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Introduction
The paper machine

I Transforms a slurry of pulp fiber into a uniform sheet of paper
through a series of dewatering and pressing operations.

I Can be over 100 m long in the machine-direction (MD), producing
a sheet over 10 m wide in the cross-direction (CD) at rates
exceeding 30 m/s [1].

Figure 1: Schematic of a Fourdrinier paper machine [3]
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Introduction
CD actuators

I Spatial variations are controlled by CD actuators distributed across
the width of the paper machine.

I Headbox dilution profiling valves and induction heating profilers are
two primary CD actuators.

Figure 2: Headbox dilution valves (top) and induction profilers (bottom) 2 / 15



Cross-Directional Process
Steady-state model
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Figure 3: Closed-loop control system

yss = Gssuss + Φess , (1)
where each column of Gss ∈ Rm×m is the sampled impulse response (IR)
of a single actuator and all actuators are assumed to have identical and
symmetric IR coefficients.

Kss = −Q−1
3 αK GssQ1, (2)

where Q1 and Q3 are weighting matrices that penalize deviation from
set-point and steady-state MV offset, respectively.
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Cross-Directional Process
Closed-loop

I MPC (KSS) assumed to operate linearly with no active constraints.
I We have the following closed-loop CD process:

yss = (I + GssKss)−1 GssKss r + (I + GssKss)−1 vss , (3)
uss = (I + KssGss)−1 r − (I + KssGss)−1 Kssvss , (4)

where r ∈ Rm is the spatial excitation signal to be designed.
I Challenge: Large input-output dimensions and large number of

parameters in Gss .
I Solution: Use a noncausal scalar transfer function to represent

steady-state CD actuator response and reduce complexity.
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Causal Scalar Representation
Noncausal Scalar Model

I Scalar noncausal finite IR (FIR) model from any column of Gss
represents spatial impulse response of an actuator, i.e.,

g(λ, λ−1) = g−nλ
−n + . . .+ g0 + . . .+ gnλ

n, (5)

where n < m is a truncated index representing significant
coefficients and gi = g−i .

I n is large so a parsimonious noncausal transfer function is used to
approximate g(λ, λ−1) as

ḡ(λ, λ−1) = B(λ)B(λ−1)
A(λ)A(λ−1) , (6)

B(λ−1) = b0 + b1λ
−1 + . . .+ bnbλ

−nb , (7)
A(λ−1) = 1 + a1λ

−1 + . . .+ anaλ
−na , (8)

where na and nb are the orders of A(λ−1) and B(λ−1), respectively.
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Causal Scalar Representation
Noncausal Scalar Model

I Similarly for k(λ, λ−1) we have

k̄(λ, λ−1) = F (λ)F (λ−1)
E (λ)E (λ−1) , (9)

F (λ−1) = f0 + f1λ
−1 + . . .+ fnf λ

−nf , (10)
E (λ−1) = 1 + e1λ

−1 + . . .+ eneλ
−ne , (11)

where ne and nf are the orders of E (λ−1) and F (λ−1), respectively.
I High dimensional MIMO steady-state closed-loop model replaced by

scalar noncausal transfer functions, i.e.,

y(x) = ḡ
1 + ḡ k̄

r(x) + 1
1 + ḡ k̄

v(x), (12)

u(x) = 1
1 + ḡ k̄

r(x)− k̄
1 + ḡ k̄

v(x), (13)

where x stands for the spatial coordinate.
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Causal Scalar Representation
Causal Equivalent Model

I Consider the following noncausal Box-Jenkins model:

y(x) = M(λ)M(λ−1)
N(λ)N(λ−1) r(x) + R(λ)R(λ−1)

S(λ)S(λ−1) e(x), (14)

where {e(x), x = 1, . . . ,m} is a Gaussian white noise sequence.
I Assuming all polynomials have no zeros on the unit circle and are

minimum phase, there exist causal polynomials M̃y (λ−1), Ñy (λ−1),
R̃y (λ−1), S̃y (λ−1), a white noise sequence {ẽy (x)} and a stochastic
sequence {ỹ(x)} with the same spectra as {y(x)} such that,

ỹ(x) = M̃y (λ−1)
Ñy (λ−1)

r(x) + R̃y (λ−1)
S̃y (λ−1)

ẽy (x), (15)

where N(λ)N(λ−1)πN = N2(λ−1), Ñ(λ−1) = N2(λ−1) and the
same also holds for M(λ), R(λ), and S(λ).
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Causal Scalar Representation
Causal Equivalent Model

I We have ỹ(x) = πM
πN

y(x), ẽy (x) = πMπS
πNπR

e(x) where πN =
∏

i
λ−1−βi
λ−βi

and πM , πR and πS are defined in a similar fashion.
I The input signal u(x) can also be represented through causal filters,

i.e.,

ũ(x) = M̃u(λ−1)
Ñu(λ−1)

r(x) + R̃u(λ−1)
S̃u(λ−1)

ẽu(x), (16)

where {ũ(x)} and {u(x)} have the same spectra.
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Causal Scalar Representation
Covariance Equivalence

I Consider the noncausal model (θ is the parameter in compact set Ω)

y(x) = ḡ(λ, λ−1, θ)u(x) + h̄(λ, λ−1, θ)e(x), (17)

where e(x) is Gaussian white noise and data is generated in
closed-loop and all relevant transfer functions are uniformly stable.

I Then, as m→∞ (m is the number of measurement bins),

sup
θ∈Ω
|Lm

y (y)− Lm
ỹ (ỹ)| w.p.1−−−→ 0, (18)

sup
θ∈Ω

∥∥∥∥dLm
y (y)
dθ −

dLm
ỹ (ỹ)
dθ

∥∥∥∥ w.p.1−−−→ 0, (19)

where Lm
y (y) is the noncausal log-likelihood function and Lm

ỹ (ỹ) is
the causal-equivalent log-likelihood function [4].

I Therefore, the parameter covariances coincide and we may perform
optimal input design based on the causal-equivalent model.
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Optimal Input Design
I Split θ as θ = [ρT ηT ]T and focus on process model parameters (ρ).
I Objective: minimize a function of the parameter covariance of ρ,

Pρ, subject to input and output power constraints, i.e.,

min
Φr (ω)

f0(Pρ(Φr (ω))) (20)

s.t. 1
2π

∫ π

−π
Φu(ω)dω ≤ cu, (21)

1
2π

∫ π

−π
Φy (ω)dω ≤ cy , (22)

where cu and cy are the power limits on input and output signals.
I Finite dimensional parameterization of Φr , i.e.,

Φr (ω) =
∑mc

k=−mc
cke−jωk ≥ 0, ∀ω, (23)

where ck , k = −mc , . . . ,mc , are the parameters, and mc is the
selected number of parameters [5].

I Choosing f0(·) to be convex the resulting optimization is convex.
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Case Study

I Spatial actuator response is nonlinear with four parameters, i.e.,
gain (γ), width (ξ), divergence (β), attenuation (α) [2].

I Comparing three methods
1. Optimal input design: causal-equivalent model, excitation

amplitude constrained to ≤ ±10.
2. Bump excitation: amplitudes alternate between +10 and -10.
3. White noise: designed with the same variance as the optimal

input.
I For computational efficiency model orders are specified as

nb = nf = 1 and na = ne = 2.
I Process model is identified in 100 Monte-Carlo simulations.
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Case Study
I High order models can improve accuracy with a computation cost.

Figure 4: IR of a single actuator (red) and noncausal estimate (blue)
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Case Study

I Large spectrum amplitude in the cross-over frequency enables better
excitation.

Figure 5: Optimal input spectrum from causal-equivalent model
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Case Study

Figure 6:
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Summary

I Averaged errors (ε̄)
1. Optimal input design: ε̄ = 0.0643
2. Bump excitation: ε̄ = 1.3344
3. White noise: ε̄ = 0.4479

I Noncausal model: circumvents large dimension of MIMO CD
process.

I Causal-equivalent modeling: facilitates traditional optimal input
design methods.
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