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Introduction

The paper machine

» Transforms a slurry of pulp fiber into a uniform sheet of paper
through a series of dewatering and pressing operations.

> Can be over 100 m long in the machine-direction (MD), producing
a sheet over 10 m wide in the cross-direction (CD) at rates
exceeding 30 m/s [1].
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Figure 1. Schematic of a Fourdrinier paper machine [3]
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Introduction

CD actuators

> Spatial variations are controlled by CD actuators distributed across
the width of the paper machine.

» Headbox dilution profiling valves and induction heating profilers are
two primary CD actuators.

Figure 2:  Headbox dilution valves (top) and induction profilers (bottom) .



Cross-Directional Process
Steady-state model

€ss ®
r+ u + l + Yss
j@ Kss = Gss O

Figure 3:  Closed-loop control system

Yss = Gssuss + q>6557 (1)

where each column of Gy € R™*™ is the sampled impulse response (IR)
of a single actuator and all actuators are assumed to have identical and
symmetric IR coefficients.

Kss = _QgrlaK Gss Q1 (2)

where @; and Q3 are weighting matrices that penalize deviation from
set-point and steady-state MV offset, respectively.
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Cross-Directional Process
Closed-loop

» MPC (Kss) assumed to operate linearly with no active constraints.
> We have the following closed-loop CD process:
Yss = (l + GssKss)_1 GssKssr + (I + GssKss)_1 Vss, (3)
Uss = (I + KssGss)_1 r— (/ + KssGss)_1 KssVss, (4)
where r € R™ is the spatial excitation signal to be designed.

> Challenge: Large input-output dimensions and large number of
parameters in Gg.

> Solution: Use a noncausal scalar transfer function to represent
steady-state CD actuator response and reduce complexity.



Causal Scalar Representation

Noncausal Scalar Model

> Scalar noncausal finite IR (FIR) model from any column of G

represents spatial impulse response of an actuator, i.e.,
eI ) =g A" gt g\,

where n < m is a truncated index representing significant
coefficients and g; = g_;.

> nis large so a parsimonious noncausal transfer function is used to

approximate g(\, A71) as

- BB
HOWR I
ANANY)’
BA™Y) = bo+ b AT 4 by AT,
AN = 14+a Tt Fa

where n, and nj are the orders of A(A™!) and B(\~1), respectively.
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Causal Scalar Representation

Noncausal Scalar Model
» Similarly for k(A\, A7) we have
FVF(A)

T —1 _

k(ALATH = EMNE(M-TY’ ©
FOO™Y) = fo+AX 4 A, (10)
EQY = 14ertt... +e, A (11)

where n. and ny are the orders of E(A™1) and F(\~1), respectively.

» High dimensional MIMO steady-state closed-loop model replaced by
scalar noncausal transfer functions, i.e.,

_ g 1
y(x) = 1+g/—(r(><)+ 1+g/'<v(x)’ (12)
1 k

ulx) =

where x stands for the spatial coordinate.
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Causal Scalar Representation
Causal Equivalent Model

» Consider the following noncausal Box-Jenkins model:

_ MM R(R(AY)
}/(X) - N()\)N()\il) I’(X)+ S(A)S()\il) e(X)7 (14)
where {e(x),x =1,...,m} is a Gaussian white noise sequence.

» Assuming all polynomials have no zeros on the unit circle and are
minimum phase, there exist causal polynomials M, (A~1), N, (A1),
R,(A71), 5,(A 1), a white noise sequence {&,(x)} and a stochastic
sequence {y(x)} with the same spectra as {y(x)} such that,

1800 (15)

where NN\ my = N2(A1), N(A~1) = N2(A~1) and the
same also holds for M(\), R()), and S()).
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Causal Scalar Representation
Causal Equivalent Model

> We have 7(x) = ™ y(x), &,(x) = M= e(x) where my = []; 52
and mp, mr and s are defined in a similar fashion.

> The input signal u(x) can also be represented through causal filters,
i.e.,

- Ma(A~1) R,

(x) = = r(x) + = éy(x), 16

()= T ) 5 oy ) (16)

where {@(x)} and {u(x)} have the same spectra.
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Causal Scalar Representation

Covariance Equivalence
> Consider the noncausal model (6 is the parameter in compact set Q)
y(x) =g\ AL 0)u(x) + h(X A7 0)e(x), (17)

where e(x) is Gaussian white noise and data is generated in
closed-loop and all relevant transfer functions are uniformly stable.

> Then, as m — oo (m is the number of measurement bins),

w.p.1

sup [L7'(y) = L7(9)] = O, (18)
0eQ

w.p.1

sup 0, (19)

0eQ

dey(y)  deg(y)
do do

where LJ(y) is the noncausal log-likelihood function and L3(¥) is
the causal-equivalent log-likelihood function [4].

» Therefore, the parameter covariances coincide and we may perform
optimal input design based on the causal-equivalent model.
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Optimal Input Design

>

>

Split # as @ = [p™ nT]" and focus on process model parameters (p).

Objective: minimize a function of the parameter covariance of p,
P, subject to input and output power constraints, i.e.,

I GACH®)) (20)
1 s

.t. — b < 21

s.t ) p(w)dw < ¢, (21)
1 ™

| ¢, (w)dw < ¢, (22)

where ¢, and ¢, are the power limits on input and output signals.

Finite dimensional parameterization of ®,, i.e.,

d,(w) = kai_mc e ¥k >0, Vuw, (23)

where ¢, k = —mc, ..., m., are the parameters, and m. is the
selected number of parameters [5].

Choosing fy(-) to be convex the resulting optimization is convex.
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Case Study

» Spatial actuator response is nonlinear with four parameters, i.e.,
gain (), width (), divergence (), attenuation (&) [2].

» Comparing three methods

1. Optimal input design: causal-equivalent model, excitation
amplitude constrained to < +10.

2. Bump excitation: amplitudes alternate between +10 and -10.

3. White noise: designed with the same variance as the optimal
input.

» For computational efficiency model orders are specified as
np=ns=1and n; = n, = 2.

» Process model is identified in 100 Monte-Carlo simulations.
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Case Study

» High order models can improve accuracy with a computation cost.

Impulse Responses of the Process
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Figure 4: IR of a single actuator (red) and noncausal estimate (blue)
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Case Study

> Large spectrum amplitude in the cross-over frequency enables better
excitation.

550 Spectrum of Optimal Input based on Causal Model
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Figure 5:  Optimal input spectrum from causal-equivalent model
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Case Study

Impulse Responses of the Process Under Optimal Input
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Summary

> Averaged errors ()

1. Optimal input design: € = 0.0643
2. Bump excitation: € = 1.3344
3. White noise: € = 0.4479

» Noncausal model: circumvents large dimension of MIMO CD
process.

» Causal-equivalent modeling: facilitates traditional optimal input
design methods.
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