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Abstract— We propose to use noncausal transfer functions to
model the spatial behavior of cross-directional (CD) processes
so as to circumvent the high-dimensionality of a causal transfer
function. This noncausal representation is shown to have
a causal-equivalent form. We prove that the covariance of
maximum likelihood estimate of the causal-equivalent model
asymptotically converges to that of the noncausal model. This
result is then used to design optimal inputs in closed-loop
for the original noncausal model of the CD process. An
illustrative example is provided to highlight the advantage
of using optimally designed excitation signal for CD closed-
loop identification over white noise excitation or the current
industrial practice of spatial bump excitation.

I. INTRODUCTION

The cross-directional (CD) process of a paper machine
refers to the direction perpendicular to the movement of
paper sheet. It is a large-scale process involving hundreds
of actuators and measurement bins, which brings significant
challenges to the relevant CD system identification and
controller design [1]. A popular control strategy employed
on the CD process is model predictive control (MPC) that
requires a high-quality process model. However, operation
conditions of paper machines may vary over time due to
factors such as grade change, and in such situations the
initial process model may no longer be suitable to repre-
sent the underlying system dynamics [2]. As a result, the
MPC performance often deteriorates. Thus once the quality
of employed process model degrades we need to initiate
an identification experiment to update the process model,
preferably in the closed-loop for the sake of normal operation
of paper machines [3], [4].

In terms of system identification, whether open-loop or
closed-loop, it is well-known that a good excitation signal
is necessary to attain a reliable and precise model [6].
Thus designing the excitation signal in an optimal way
has received extensive attention in the last few decades.
A number of well-known strategies have been proposed
on this topic [7], [8]. More recent advances include using
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graph theory to address the input design problem for closed-
loop MPC systems in time domain with probabilistic bound
constraints on input and output [9], [10]. With regard to
optimal input design of multi-input-multi-output (MIMO)
and ill-conditioned systems, classical results are referred to
[11]–[14]. However, for the CD process, a high-dimensional
MIMO and ill-conditioned process, most existing input de-
sign research focuses on the open-loop case, see [15]. The
main drawback of open loop input design is the resultant
production loss as normal operations of process risk being
interrupted. Results on closed-loop optimal input design for
CD processes are scarce, with the current industrial practice
of using spatial-bump-temporal-PRBS signals as excitations
for closed-loop identification (termed as “bump excitations”
in this paper) [16].

In this work, we design excitation signals for closed-loop
CD process with optimal input design techniques. In particu-
lar, we focus on input design for the steady-state CD process
model, in light of the fact that most of the time the CD
process operates at steady-state. The major challenge is in
representing the closed-loop CD process with a parsimonious
parametric model to avoid having to use high dimensional
transfer function models. Inspired by [17], we propose to
develop a scalar noncausal model for closed-loop CD process
to solve this problem. Furthermore, we demonstrate that one
can always find a causal model that is equivalent to the
noncausal model in the sense of asymptotic output spectra. It
is further shown that the maximum likelihood estimate and
parameter covariance matrix of the causal-equivalent model
converge to those of the noncausal model asymptotically with
probability one. In this sense, the optimal excitation signal
can then be designed based solely on the causal model.

II. CD PROCESSES AND THE STEADY-STATE
MODEL

A. Open-loop Steady-state CD Process Model

Consider the following square CD process at steady-state

yss = Gssuss + vss, (1)

where yss ∈ Rm and uss ∈ Rm represent the steady-state
controlled variable (CV) and manipulated variable (MV) pro-
files, respectively. We denote m as the number of measure-
ment boxes along the cross direction. vss ∈Rm is the steady-
state output disturbance. Gss ∈Rm×m is the steady-state gain
matrix and it has circulant columns (Toeplitz-structured),
where each column is indeed the sampled impulse response



of a single actuator along the CD at steady-state. We impose
the following assumption on Gss matrix.

Assumption 1: All actuators of the CD process have iden-
tical and symmetric impulse response coefficients in the
spatial direction at steady-state. The columns of Gss matrix
are indeed sampled version of these responses.

We further re-write the spatial disturbance as vss = φess,
where ess is white noise in spatial direction and φ ∈Rm×m is
the steady-state noise model. For simplicity we assume that
φ has a structure similar to that of Gss.

B. Closed-loop Steady-state CD Process Model

Designing closed-loop dither signals requires an explicit
expression of the controller in the formulation of input
design objective function. It is well-known that CD MPC
may display time-varying or even nonlinear dynamics if
any constraint is active. Thus input design for closed-loop
MPC systems involving active constraints is non-trivial. To
simplify this problem we introduce the following assumption.

Assumption 2: The MPC is assumed to operate in a linear
mode with no active constraints.

With Assumption 2, the closed expression of MPC is
shown to be [3]

Kss =−Q−1
3 αKGssQ1, (2)

where Q1 is the weight matrix in MPC objective function
penalizing the deviation of CV profile from its set-point. Q3
is the corresponding weight matrix to penalize the offset of
steady-state MV from its target. αK is a constant determined
from the dynamic model of actuators. In practice the weight-
ing matrices Q1 and Q3 are often chosen to be diagonal.
Assuming Q1 and Q3 to be diagonal, the controller Kss then
has a matrix structure similar to that of gain matrix Gss. The
structural similarity between Kss and Gss will be used in the
derivations below.

Remark 1: While Assumption 2 seems to be a restrictive
assumption in practical implementation of our algorithm,
industrial experience reveals that a well-tuned CD MPC
normally operates without active constraints. We stress that
our method in this paper also works when Assumption 2
is relaxed to have a fixed active set, whereby the active
constraint can be explicitly considered [5]. The extension
to incorporate varying constraints will be our future work.

Combining (1) and (2), we can easily arrive at the follow-
ing closed-loop CD process

yss = (I +GssKss)
−1 GssKssr+(I +GssKss)

−1 vss, (3)

uss = (I +KssGss)
−1 r− (I +KssGss)

−1 Kssvss, (4)

where r ∈Rm is the spatial excitation signal to be designed.

C. Spatial Optimal Input Design for the CD Process

When it comes to spatial optimal input design, the pa-
rameters of interest here are those in the gain matrix Gss
(or more specifically, the parameters in a column of Gss).
However, optimal input design directly based on closed-
loop model (3)-(4) is non-trival due to the large input-output
dimensions as well as the large number of parameters in

Gss. To circumvent this problem, we propose to use a scalar
transfer function along the spatial coordinate to represent
the steady-state response of CD actuators. In this sense, the
original optimal input design aimed for the MIMO CD model
can be re-formulated into that for the scalar spatial model,
which significantly reduces the complexity. However, the
disadvantage is that this scalar spatial transfer function has
to be noncausal to capture the responses of actuators on both
sides (see Fig. 1), analogous to the ‘past’ and ‘future’ in the
conventional time coordinate. We provide theoretical basis
showing that the noncausal model can be further converted
to a causal-equivalent model such that the input design can
be performed based on this causal model.

III. CAUSAL SCALAR TRANSFER FUNCTION
REPRESENTATION OF THE CD PROCESS

A. Noncausal Scalar Model of the Closed-loop CD Process

From the aforementioned structure (neglecting the asym-
metric responses of actuators near the sheet edge) of Gss
as well as Assumption 1, one is readily able to extract a
scalar noncausal finite impulse response (FIR) model from
any single column of Gss to represent the spatial impulse
response of an actuator

g(λ ,λ−1) = g−nλ
−n + . . .+g0 + . . .+gnλ

n, (5)

where n < m is a truncated index representing significant
coefficients. The positive and negative powers of λ denote
the anti-causal and causal shift. The gi, i = −n, . . . ,n, are
spatial impulse response coefficients and in general symme-
try of these coefficients is enforced, i.e., gi = g−i. Since in
most cases the noncausal FIR model (5) has a high order
(i.e., n is large), a parsimonious noncausal transfer function
is necessary to simplify this model. First, we present the
following assumption.

Assumption 3: The complex trigonometric polynomial (5)
has real and symmetric coefficients. Moreover, this polyno-
mial is positive at any points on the unit circle |λ |= 1.

With this assumption it follows from the Fejér-Riesz
Theorem that we can factorize g(λ ,λ−1) as

g−nλ
−n + . . .+g0 + . . .+gnλ

n = M(λ )M(λ−1), ∀ω, (6)

where λ = e jω . Here M(λ−1) has the following expression

M(λ−1) = m0 +m1λ
−1 + . . .+mnλ

−n,

where mi, i = 1, . . . ,n, are the coefficients. An immediate ob-
servation is that the frequency response of the left-hand side
of (6) is real and non-negative at any frequency, which places
certain restrictions on the scope of possible spatial impulse
response shapes that we may investigate. However, industrial
experience shows that most actual actuator response shapes
are able to satisfy this condition. The relationship (2) affirms
that if Gss satisfies (6) then so does Kss.

After obtaining the causal FIR model M(λ−1), the next
step would be to find a parsimonious transfer function
model (e.g. output-error model) to represent M(λ−1). This
process can be accomplished from the system identification



toolbox in Matlab and the original noncausal g(λ ,λ−1) is
approximated by ḡ(λ ,λ−1) as follows

ḡ(λ ,λ−1) =
B(λ )B(λ−1)

A(λ )A(λ−1)
, (7)

B(λ−1) = b0 +b1λ
−1 + . . .+bnbλ

−nb , (8)

A(λ−1) = 1+a1λ
−1 + . . .+anaλ

−na , (9)

where na and nb are the orders of B(λ−1) and A(λ−1),
respectively. In a similar fashion, the noncausal transfer
function form of the controller is assumed to be

k̄(λ ,λ−1) =
F(λ )F(λ−1)

E(λ )E(λ−1)
, (10)

F(λ−1) = f0 + f1λ
−1 + . . .+ fn f λ

−n f , (11)

E(λ−1) = 1+ e1λ
−1 + . . .+ eneλ

−ne , (12)

where ne and n f are the orders of E(λ−1) and F(λ−1),
respectively. From (7)-(12), the original high-dimensional
MIMO steady-state closed-loop model (3)-(4) can be re-
placed by scalar but noncausal transfer functions1

y(x) =
ḡ

1+ ḡk̄
r(x)+

1
1+ ḡk̄

v(x), (13)

u(x) =
1

1+ ḡk̄
r(x)− k̄

1+ ḡk̄
v(x), (14)

where x stands for the spatial coordinate. Note that the input
and output sensitivity functions have the same noncausal
transfer function representation as shown above.

B. Causal Equivalent Closed-loop Models

The closed-loop scalar noncausal model of the CD process
(13)-(14) is still not in a form convenient for traditional opti-
mal input design algorithms. In this subsection we develop a
method to find causal-equivalent models for the noncausal
transfer functions such as ḡ(λ ,λ−1). First, the following
Lemma is necessary.

Lemma 1: Suppose that ḡ1(λ ,λ
−1) and ḡ2(λ ,λ

−1) satisfy
the conditions in Assumption 3. Then the sum ḡ1(λ ,λ

−1)+
ḡ2(λ ,λ

−1) also has a factorization as (6).
Proof: Since the conditions in Assumption 3 apply to

polynomials ḡ1(λ ,λ
−1) and ḡ2(λ ,λ

−1), we have

ḡ1(e jω ,e− jω) ≥ 0, ∀ω,

ḡ2(e jω ,e− jω) ≥ 0, ∀ω,

Thus it follows that

ḡ1(e jω ,e− jω)+ ḡ2(e jω ,e− jω) ≥ 0, ∀ω. (15)

Besides, the coefficient sequence of (15) is real and sym-
metric. From the Fejér-Riesz Theorem there always exists
an M(λ ) such that (6) is satisfied.

Defining S̄ = 1
1+ḡk̄ , from (13)-(14), we have

S̄ =
A(λ )A(λ−1)E(λ )E(λ−1)

A(λ )A(λ−1)E(λ )E(λ−1)+B(λ )B(λ−1)F(λ )F(λ−1)
.

(16)

1In the sequel, we will omit the subscript and use the argument x to
indicate the steady-state input and output sequence.

From Lemma 1, it follows that the denominator of (16)
can be factorized to be the product of a causal FIR filter
and its anti-causal form. Therefore, the closed-loop transfer
functions (13)-(14) can be simplified as

y(x) = S̄1(λ ,λ
−1)r(x)+ S̄2(λ ,λ

−1)v(x), (17)
u(x) = S̄2(λ ,λ

−1)r(x)− S̄3(λ ,λ
−1)v(x), (18)

where S̄i(λ ,λ
−1), i = 1,2,3, has a structure similar to that of

(7) and (10). Further notice that φ can also be represented
by a noncausal transfer function as is assumed in the pre-
vious sections. In other words, the spatial noise vss has the
following expression

v(x) = h̄(λ ,λ−1)e(x) =
D(λ )D(λ−1)

C(λ )C(λ−1)
e(x), (19)

where {e(x)} is a spatial white noise sequence. To find a
causal-equivalent transfer function for (17)-(19), we establish
the following theorem.

Theorem 1: Consider a stochastic process with the output
sequence {y(x),x = 1, . . . ,m} generated according to the
following noncausal Box-Jenkins model

y(x) =
M(λ )M(λ−1)

N(λ )N(λ−1)
r(x)+

R(λ )R(λ−1)

S(λ )S(λ−1)
e(x), (20)

where {e(x),x = 1, . . . ,m} is a Gaussian white noise se-
quence. The polynomials with arguments λ−1 and λ are the
causal and anti-causal parts, respectively. Assume that all
polynomials have no zeros on the unit circle and are mini-
mum phase. Then there exist causal polynomials M̃y(λ

−1),
Ñy(λ

−1), R̃y(λ
−1), S̃y(λ

−1) and a white noise sequence
{ẽy(x)} as well as a stochastic sequence {ỹ(x)} which has
the same spectra as {y(x)} such that,

ỹ(x) =
M̃y(λ

−1)

Ñy(λ−1)
r(x)+

R̃y(λ
−1)

S̃y(λ−1)
ẽy(x). (21)

Proof: Multiplying both sides of (20) by using
N(λ )N(λ−1)S(λ )S(λ−1), we obtain

N(λ )N(λ−1)S(λ−1)S(λ )y(x) = M(λ )M(λ−1)S(λ )

S(λ−1)r(x)+N(λ )N(λ−1)R(λ )R(λ−1)e(x).
(22)

Define the roots of causal polynomials M(λ−1), N(λ−1),
R(λ−1), S(λ−1) to be, respectively, αi, βi, γi and δi. Let

πM = ∏
i

λ−1−αi

λ −αi
, πN = ∏

i

λ−1−βi

λ −βi
,

πR = ∏
i

λ−1− γi

λ − γi
, πS = ∏

i

λ−1−δi

λ −δi
.

Notice that N(λ )N(λ−1)πN = N2(λ−1) and the same also
holds for M(λ ), R(λ ), and S(λ ). Multiplying both sides of
(22) by πMπS, after some manipulations, we have

N2(λ−1)S2(λ−1)ỹ(x) =

M2(λ−1)S2(λ−1)r(x)+R2(λ−1)ẽy(x), (23)

where ỹ(x) = πM
πN

y(x), ẽy(x) =
πMπS
πN πR

e(x). Since πM , πN , πR
and πS are all-pass filters, {ẽy(x)} is a Gaussian white noise



sequence with the same spectra as {e(x)} but may correspond
to different realizations. Besides, {ỹ(x)} has the same spectra
as {y(x)}. Therefore, (21) is verified by pairing M̃(λ−1) =
M2(λ−1) and so on with (23).

Remark 2: From Theorem 1 one may interpret the equiv-
alence between {ỹ(x)} and {y(x)} in terms of the spectra,
although realizations might be different. However, this equiv-
alence greatly facilitates the maximum likelihood estimation
for the original noncausal model by reducing it into a causal-
equivalent form. The rationale for performing identification
in this manner has been explained in [17] for an ARX model.
The conclusion is that the log-likelihood function of the
noncausal model converges to that of the causal model with
probability one as the sample number tends to infinity. This
result can also be extended to the noncausal Box-Jenkins
model in (20).

Similarly, the input signal u(x) in (18) can also be repre-
sented through causal filters

ũ(x) =
M̃u(λ

−1)

Ñu(λ−1)
r(x)+

R̃u(λ
−1)

S̃u(λ−1)
ẽu(x), (24)

where {ũ(x)} and {u(x)} have the same spectra. The equa-
tions (21) and (24) are necessary for the optimal input design
in the sequel.

C. Covariance Matrix Equivalence of the Causal and Non-
causal Model Parameter Estimates

It is well-known that if the white noise is Gaussian
distributed, the prediction error method with properly chosen
criterion coincides with the maximum likelihood estimation.
In [17], it is shown that the log-likelihood function of the
noncausal ARX model and that of the corresponding causal
ARX model converge to the same value as the sample num-
ber tends to infinity. In this subsection we will demonstrate
a similar statement for closed-loop data.

Theorem 2: Consider the following noncausal process
model (θ is the parameter in a compact set Ω)

y(x) = ḡ(λ ,λ−1,θ)u(x)+ h̄(λ ,λ−1,θ)e(x), (25)

where ḡ is defined in (7)-(9) and h̄ is defined in (19). e(x)
is Gaussian white noise. Suppose that the data is generated
in closed-loop with controller (10)-(12) and that all relevant
transfer functions are uniformly stable. Denote L m

y (y) as
the log-likelihood function of the noncausal model (25)
and L m

ỹ (ỹ) as the log-likelihood function of the causal-
equivalent model of (25) obtained similarly as (21). Then,
as m→ ∞ (m is the spatial sample number, i.e., the number
of measurement bins),

sup
θ∈Ω

|L m
y (y)−L m

ỹ (ỹ)| w.p.1−−−→ 0, (26)

sup
θ∈Ω

∥∥∥∥dL m
y (y)

dθ
−

dL m
ỹ (ỹ)

dθ

∥∥∥∥ w.p.1−−−→ 0. (27)

Proof: The proof of (26) follows along Proposition 3
in [17] and the proof for (27) is shown in Appendix.

Remark 3: Theorem 2 implies that both the log-likelihood
function and its derivative with respect to the parameter θ

obtained from the noncausal and causal-equivalent models
are identical asymptotically. Therefore, we can conclude that
the parameter covariances from these two schemes coincide,
and hence we may perform the optimal input design based
solely on the causal-equivalent model.

IV. CLOSED-LOOP OPTIMAL INPUT DESIGN

In this section closed-loop optimal input design for the
steady-state CD process is investigated. As mentioned above
we can accomplish this task with the causal-equivalent
representation of CD process. Note that in practice the noise
model parameters are of less interest and thus we split the
parameter θ as θ = [ρT ηT ]T , where ρ is the process model
parameter and η is the noise model parameter. For optimal
input design our objective is minimizing the covariance of ρ

by selecting the optimal excitation signal. From Theorem 2
the parameter covariance of ρ , Pρ , is expressed as

Pρ ∼
1
m

[
1

2πλ0

∫
π

−π

1
|h̃(e jω ,η0)|2

∂ g̃(e jω ,ρ0)

∂ρ

Φũ(ω)
∂ g̃T (e− jω ,ρ0)

∂ρ
dω

]−1

,

(28)

where λ0 is the variance of noise ẽy(x). g̃ and h̃ are
the causal equivalent forms of ḡ and h̄, respectively. The
input spectrum Φũ(ω), according to (24), is related to the
excitation spectrum Φr(ω) via

Φũ(ω) =

∣∣∣∣M̃u(e− jω)

Ñu(e− jω)

∣∣∣∣2 Φr(ω)+

∣∣∣∣ R̃u(e− jω)

S̃u(e− jω)

∣∣∣∣2 λ0. (29)

The closed-loop optimal input design can be formulated
as minimizing a function of the parameter covariance Pρ

subject to a set of constraints, e.g., input and output power
constraints,

min
Φr(ω)

f0(Pρ(Φr(ω))) (30)

s.t.
1

2π

∫
π

−π

Φu(ω)dω ≤ cu, (31)

1
2π

∫
π

−π

Φy(ω)dω ≤ cy, (32)

where cu and cy are the power limits on input and output
signals. The constraints (31)-(32) can be written in terms of
the design variable Φr(ω) by (29) and (21), respectively. As
this optimization problem is still infinite-dimensional (since
Φr(ω) is a continuous function of ω), a technique known as
finite dimensional parameterization [18] can be employed to
reduce it into finite-dimensional. Specifically, Φr(ω) can be
parameterized by the definition of a spectrum

Φr(ω) = ∑
mc
k=−mc

cke− jωk ≥ 0, ∀ω, (33)

where ck, k = −mc, . . . ,mc, are the parameters, and mc is
the selected number of parameters. With (33) the original
optimization problem can be cast into one with finite number
of parameters. Note that the non-negativity constraint on
the parameterized spectrum (33) at any frequency has to be
satisfied while searching for the optimal ck. This requirement



can be fulfilled by using the KYP lemma and constructing
a controllable and observable state-space realization for
the spectrum [18]. After these modifications the resulting
optimization problem is convex (choose f0(·) to be convex)
and can be readily solved by off-the-shelf solvers such as
the CVX toolbox.

Remark 4: Note that the aforementioned optimal input
design only considers the power constraints on the input and
output (31)-(32). However, in practice, the hard constraints
on CVs and MVs make more sense and this is still an
open problem for frequency-domain optimal input design.
Besides, specific to the CD process, the second-order bend-
ing constraints preventing ‘picketing’ on actuators are also
important. These practical constraints are beyond the scope
of this paper and will be investigated in future work.

Remark 5: A common issue for optimal input design is
that the covariance matrix depends on the true parameter
values, as shown in (28), which may be unaccessible in
practice. One remedy is the adaptive input design scheme:
specifying an initial parameter value to design an optimal
input signal, updating parameter estimates via identifications
and using the updated parameter value to design a new
optimal input. This process iterates until it converges.

V. CASE STUDY

In this section we use a simulation example to validate
the proposed CD process modeling and closed-loop optimal
input design methods. In particular, we would compare the
effect of optimally designed input on parameter estimates
with that of bump excitation signal that is currently employed
in the industry [16].

In practice, the spatial response shape of a single actuator
is a nonlinear function [3] with four parameters γ,ξ ,β ,α ,
representing the gain, width, divergence and attenuation,
respectively. In this example, these parameters are specified
with values, respectively, γ = 0.3802, ξ = 268.6414 mm,
β = 0.10, α = 3.5. The response shape under impulse signal
of amplitude 5 is illustrated as the red curve (upper plot) in
Fig. 1. The CD process has 222 actuators and measurement
bins. The controller is chosen to be CD-MPC with prediction
horizon 25 samples and control horizon 5 samples (sampling
interval is 12 seconds). We choose weighting matrices in the
cost function as Q1 = 0.4I and Q3 = 0.1667I. The parameter
αK in (2) is computed to be 12.3212. From Section III one
is able to obtain noncausal scalar models for the CD process
and the controller, respectively. The impulse response curves
of these noncausal models are shown in Fig. 1 in the blue
dash-dotted curves. Note that for simplicity we have chosen
nb = n f = 1, na = ne = 2. Higher order models improve the
quality of estimates but also increase the computational cost
in designing the optimal input. The noise variance is chosen
to be 0.1 with noise model φ = I (output-error structure). Fig.
2 shows the optimal spectrum based on causal-equivalent
models with cu = 50. Notice that small process gain (the
causal-equivalent model has even smaller gain) as in this case
requires a large excitation signal to achieve a good signal-
to-noise ratio.
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Fig. 1. The impulse response of a single actuator (red solid line) and the
impulse response of the estimated noncausal transfer function (blue dash-
dotted line).
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Fig. 2. Spectrum of the optimal input based on causal-equivalent model
of the CD process.

To make a fair comparison between the optimal and bump
excitations, we set a hard constraint ±10 on the amplitude
of excitation signals. For the optimally designed input, if
any part of its amplitude violates this constraint, we set that
part at the corresponding bound. For the bumped signal, the
amplitudes of bumps alternate between −10 and 10. In order
to further show the optimality of designed input, we generate
another excitation signal that is a white noise sequence
with the same variance as the optimal input. For each
excitation signal we perform 100 Monte-Carlo simulations
and a process model is identified in each simulation. Fig. 3
shows the impulse responses of estimated models under these
three excitation signals. One can see that estimates under
the optimal input have the smallest variance while estimates
under the bumped signal show the largest variance. Specif-
ically, the averaged errors of estimated impulse responses
relative to the true response are shown to be 0.0643, 1.3344
and 0.4479, respectively, for the optimal input, bumped input
and white noise input. Thus our optimal input outperforms
the bump excitation signal and white noise signal (with the
same variance) in terms of the identification performance.

VI. SUMMARY

We developed an approach to represent the closed-loop
steady-state CD process model with noncausal scalar transfer
functions. The advantage of using noncausal models is that it
circumvents the problem of large dimensions associated with
MIMO representations of CD processes. We then show that
these noncausal transfer functions can be further represented
by spectrally equivalent causal transfer functions. A closed-
loop optimal input design framework is proposed based on
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Fig. 3. The impulse responses of the estimated process model in the
closed-loop under the optimally designed input (upper plot), the bumped
input (middle plot), and the white noise input (bottom plot) in 100 Monte-
Carlo simulations.

these causal-equivalent models. An example is provided to
validate the proposed approaches and demonstrate the advan-
tage of optimal input in system identification performance
over the industrial practice of using bump excitation as well
as white noise excitation.

APPENDIX

We outline the proof for (27) in Theorem 2. First the
following lemma is necessary.

Lemma 2: Consider a set of uniformly stable causal or
noncausal filters G(λ ,θ),θ ∈ Ω, and H(λ ,θ),θ ∈ Ω. De-
fine u(x), x = 1, . . . ,m, as a bounded signal sequence, and
e(x), x = 1, . . . ,m, as a sequence of Gaussian white noise
with zero mean and variance σ2. The signal s(x), x =
1, . . . ,m, is generated via

sθ (x) = G(λ ,θ)u(x)+H(λ ,θ)e(x). (34)

Then as m → ∞, the sample variance of sx(θ) converges
uniformly in probability to the ensemble variance

sup
θ∈Ω

∥∥∥∥∥ 1
m

m

∑
x=1

sθ (x)sT
θ (x)−

1
m

m

∑
x=1

Esθ (x)sT
θ (x)

∥∥∥∥∥→ 0,w.p.1.

(35)
Note that (35) is an extension of Theorem 2B.1 in [6] to
noncausal models. The proof follows a similar line and
is thus omitted here. Based on Lemma 2, as m→ ∞, the
following statements hold

•
dL m

y (y,θ)
dθ

converges uniformly w.r.t. θ w.p.1;

•
dL m

ỹ (ỹ,θ)
dθ

converges uniformly w.r.t. θ w.p.1.

The reason is that both
dL m

y (y)
dθ

and
L m

ỹ (ỹ,θ)
dθ

can similarly be
considered as generated from uniformly stable filters. Thus
from Lemma 2 the above statements hold. On the other hand,
from the proof of (26) in [17], one can see that both L m

y (y)
and L m

ỹ (ỹ,θ) converge uniformly to the same value, denoted

as σ2(θ). Based on Theorem 7.17 in [19], with the above
statements, we have, as m→ ∞,

sup
θ∈Ω

∥∥∥∥dL m
y (y,θ)
dθ

− dσ2(θ)

dθ

∥∥∥∥→ 0, w.p.1, (36)

sup
θ∈Ω

∥∥∥∥dL m
ỹ (ỹ,θ)

dθ
− dσ2(θ)

dθ

∥∥∥∥→ 0, w.p.1. (37)

From the Triangle Inequality, the result (27) follows. It
should be pointed out that in this proof the ‘uniformity’ of
the convergence in probability is a necessary condition for
the results to hold.
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