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Abstract: The bale collection problem (BCP) appears after harvest operations of agricultural
crops. Its solution defines the sequence of collecting bales which lie scattered over the field.
Current technology on navigation systems in autonomous agricultural vehicles and machines
are able to provide accurate data for reliable bale collection planning. This paper presents a
constrained k-means algorithm and nearest neighbor approach to the BCP, which minimizes
travel time and hence fuel consumption. The constraints imposed on the k-means procedure is
not the usual condition that certain groups of objects must be clustered together, but rather
that the cluster centers must lie on valid locations, which may be specified as functions or sets
of points. The algorithmic route generation provides the basis for a navigation tool dedicated
to loaders and bale wagons. The approach is experimentally tested on a simulated study area
similar to those found in real situations.

Keywords: constraint satisfaction problems, optimization, logistics planning, autonomy,
agriculture

1. INTRODUCTION

The agricultural industry is now capable of collecting com-
prehensive real-time data regarding their field operations.
Proper use of this data compels the formulation of novel
methods to help improve the management of tasks involv-
ing the coordination of agricultural machines and vehicles.
These technologies can provide accurate information for
precision agriculture (PA) decision support systems in
farm management.
PA is conceptualized by a system approach to reorga-
nize farm management systems towards a low-input, high-
efficiency, sustainable practice. PA benefits from a suite
of technologies, such as global positioning system (GPS),
geographic information system, automatic control, remote
sensing, miniaturized computer components, mobile com-
puting, advanced information processing, and telecommu-
nications (Gracia et al., 2013).
Major field operations are performed throughout the
planned coordination of different farm equipment. The
bale collection problem (BCP) appears after harvest and
baling operations of a crop and consists of defining the
sequence in which bales spread over a field are collected.
Once the harvesters have operated throughout the field,
the mowed crop is left behind in windrows to be com-
pressed and compacted by balers into bales that are con-
venient to handle and transport. Bales remain scattered on

the surface of the field awaiting their collection by loaders
and transported to the roadside by wagons (either self-
propelled or pull-type).
The BCP is concerned with the collaborative operation
of several machines and vehicles. Therefore, planned man-
agement becomes necessary to coordinate the various tasks
efficiently. Usually the collection is decided by the operator
based on his skills and experience. The inconsistent and
subjective nature of decisions based on operator judgment
tend to produce suboptimal solutions (Milkman et al.,
2009). On the other hand, an accurate bale collection
plan and its proper execution are achievable. Balers, load-
ers and bale wagons can be provided with positioning-
system based devices enabling geo-referenced information
(Amiama et al., 2008) which makes it possible to know the
exact location of bales and track vehicles on predetermined
paths. The BCP can be modeled and solved efficiently by
applying optimization techniques, and thereafter be inte-
grated as a part of a farm management decision support
system (Gracia et al., 2013).
Solving the BCP involves determining the optimal road-
side storage sites and the bale collection routes while
taking into account the maximum capacity of the wagons
as well as the distance traveled in transporting the bales
to the roadside. The general procedure is that bales are
transported from the field to the roadside, where they
will be collected and taken to more permanent storage
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locations (i.e., silos, storage bunkers or barns). Hence, it
becomes necessary to describe such operations by math-
ematical models that can be used for optimal allocation,
route planning and timing.
The BCP belongs to a class of operational research prob-
lems known as the vehicle routing problem (VRP), which
has been widely studied. The vehicle routing problem
(VRP) is a combinatorial optimization and integer pro-
gramming problem and is a generalization of the traveling
salesman problem (TSP). The goal of the VRP is to find
the optimal set of routes for a fleet of vehicles delivering
goods or services to a set of geographically dispersed loca-
tions or customers. Eksioglu et al. (2009) have developed
a taxonomic review of the abundant literature published
on VRP related research. Despite the fact that field tasks
involve the collaborative use of vehicles, these concepts
have only recently been transferred to the agricultural
environment (Bochtis et al., 2013; Gracia et al., 2013).
According to the theory of computational complexity, this
class of decision problems is nondeterministic polynomial
time complete (NP-complete).
Commonly used techniques for solving VRPs focus on the
use of algorithmic methods based on the application of
heuristics or meta-heuristics, because no exact algorithm
can be guaranteed to find the optimal route in reasonable
computing time when the number of customers is large.
Heuristic methods perform a relatively limited exploration
of the search space and typically produce good qual-
ity solutions within modest computing times. Examples
of heuristic procedures applied to VRP include particle
swarm optimization (Lei et al., 2014), artificial optimized
performance of bees (Szeto et al., 2011), ant colony op-
timization (Yu and Li, 2012), constraint programming
algorithms (Rego, 2006) and genetic algorithms (Gracia
et al., 2013). This paper presents a heuristic algorithm
to efficiently solve the BCP appearing after mowing and
harvesting operations. The proposed algorithm aims to
increase the overall field efficiency of collection operations
by providing the basis for a navigation tool dedicated to
loaders and bale wagons. The low computational require-
ments of our method makes it feasible for integration in
large scale operations. The proposed method has two main
parts. The first part involves identifying the optimal road-
side storage sites where bales are to be transported. This
translates to a constrained cluster analysis optimization
problem as the storage sites must lie on the side of the
road. The second part involves identifying efficient collec-
tion routes for transporting the bales from the field to their
respective roadside storage site. This is a capacitated VRP
(CVRP) as the number of bales that a wagon can pick up
on any given route is limited by the wagons capacity.

2. METHODS

2.1 Part I: Constrained Cluster Analysis of Bales

Problem Description The identification of roadside stor-
age sites where bales are to be transported can be ex-
pressed as a cluster analysis problem, where the aim is
to partition the bales into k clusters in which each bale
belongs to the cluster with the nearest mean, resulting in
a partition of the bales on the field. If the location of the

cluster centers were not constrained to lie on the roadside,
then the k-means algorithm (Hartigan, 1975), originally
used for signal processing, may be directly applied. Even
so, this standard cluster analysis problem is known to be
computationally difficultly (NP-hard). The fact that the
storage sites are constrained to lie on the roadside makes
this part of the BCP an even greater challenge to solve.
We believe that this is the first work that shows how to
optimize this class of constrained cluster analysis problem.
Given a set of points X = (x1,x2, . . . ,xn), where each
point is a d-dimensional real vector, k-means clustering
aims to partition these n points into k ≤ n sets S =
{S1, S2, . . . , Sk} so as to minimize the within-cluster sum
of squares. In the BCP we also have m compact sets in
Rd denoted {T1, . . . , Tm}, such that the valid positions for
the cluster centers are in T = T1 ∪ · · · ∪ Tm. We introduce
the auxiliary functions:

gj(x) = min
t∈Tj

||x− t||2, j = 1, . . . ,m

to help formulate our constrained cluster analysis (CCA)
problem shown in Equations (1a) to (1d). The function
gj(x) calculates the minimum Euclidean distance between
a given point, x, and any point in the set Tj .

minimize
(µ1,S1),...,(µk,Sk)

k∑
i=1

∑
x∈Si

||x− ui||2 (1a)

subject to
m∏

j=1
gj(ui) = 0 for i = 1, . . . , k (1b)

S1 ∪ S2 ∪ · · · ∪ Sk = S (1c)
Si ∩ Sj = ∅ ∀i 6= j. (1d)

The constraint given in Equation (1b) ensures that each
cluster center is located in a valid position. Equations
(1c) and (1d) enforce strict partitioning clustering and a
many to one mapping of bales to clusters, respectively.
The CCA problem represented in Equations (1a) to (1d)
is a quadratically constrained quadratic program that is
NP-hard.

Step 1 Choose k random points from S to be the
initial cluster centers, u = (u1,u2, . . . ,uk). The
relaxed solution of the k-means algorithm is a good
initial starting point.

Step 2 Assign points to clusters based on their Eu-
clidean distance to the cluster centers:
Si =

{
x ∈ X : ||x− ui||2 < ||x− uj ||2, j 6= i

}
.

Step 3 For i = 1, . . . , k, update the cluster centers
by solving the following minimization problem:

ui = arg min
u

{
fi(u) =

∑
x∈Si

||x− u + γ · gi(u)||2
}

Step 4 Repeat Steps 2 and 3 until there is no signifi-
cant change in the clustering criteria,

∑k
i=1 fi(ui).

Fig. 1. The CCA Algorithm
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Solution Approach The back-fitting algorithm, described
in Figure 1, may be used to solve the CCA problem
represented in Equations (1a) to (1d). A sufficiently large
constant weight parameter γ must be given to ensure the
solution satisfies the CCA constraint of Equation (1b) as
accurately as necessary.

2.2 Part II: Within Cluster Route Optimization

As in the VRP, this part of the BCP may be formulated as
a graph theory problem. Let G = (N,A) be an undirected
graph, where N is the set of nodes and A is the set of
edges. In our case, N = {0, 1, . . . , n} is an index set for
the n bales and the roadside storage node, denoted as
0. A = {(i, j) | i, j ∈ N ; i < j} represents the set of
(n+ 1)(n+ 2)/2 existing edges connecting the n bales and
the storage site.
A weight, qi, is assigned to each bale i, 1 ≤ i ≤ n (q0 = 0).
Each edge has an associated cost, cij > 0, of sending a
vehicle from node i to node j. The cij are assumed to
be symmetric and proportional to the Euclidean distance,
dij , between any two nodes, thus cij = cji ∝ dij , i, j ∈ N .
The collection process is to be carried out by a fleet of v
vehicles, v ≥ 1, with equal capacity, κ ≥ max{qi | 1 ≤ i ≤
n}. Notice that each vehicle may represent an autoloader
trailer or a loader accompanied by a transport wagon.
The problem is to determine the set of routes that min-
imize the total travel cost within each cluster identified
by the CCA algorithm in Section 2.1. As time is not
being considered, the number of vehicles does not effect
the problem solution as the routes are independent of one
another and can be completed either in series or in parallel.
The following are some additional constraints associated
with the problem:
i) The roadside storage node can only be visited at the

start and at the end of each route.
ii) All routes begin and end at the roadside storage node.
iii) No two routes visit the same bale.
iv) All bales are visited exactly once.
v) No vehicle can be loaded exceeding its maximum

capacity.
The decision vector is x = (xijr), where i, j ∈ N , r ∈ R =
{1, 2, . . . , τ} and τ = dn/κe is the number of routes needed
in order to pick up all of the n bales:

xijr =
{

1 if route r contains edge (i,j)
0 otherwise,

Here we assume that, with exception to the last route,
vehicles are loaded to their maximum capacity. The math-
ematical formulation of the route optimization part of the
BCP is as shown in Equations (2a) to (2e). Equation (2b)
is to make sure that each bale is assigned to exactly one
route. Equation (2c) states capacity constraints, so that
the sum of all bales collected in a route is less than or
equal to the loading capacity of the vehicle. Finally flow
constraints are shown in Equations (2d) and (2e) to ensure
that each route begins and ends at the roadside storage site
and that the inflow and outflow of edges must be equal for
all the nodes.

minimize
u

t∑
r∈R

∑
(i,j)∈A

cijxijr (2a)

subject to
∑
r∈R

∑
j∈N

xijr = 1 ∀i ∈ N (2b)

∑
i∈N

∑
j∈N

xijr × qj ≤ κ ∀r ∈ R (2c)

∑
j∈N

x0jr = 1 ∀r ∈ R (2d)

∑
i∈N

xijr =
∑
i∈N

xjir ∀j ∈ N, r ∈ R (2e)

Solution Approach The VRP is an NP-hard problem, as
is the route optimization part of the BCP, which explains
why most research efforts have focused on heuristic ap-
proaches. Various approaches to solve the classical VRP
have been investigated over the past decades. These range
from the use of pure optimization methods for solving
small size problems to the use of heuristics and meta-
heuristics that provide near-optimal solutions for medium
and large-size problems with complex constraints (Gracia
et al., 2013). We provide a simple, yet efficient heuris-

Step 1 Set k = min(κ, |N | − 1), where κ is the
capacity of the wagon . Compute the set of k − 1
nearest neighbors for each bale b ∈ N . Denote the
set of k − 1 nearest neighbors of bale b as Qb.

Step 2 Define the function

M(x, S) =
{

1 if x ∈ S
0 otherwise

For each bale, b ∈ N , compute
mb =

∑
i∈N

M(b,Qi)

Let b∗ = arg min
b
{mb : b ∈ N}.

Step 3 Among the sets
Q = {Qb | b∗ ∈ Qb, b ∈ N},

which contain b∗ select the one that has the short-
est cycle, including the roadside storage node, and
denote this set as Q∗.

Step 4 Update the set N by:
N = N \Q∗.

If N 6= ∅, then go to Step 1.

Fig. 2. Minimax Route Optimization Algorithm

tic, summarized in Figure 2, for identifying near-optimal
solutions for the second part (i.e., within cluster route
optimization) of the BCP. Our heuristic works by iden-
tifying the most isolated bale, b∗, based on the number of
times it is selected as a nearest neighbor, in Euclidean
distance, by its peers. For each bale that selects b∗ as
a nearest neighbor, we solve a corresponding TSP that
visits all of that bales κ − 1 nearest neighbors (which
must include b∗ by definition) as well as the storage node.
Recall that κ represents the capacity of the wagon. The
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Fig. 3. Obtained tours by Minmax-ROA for a problem
previously proposed by Grisso et al. (2007).

TSP with the shortest path is chosen as a route and the
corresponding bales are removed from the set of nodes, N .
The process is repeated until all bales have been picked
up. The proposed heuristic is called the minimax route
optimization algorithm (Minmax-ROA) because at each
iteration it identifies the most isolated bale and minimizes
the length of the route that picks up this bale as de-
scribed in Step 3 in Figure 2. The Minmax-ROA algorithm
reduces a very large CVRP into several much smaller
TSP problems. This is justified as the number of bales
to be collected are typically several orders of magnitude
larger than the capacity of the vehicles. In such case, the
proposed heuristic will dramatically reduce the complexity
of the problem and the computing time necessary to solve
it. There are almost no previous references to solving this
part of the BCP in the literature. Grisso et al. (2007) raised
a simple instance in which 34 bales scattered over a field
should be collected with a vehicle capacity of 6 bales. This
problem was subsequently solved by Gracia et al. (2013)
with a hybrid genetic algorithm yielding a 6% reduction in
the total travel distance. The solution found by our route
optimization algorithm also achieves a 6% improvement in
the travel distance. Figure 3 shows the solution obtained
by Minmax-ROA. Each tour is depicted with a different
color and the storage site is located at the origin.

3. APPLICATION

In order to test the proposed algorithm in a realistic
situation, it is required to develop a problem generator
able to produce problem instances from a certain set of
parameters. A problem will be defined by the capacity
constraint of the vehicle, κ, the location of roads and the
n exact locations of the bales in the field. As such, the
problem generator will need to simulate the number and
location of bales on the field.
If we consider a uniform yield (kg ha−1) throughout the
field, the distribution of bales follows a constant distance

pattern easily obtained using a Poisson process with rate
(or intensity):

λ = µ× 10000
γ × ω

, (3)

where λ is the average travel distance in meters (m) by
a baler until it packs a bale, µ is the mass of one bale
in kilograms (kg), γ is the production level of wheat (kg
ha−1) and ω is the working width of balers in meters. We
focus on farmlands in Western Canada, where the majority
of farmlands have been divided into quarter (square)
sections of approximately 64 hectares. The hectare is the
area of 10, 000 m2.
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Fig. 4. Distribution of wheat bales in a study area com-
posed of 9 sections. The sections are separated by
access roads represented as lines.
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Fig. 5. Bale clusters and roadside storage sites identified
by the CCA method.
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(a) Wagon capacity of 8 bales.
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(b) Wagon capacity of 15 bales.

0

800

1600

2400

3200

4000

4800

0 800 1600 2400 3200 4000 4800
width (m)

le
ng

th
 (

m
)

Cluster
1
2
3
4
5
6
7

(c) Wagon capacity of 35 bales.
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(d) Wagon capacity of 70 bales.

Fig. 6. The Minmax-ROA solutions for wagon capacities of 8, 15, 35 and 40 bales. Larger wagon capacities provided
more optimal solutions as the total distance traveled was found to decrease logarithmically with an increase in the
wagon capacity.
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Table 1. Model Parameter Values

Parameter Value Unit

Average yield 1500 kg ha−1

Working width of baler 6 m
Average mass of bales 450 kg
Wagon capacity 8, 15, 35, 70 bales

We consider a study area with a dimension of 4800 m ×
4800 m that is composed of 9 sections of 64× 4 = 192 ha
each. Figure 4 shows the distribution of bales in the study
area.
The input parameters for the first and second parts of the
BCP are comprised in Table 1, which includes information
on the average yield, bale, and machinery characteristics.
Different capacity constraints appear depending on the
wagon used. There is a wide range of either self-propelled
or pull-type bale wagons with different loading capacities
depending on the dimension of the bales. Four different
wagon capacities are considered in Table 1.
Regarding the first part of the BCP, we chose to divide
the bales into seven clusters. As such, we apply the CCA
algorithm with k = 7 in order to identify the bale clusters
and their corresponding roadside storage sites, which are
constrained to lie on the grid of roads shown in Figure
4. The seven bale clusters and corresponding constrained
centers identified by the CCA method are shown in Figure
5. Other choices for the number of clusters could be
considered during the optimization process, but this is
beyond the scope of this paper.
The optimal routes identified by the Minmax-ROA for the
four wagon capacities that were considered (8,15,35, and
70) are shown in Figure 6. A summary of the solution
obtained for each wagon capacity is shown in Table 2.
We implement our algorithms using the R programming
language (R Core Team, 2016). The optimal path for each
route is calculated using the TSP package in R (Hahsler
and Hornik, 2007). As expected, the number of routes
required decreases with an increase in the wagon capacity.
The travel distance also decreases as the wagon capacity
increases, but at a logarithmic rate. For this application,
the recommended wagon capacity is 35 bales as the rapid
decline in the total distance traveled by loaders and bale
wagons reaches a plateau at this value. We can also see
this lower plateau in the total travel distance by observing
the similarity between the route densities in Figure 6 (c)
and (d).

Table 2. Summary of Minmax-ROA Solutions

Wagon Capacity (bales) Number of Routes Distance (m)

8 229 525,855
15 124 341,712
35 55 221,361
70 30 184,562

4. CONCLUSION

We present a two-part optimization approach for solving
the bale collection problem (BCP). The first part of
our approach is to identify the optimal locations for the
roadside storage sites where bales are to be temporarily

piled for future transport to their final destination, such as
a silo, silage bunker or barn. We assume that the number
of roadside storage sites is given, but their locations are
to be optimized. This results in a constrained cluster
analysis problem as the storage sites must be located on
the roadside. This first part of the BCP is solved using
a new constrained k-means cluster analysis algorithm
(CCA). This is not to be confused with previous work
on constrained k-means procedures where the constraints
consist of groups of points that must be clustered together.
On the other hand, our constraints pertain to the locations
of the cluster centers, which must be situated on the
roadside. The optimization of the number of roadside
storage sites should be determined to minimize the total
travel distance in the second part of the BCP problem.
This will be considered in future research.
The second part of our approach to solving the BCP
is to identify the optimal collection routes for bringing
the bales within each cluster to their corresponding road-
side storage site, which have already been determined by
the CCA algorithm. We developed an algorithm, called
the Minmax-ROA, which approximately solves this NP-
complete problem by sequentially identifying the most
isolated bales and optimizing their collection routes. The
Minmax-ROA heuristic was shown to give comparable
results in a test case proposed by Grisso et al. (2007),
which was subsequently solved by Gracia et al. (2013)
with a hybrid genetic algorithm yielding a 6% reduction
in the total travel distance. The solution identified by the
Minmax-ROA algorithm achieves the same improvement.
The potential benefits of our approach to solving the
BCP is its scalability and ease of implementation, which
allow it to tackle much larger problems. The Minmax-ROA
algorithm implements a divide and conquer strategy that
breaks down a complex CVRP into several smaller TSPs
that can be approximately solved using well-known and
efficient heuristic procedures.
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