm 1 Car cycling example code.

Input setup:
1: I = {−29.5, 14.75, −14.75, −29.5, −58, −29.5, 14.75}

� Simulation current densities
2: time = {50, 10, 150, 200, 5, 200, 10}

� Duration of each element of Iapplied (in seconds).
3: t0 = 0; � Init all the useful variables
4: tf = 0;
5: initialStates.Y = [ ];
6: initialStates.YP = [ ];
7: Phis_tot = [ ];
8: t_tot = [ ];
9: T_tot = [ ];

Core script:
10: for i = 1:length(I) do
11: tf = tf + time(i);
12: results = startSimulation(t0,tf,initialStates,I(i),[ ]);
13: Phis_tot = [Phis_tot;results.original.Phis];

� Concatenate results
14: T_tot=[T_tot;results.original.Temperature];
15: t0 = time(i);
16: initialStates = results.initialStates;

� Update initial states for the next simulation
17: end for

The simulation of the application of an ABMS is shown in Fig. 11.
In this particular simulation, a model predictive control algorithm8

is adopted to drive the State of Charge (SOC) of the battery to a
given value, while accounting for input and output constraints. The
initial SOC was around 20% and its reference value was set to 85%.
According to LIONSIMBA, the estimation of the SOC can be easily
simulated by defining a custom function. In this particular scenario,
the SOC has been computed as

SOC(t) = 1

ln cmax
s,n

∫ ln

0
cavg

s (x, t) dx

Algorithm 2 High level control code.

Init script:
1: t0 = 0;
2: tf = dt; � Simulations are run over a sampling time periods
3: initialStates.Y = [ ];
4: initialStates.YP = [ ];
5: Condition = 1;

Core script:
6: while Condition do
7: I = ComputeControlLaw(initialStates);
8: results = startSimulation(t0,tf,initialStates,I,[ ]);
9: [...]

�Elaborate and concatenate the results
and update the time indexes

10: initialStates = results.initialStates;
�Update initial states for the next simulation

11: if SOC reached reference value then
12: Condition = 0
13: end if
14: end while

Figure 11. ABMS control: an MPC algorithm8 is used to drive the charge
of the battery from 20% to 85% while considering voltage, temperature, and
current constraints.

The temperature maximum bound was set to 313.5 K, with the
voltage set to 4.2 V. The ABMS applies a current density which is al-
most fixed at 1C value for the entire simulation, while starting to drop
as the SOC approaches its final value. The SOC raises almost linearly
during the first 2500 s, then plateauing according to the current drop,
in order to approach smoothly the final stage of charge. Fig. 12 shows
that, according to the different charging stages, the electrolyte concen-
tration diffuses in different ways. Starting from cinit

e = 1000 mol/m3,
the input current induces a drop in electrolyte concentration within
the battery sections due to the diffusion of ions from the cathode to
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Table VI. Comparison of different approximation methods for the diffusion in the solid particles. Root Mean Square Error (RMSE) and the
Normalized Time Index (NTI) are shown.

1C 2C 5C 10C

RMSE NTI RMSE NTI RMSE NTI RMSE NTI

two-parameter 0.082% 20% 0.25% 18% 1.6% 22% 6.6% 24%
higher-order 0.017% 37% 0.053% 44% 0.36% 60% 1.9% 63%

Figure 12. ABMS control – Electrolyte concentration: The behavior of the
first and last volume of each section of the battery is depicted, where the
continuous lines belong to the cathode, the dashed lines to the separator and
the dotted lines to the anode.

Figure 13. Full discharge cycle in an isothermal environment: blue line 0.5C,
dashed orange line 1C, and dot-dashed yellow line 2C.

the anode. Approaching the final stage of charging, the concentration
starts to converge back to the initial value of 1000 mol/m3 and, around
5500 s, reaches the steady value. This behavior emphasizes the prop-
erty of the FVM to conserve properties within numerical roundoff.
Algorithm 2 provides a high-level description of how to implement a
closed-loop controller in LIONSIMBA.

In Fig. 13, simulations have been run disabling the thermal dynam-
ics leading to an isothermal environment. This particular configuration
can be exploited in order to assess the influence of different constant
temperatures at which the battery can operate.

All the results of the proposed simulations can be reproduced by
running the example scripts available with LIONSIMBA. Table VII

Table VII. Timing comparisons of different simulation scenarios.

C rate h value Simulation Duration Effective Simulation Time

1C 0.01 3523 s 72 s
1C 1 3523 s 81 s
1C 100 3523 s 77 s

0.5C 1 7050 s 56 s
2C 1 1522 s 85 s

shows the times required by the simulator to simulate the different
scenarios, which are all under 100 s.

Battery pack of series-connected cells.—The results of a battery
pack simulation are shown in Figs. 14 and 15. To emphasize the ability
to independently parametrize each cell, in this scenario the SOC of
cell #1 is set to the 95% of its initial value while the thickness of the
cathode of cell #2 is doubled with respect to its initial value. All the
other parameters are the same for the three cells. The time responses
of the output voltage of the overall pack and the voltage of each cell
are plotted in Fig. 14. The starting voltage of the pack is around 12.1 V
and decreases subjected to a 1C discharge current. In 3346 s, the pack
is completely discharged due to cell #1 first reaching the cutoff voltage
(set to 2.5 V). The lowered starting SOC determined this behavior.
The electrolyte and solid-phase surface concentrations as well as the
electrolyte potentials are compared for the three cells in Fig. 15. Cell
#2 has a significantly different behavior mainly due to the presence
of a cathode with a thickness two times that of the other two cells.
This variation has effects over the output voltages, as shown in Fig.
14. Besides cell # 1 which is starting from a different SOC value, the
different behaviors of V (t) between cell #2 and cell #3 are driven by
the thickness variation.

Conclusions

This work describes a detailed procedure for the numerical imple-
mentation of the P2D model.14 Two published approximate models for
the solid-phase diffusion are also implemented, in which the pseudo-
second dimension is removed to reduce the computational complexity.
The treatment of boundary conditions is addressed with particular at-
tention to the interface conditions across the different sections of the
battery. Following the procedures and rules outlined in Numerical
implementation section, the reader can implement his/her own ver-
sion of the model in different programming languages. Moreover, a
freely available Matlab framework LIONSIMBA is provided that is
suitable for battery design, simulation, and control. The framework
is extended to account for different solid-phase diffusion models to
meet required accuracy. The simulations demonstrate high numeri-
cal stability for different operating scenarios. The effectiveness and
reliability of LIONSIMBA is verified considering a heterogeneous
sequence of applied current coming from an HEV and through the
assessment of an ABMS strategy, in particular, the model predictive
control of state of charge.

A battery pack composed of series-connected cells can be sim-
ulated by considering several independent cells with their own pa-
rameters. Due to its integration with the Matlab environment, the
framework facilitates the development and test of different algo-
rithms such as control algorithms, identification procedures, or op-
timization of manufacturing parameters. The computational times of
LIONSIMBA are compared to DUALFOIL and COMSOL in Table
VIII. For each code, average simulation times are reported for re-
peated simulations of a 1C discharging cycle in isothermal conditions.
LIONSIMBA and DUALFOIL have very similar computation times
for all discretizations, with COMSOL being significaintly slower at
lower discretizations. For the same numerical algorithm, an imple-
mentation in a compiled language such as Fortran is inherently much
faster than an interpreted language such as Matlab, indicating that
the underlying numerical algorithm used by LIONSIMBA is more
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Figure 14. Simulation of a 3-cell pack. The upper curve represents the overall voltage of the 3 series connected Li-ion cells, while the lower plots depict the
voltage of each cell in the pack. The different parametrization of each cell determines different behaviors.

Figure 15. Simulation of a 3-cell pack. The profiles of different internal states inside the three cells. Individual parametrizations lead to different behaviors.

efficient but the higher efficiency is offset by Matlab being an in-
terpreted language: the two effects approximately cancel so that the
overall simulation times for LIONSIMBA and DUALFOIL were very
similar.

The results in this article demonstrate the promise of the proposed
framework as a reliable, efficient, and freely available Matlab-based
software for the P2D model simulation. Further developments such as
code optimization and distribution of compiled versions can only im-
prove the current performance. Moreover, as the proposed simulations
were written in standard serial mode, the computation time could be

Table VIII. Timing comparisons among different P2D model
implementations. The number of discretized nodes has been set
equal for each section of the cell.

# of discrete nodes

10 20 30 40 50

COMSOL 96 s 114 s 143 s 189 s 244 s
DUALFOIL 28 s 57 s 97 s 137 s 185 s

LIONSIMBA 28 s 69 s 105 s 134 s 223 s

reduced by at least a factor of ten by using a multicore CPU using par-
allel DAE solvers. Modern versions of Matlab have easy-to-implement
built-in options for distributing calculations among multiple cores on
a single CPU, and among multiple CPUs.

List of Symbols

ce(x, t) Electrolyte salt concentration [mol/m3]
cavg

s (x, t) Solid-phase average concentration [mol/m3]
c∗

s (x, t) Solid-phase surface concentration [mol/m3]
Deff Effective electrolyte diffusion coefficient [m2/s]
Ds

eff Effective solid-phase diffusion coefficient [m2/s]
h Heat exchange coefficient [W/(m2 K )]
Iapp(t) Applied current density [A/m2]
j(x, t) Ionic flux [mol/(m2s)]
keff Effective reaction rate [m2.5/(mol0.5s)]
Qohm Ohmic heat source term [W/m3]
Qrev Reversible heat source term [W/m3]
Qrxn Reaction heat source term [W/m3]
T (x, t) Temperature [K]
U ref Open Circuit Voltage [V]
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Greek
∂U
∂T |T ref Open Circuit Potential Entropic Variation [V/K]
κeff Effective electrolyte conductivity [S/m]
�e(x, t) Electrolyte potential [V]
�s(x, t) Solid potential [V]
σeff Effective solid-phase conductivity [S/m]
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