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Abstract— In this work, we have extended the current success
of deep learning and reinforcement learning to process control
problems. We have shown that if reward hypothesis functions
are formulated properly, they can be used for industrial process
control. The controller setup follows the typical reinforcement
learning setup, whereby an agent (controller) interacts with
an environment (process) through control actions and receives
a reward in discrete time steps. Deep neural networks serve
as function approximators and are used to learn the control
policies. Once trained, the learned network acquires a policy
that maps system output to control actions. Though the policies
are not explicitly specified, the deep neural networks were
able to learn policies that are different from the traditional
controllers. We evaluated our approach on Single Input Single
Output Systems (SISO), Multi-Input Multi-Output Systems
(MIMO) and tested it under various scenarios.

I. INTRODUCTION

It is common in the process industry to use controllers
ranging from proportional controllers to advanced predic-
tive based controllers such as Model Predictive Controllers
(MPC). However, classical controller design procedure in-
volves careful analysis of the process dynamics, development
of an abstract mathematical model, and finally, derivation of
a control law that meets certain design criteria. In contrast to
the classical design process, reinforcement learning is geared
towards learning appropriate closed-loop controllers by sim-
ply interacting with the process and incrementally improving
control behaviour. The promise of such an approach is
appealing: instead of using a time consuming design process,
the controller learns the process behaviour by interacting
directly with the process. Moreover, the same underlying
learning principle can be applied to a wide range of different
process types: linear and nonlinear systems; deterministic
and stochastic systems; single input/output and multi in-
put/output systems. In addition, from a system identification
perspective, both model identification and controller learning
are performed simultaneously. This specific controller differs
from traditional controllers in that it assumes no predefined
control law nor does it have an explicit predefined control
law, but rather learns the control law from experiences.
With the proposed approach the reward function serves as
an objective function indirectly. The drawbacks of standard
control algorithms are: (i) a complex dynamic model of the
process is required, (ii) model maintenance is often very
difficult and (iii) and online adaptation is rarely achieved.
The proposed reinforcement learning controller is an efficient
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alternative to standard algorithms and it automatically allows
for continuous online tuning of the controller.

Reinforcement learning (RL) has been used in process
control for more than a decade,[10]. However, the available
algorithms do not take into account the improvements made
through recent progress in the field of artificial intelligence
especially deep learning [1]. Remarkably, human level con-
trol has been attained in games [2] and physical tasks[3]
by combining deep learning and reinforcement learning [2].
Recently, these controllers have even learnt the optimal
control policy of the complex Go game [15]. However,
the current literature is primarly focussed on games and
physical tasks. The objective of these tasks differs slightly
from that of process control. In process control, the task
is to take the outputs close to the set point while meeting
certain constraints, whereas in games and physical tasks the
objective is rather generic. For instance: in games, the goal is
to take an action to eventually win a game; in physical tasks,
to make a robot walk (or) stand. This paper discusses how
the success in deep reinforcement learning can be applied on
process control problems. In process control, action spaces
are continuous and reinforcement learning for continuous
action spaces has not been studied until [3]. This work aims
at extending the ideas in [3] to process control applications.

The main advantages of the proposed algorithm are as
follows (i) it does not involve deriving an explicit control
law; (ii) it does not involve deriving first principle models as
they are learnt by simply interacting with the environment
(iii) the learning policy with deep neural networks is rather
fast.

The paper is organized as follows: Section II provides
background information. Section III highlights the system
configuration in a reinforcment learning perspective. Section
IV outlines the technical approach of the learning controller.
Section V empirically verifies the effectiveness of our ap-
proach. Section VI includes discussions and extensions of
our approach followed by conclusion in Section VII.

II. BACKGROUND

Reinforcement learning (RL) is an approach to automating
goal-directed learning and decision-making. This approach is
meant to solve problems in which an agent interacts with an
environment and receives reward signal at each time step.
RL algorithms aim to find a policy, which is a mapping
from state to action, that maximizes the expected cumulative
reward (value function) under that policy. The two main
approaches used to achieve this goal are (1) Policy based
approach: searches directly for the optimal policy which
achieves maximum future reward; (2) Value based approach:



estimates the optimal value function which is the maximum
value achievable under any policy. Storing the value function
(or) policy might not be possible especially if the state-action
pairs are high dimensional. Hence, function approximators
like linear regression, Neural networks are used with RL.
Since it has been found that deep neural networks serve
as effective functional approximators and have found great
success in image[1], speech [7] and language understanding
[8], deep neural networks are used to approximate value
function or policy resulting in Deep Reinforcement Learning
(DeepRL). DeepRL aims at learning the policy and/or value
function end-to-end with or without the plant model. How-
ever, using neural networks as such might not necessarily
gaurantee convergence and stability [13]. Recent success
of Deep Q nework [2],[9] along with improvements in the
field of deep learning like Batch Normalization [11] have
addressed the issue of using neural networks in reinforcement
learning. With those advancements, this work aims at using
DeepRL for process control applications. Process control ap-
plications involve continuous states and action space. Policy
gradient algorithms are widely used RL techniques to address
continuous control problems [12]. We have used actor-critic
based deterministic policy gradient similar to [3]. The actor
learns the policy with the help of critic which in turn learns
the value function. At each time step as the agent interacts
with the environment both critic and actor are updated and
the actor policy continues to improve with respect to the
number of iterations. The learnt actor is then used for control.

III. POLICY REPRESENTATION

A policy is RL agent’s behaviour. It is a mapping from
states S to Actions A, i.e., π(s) : S 7→ A. We have
considered a deterministic policy with both states and actions
in a continuous space. The following subsections provide
further details about the representations.

A. State

A state s consists of features describing the current state of
the plant. Since the controller needs both the current output
of the plant and the required setpoint, the state is the plant
output and setpoint tuple < y, yset >.

B. Actions

The action, a is the means through which RL agent
interacts with environment. The controller input to the plant
is the action.

C. Reward

The reward signal r is a scalar feedback signal that
indicates how well an RL agent is doing at step t. It reflects
the desirablity of a particular state transition that is observed
by performing action a starting in the initial state s and
resulting in a successor state s′. Fig: 1 shows state-action
transition and corresponding reward of the controller in a
reinforcement learning framework. For process control task,
the objective is to take the output reach the set point, while
meeting certain constraints. This specific objective can be

fed to RL agent (controller) by means of a reward function.
Thus, the reward function serves as a function similar to an
objective function formulation in Model Predictive Control.
The reward function is provided by (1),

Fig. 1: Transition of states and actions

r(s, a, s′) =

{
c, if |yi − yiset| ≤ ε, ∀i
−
∑n
i |yi − yiset|, otherwise

(1)
where i represents ith input of n outputs in MIMO systems
and c > 0, is a constant. A high value of c leads to larger
value of r when the ouputs are closer to setpoint by ε.
A high value of c also results in quicker tracking of setpoint.

The goal of learning is to find a control policy, π that
maximizes the expected value of the cumulative reward, R.
Here, R can be expressed as the time-discounted sum of all
transition rewards, ri, from the current action up to a horizon
T (where T may be infinite) i.e.,

R(s0) = r0 + γr1 + ...+ γT rT (2)

where ri = r(si, ai, s
′
i) and γ is a discount factor. The

sequence of states and actions are determined by the policy
and the dynamics of the system. The discount factor ensures
that the cumulative reward is bounded, and captures the
fact that events occurring in the distant future are likely
to be of less consequential than those occurring in the
more immediate future. The goal of RL is to maximize the
expected cumulative reward.

D. Policy and Value Function Representation
The policy π is represented by an actor using deep feed

forward neural network parameterized by weights Wa. Thus,
an actor is represented as π(s,Wa). This network is queried
at each time step to take an action given the current state. The
value function is represented by a critic using another deep
neural network parameterized by weights Wc. Thus, critic is
represented as Q(s, a,Wc). The layers are batch normalized
[10]. The critic network predicts the Q-values for each actor
and actor network proposes an action for the given state.
During the final runtime, the learnt deterministic policy is
used to compute action at each step given the current state,
s which is a function of current output and setpoint of the
process.



IV. LEARNING

Fig. 2: Learning Overview

The overview of control and learning of the control system
is shown in Fig 2. The algorithm for learning the control
policy is given in Algorithm 1. The learning algorithm is
inspired by [3] with modifications to account for set point
tracking and other recent advancements discussed in [4],[5].
In order to facilitate exploration, we added a noise sam-
pled from Ornstein-Uhlenbeck (OU) process [14] discussed
similarly in [3]. Apart from exploration noise, the random
initialization of system output at each start of an episode
ensures that the policy is not stuck in a local optimum.
An episode is terminated when it runs for 200 time steps
or if it has tracked setpoint by a factor of ε continuously
for five time steps. For systems with higher value of time
constant, τ larger time steps per episode is preferred. At
each time step the actor, π(s,Wa) is queried and the tuple
< si, s

′
i, ai, ri > is stored in the replay memory, RM at

each iteration. The motivation for using replay memory is to
break the correlated samples obtained used for training. The
learning algorithm uses actor-critic framework. The critic
network serves as a value estimator and it estimates the
value of current policy by Q-learning. The critic provides
loss function for learning the actor. The loss function of the
critic is given by, L(Wc) = E

[
(r + γQt − Q(s, a,Wc))

2
]
.

Hence, the critic network is updated using this loss with the
gradient given by,

∂L(Wc)

∂Wc
= E

[
(r+ γQt −Q(s, a,Wc))

∂Q(s, a,Wc)

∂Wc

]
(3)

where Qt = Q(s′, π(s′,W t
a),W

t
c ), denotes target values and

W t
a,W

t
c are weights of target actor and critic respectively.

The discount factor, γ ∈ [0, 1] is the present value of future
rewards. A value of γ = 1 considers all rewards from future
states whereas a value of 0 considers reward from current
state. The γ discounts rewards in future states by value of γ.
This is a tunable parameter that makes our learning controller
to check how far to look in the future. We chose γ = 0.99
in our simulations. The expectation in (3) is over the mini-
batches sampled from RM . Thus the learnt value function
provides a loss function to actor and the actor updates its
policy in a direction that improves Q. Thus, the actor network

Algorithm 1 Learning Algorithm

1: Wa,Wc ← initialize random weights
2: initialize Replay memory, RM with random policies
3: for episode = 1 to E do
4: Reset the OU process noise N
5: Specify setpoint, yset at random
6: for step = 1 to T do
7: s←< yt, yset >
8: a← action, ut = π(s,Wa) +Nt
9: Execute action ut on the plant

10: s′ ←< yt+1, yset >, observe state at next instant
11: r ← reward
12: Store the tuple < s, a, s′, r > in RM
13: Sample a minibatch of n tuples from RM
14: Compute yi = ri + γQit ∀i ∈ minibatch
15: Update Critic:
16: Wc ← Wc + α( 1n

∑n
i (y

i −
Q(si, ai,Wc)

∂Q(si,ai,Wc)
∂Wc

)

17: Compute ∇ip =
∂Q(si,ai,Wc)

∂ai

18: Invert ∇ip by (5)
19: Update Actor:
20: Wa ←Wa + α 1

n

∑n
1 (∇ip

∂π(si,Wa)
∂Wa

)
21: Update Target Critic:
22: W t

a ← τWa + (1− τ)W t
a

23: Update Target Actor:
24: W t

c ← τWc + (1− τ)W t
c

25: end for
26: end for

is updated using gradient given by,

∂J(Wa)

∂Wa
= E

[∂Q(s, a,Wc)

∂a

∂π(s,Wa)

∂Wa

]
(4)

where ∂J(Wa)
∂Wa

is the gradient of critic with respect to the
sampled actions of mini-batches from RM. Thus, the critic
and actor are updated in each iteration, resulting in policy
improvement.

Target Network: Similar to [3], we use seperate target
networks for actor and critic. We freeze the target networks
and replace it with existing networks once in 500 iterations.
This makes the learning an off-policy algorithm.

Prioritized Experience Replay: While drawing samples
from replay buffer, we use prioritized experienced replay
as proposed in [4]. Emprically, we found an acceleration in
learning compared to uniform random sampling.

Inverting Gradients: Sometimes the actor neural network,
π(s,Wa) produces output that exceeds the action bounds of
the specific system. Hence, the bound on the output layer of
the actor neural network is specified by controlling gradient
required for actor from critic. To avoid making the actor
returning outputs that are outside action bounds, we inverted
the gradients of ∂Q(s,a,Wc)

∂a given in [4] using the following



transformation,
∇p =

∇p.

{
(pmax − p)/(pmax − pmin), if ∇psuggests increasing p
(p− pmin)/(pmax − pmin), otherwise

(5)
Where ∇p refers to parameterized gradient of critic.
pmax, pmin refers to maximum and minimum action of the
agent. p correspond to entries of the parameterized gradient,
∂Q(s,a,Wc)

∂a . This also serves as an input constraint to the RL
agent.

V. SIMULATION RESULTS

The output and input response from the learned polices
are illustrated in Fig. 4-7. The final policies for the learned
SISO system, given in (6), are the result of 7,000 iterations
of training collecting about 15,000 tuples and requiring about
24 hours of training on a NVIDIA 960M GPU. For learning
the MIMO system given in (7) the compute time on the same
GPU was about 30 hours requiring 50K tuples. The deep
neural networks are built using Tensorflow [6]. The learning
time remains dominated because of the mini-batch training
at each time step.

A. Example 1- SISO Systems

A 1×1 process is used to study the effect of this approach
of learning the policy. The industrial system we choose to
study is the control of manufacture of paper in a paper
machine. The target output, yset, is the desired moisture
content of the paper sheet. The control action, u, is the steam
flow rate, and the system output, y, is the current moisture
content. The transfer function of the system is given below:

G(s) =
0.05s

1− 0.6s
(6)

The time step used for simulation is 1 second.
The system is learned using Algorithm 1. The portion of
the learning curve of the SISO sytem given in (6) is shown
in Fig 3 and the corresponding learned policy is shown in
Figs 4 and 5.
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Fig. 3: Learning Curve

The learned controller is also tested on various other cases,
such as the response to setpoint change and the effect of

Fig. 4: Output response of the learned policy
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Fig. 5: Input profile of the learned policy

output and input noise. The results are shown in Fig. 6. For
learning setpoint changes, the learning algorithm was shown
integer-valued setpoints in the range [0, 10]. It can be seen
from Fig. 6 (i), (l) that the agent has learned how to track
even setpoints it was not shown during training.

B. Example 2- MIMO System

Our approach is tested on a high purity distillation column
system. This MIMO system, whose transfer function model
is given in (7), is ill-conditioned from a systems point of
view. The learned policy of the system is shown in Fig. 7

G(s) =

 0.878
τs+1 − 0.864

τs+1

1.0819
τs+1 − 1.0958

τs+1

 (7)

We choose the number of steps per episode to be 200 for
learning the control policies. When systems with larger time
constants are encountered, we usually require more steps per
episode. The reward hypothesis formulation serves as a tuner
to adjust the performance of the controller, how setpoints
should be tracked, etc. When implementing this approach
on a real plant, effort can often be saved by warm-starting
the deep neural network through prior training on a simulated
model. Experience also suggests using exploration noise with
higher variance in the early phase of learning, to encourage
high exploration.
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(a) Output response with output noise of
σ2 = 0.1

(b) Output response with output noise of
σ2 = 0.3
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(c) Output response with input noise of
σ2 = 0.1

(d) Input response of Fig 6(a) with output
noise of σ2 = 0.1

(e) Input response of Fig 6(b) with output
noise of σ2 = 0.3
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(f) Input response of Fig 6(c) with input
noise of σ2 = 0.1
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(g) Output response - setpoint change with
output noise of σ2 = 0.1
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(j) Input response of Fig 6(g) - setpoint
change with output noise of σ2 = 0.1

(k) Input response of Fig 6(h) - setpoint
change with input and output noise of
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unseen during training

Fig. 6: Output and Input Responses for various cases
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(a) Response of output y1 with output noise
of σ2 = 0.01

(b) Response of output y2 with output noise
of σ2 = 0.01

(c) Response of input u1
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Fig. 7: Output and Input response of system given in eqn (2)

VI. CONCLUSION

We have developed an artificial intelligence based ap-
proach to process control using deep learning and reinforce-
ment learning. This framework supports the development
of control policies that can learn directly even with high-
dimensional states. This avoids the need for hand-crafted
feature descriptors, controller tuning, deriving control laws,
and developing mathematical models. However, the current
approach is tested on linear systems. Future work will extend
this approach on non-linear systems. We believe industrial
process control will see rapid and significant advances in the
field of deep and reinforcement learning in the near future.
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