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Abstract

This paper develops a switching strategy for adaptive state estimation in systems represented by nonlinear, stochastic, discrete-
time state space models (SSMs). The developed strategy is motivated by the fact that there is no single Bayesian estimator
that is guaranteed to perform optimally for a given nonlinear system and under all operating conditions. The proposed strategy
constructs a bank of plausible Bayesian estimators for adaptive state estimation, and then switches between them based on their
performance. The performance of a Bayesian estimator is assessed using a performance metric derived from the posterior Cramér-
Rao lower bound (PCRLB). It is shown that the switching strategy is stable, and yields estimates that are at least as good as any
individual estimator in the bank. The efficacy of the switching strategy is illustrated on a practical simulation example.
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1. Introduction

Recent advances in high-speed computing technology have
lead to the frequent use of stochastic nonlinear models to
represent complex system dynamics. The design and im-
plementation of advanced control or monitoring strategies
using such complex models require real-time estimation of
the key system states and parameters that are either un-
measured or unknown. In situations, where the parame-
ters are precisely known, the states can be estimated under
the Bayesian framework by computing the state posterior
density. The state posterior density is often computed
by solving a state filtering problem (Arulampalam et al.,
2002). A closed-form solution to the filtering problem ex-
ists for linear state space models (SSMs) under the Gaus-
sian noise settings or when the state space is finite (Tul-
syan et al., 2013c). Unfortunately, in many engineering
systems, the model is often nonlinear and the parameters
are not known or time-varying, and therefore need to be
estimated before the states can be estimated. In practical
settings, adaptive state estimation (simultaneous state and
parameter estimation) is often the only realistic solution
for it avoids processing of large data set and also allows for
real-time adaptation to the time-varying system behavior.
(He et al., 2011; Kravaris et al., 2013; Ding, 2014).

We consider the problem of online adaptive Bayesian
state estimation in general nonlinear stochastic SSMs. In
general, this is a difficult problem even for a linear system,
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as the joint state and parameter posterior density does not
lend itself to any closed-form solution (Li et al., 2004).
There are several important classes of Bayesian methods
for adaptive state estimation, which include - artificial dy-
namics approach (ADA), practical filtering, Markov chain
Monte-Carlo (MCMC) with sequential Monte-Carlo (SMC)
methods and SMC2. A detailed exposition of Bayesian es-
timators and its approximations can be found in Kantas
et al. (2009). Although tractable, the performance of these
Bayesian estimators depends on the underlying numerical
and statistical approximations used in their design. Un-
fortunately, there is no single tractable online Bayesian
estimator that is guaranteed to perform consistently on a
given system or retain a satisfactory performance under
all operating conditions. A practitioner is thus left with
no clear substitute for the optimal Bayesian estimator.

This paper develops an efficient strategy for adaptive
Bayesian state estimation in general nonlinear SSMs. At
the outset, it is highlighted that the paper only deals with
the class of Bayesian estimators and not with maximum-
likelihood estimators. Further, we restrict ourselves only
to the class of online Bayesian estimators. The prelimi-
naries of adaptive state estimation is provided next.

2. Preliminaries

In this section, we: (i) define a discrete-time stochastic
SSM; (ii) introduce the adaptive state estimation problem;
and (iii) highlight our contributions.

Notation: The common notation are first introduced.
Here, the notation is broadly classified by topic.
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• Spaces: N := {1, 2, . . .}; R+ := [0,∞); Rs×s is the set of
real-valued (s × s) matrices; Ss ⊂ R

s×s is the space of
symmetric matrices; Is×s is the identity matrix of size s;
Ss+ is the cone of symmetric positive semi-definite matri-
ces in Ss; and Ss++ is its interior, i.e., the set of positive
definite matrices. The partial orders on Ss induced by
Ss+ and Ss++ are denoted by < and ≻, respectively.
• Matrices: For A,B ∈ R

s×s, the Hadamard product of A
and B is denoted by A ◦B, and defined as A ◦B(i, j) =
A(i, j)B(i, j), where i, j = 1, . . . , s. The Hadamard in-
verse is denoted by A◦−1, is defined as A◦−1(i, j) =
1/A(i, j) if and only if A(i, j) 6= 0 for all i, j = 1, . . . , s.
Tr[A] represents trace of A. For v ∈ R

s, v(i) indicates
the ith entry in v, and diag(v) ∈ R

s×s is a diagonal
matrix, with elements in v ∈ R

s as its diagonal entries.
• Probability: Pr(·) and p(·) denote the probability mass
and density function of a discrete and continuous ran-
dom variable, respectively. supp p(·) denotes support of
the density function p(·). δy(x) denotes the Dirac-delta
function in x with mass centered at y.
• Sequences and operators: For any generic sequence de-
noted by {ut}t∈N, let ui:j ≡ {ui, ui+1, . . . , uj}. Also,
∇x ≡

[
∂
∂x

]
is the gradient and ∆y

x ≡ ∇x∇
T
y is the Lapla-

cian operator. ⊗ is the Kronecker product.

2.1. Stochastic State Space Models

Let {Xt}t∈N and {Yt}t∈N be X (⊆ R
n) and Y(⊆ R

m) –
valued stochastic processes defined on a probability space
(Ω,F , P ). The discrete-time state process {Xt}t∈N is an
unobserved Markov process, with initial density p(x|θ) and
Markovian transition density p(x′|x, θ), such that

X0 ∼ p(·|θ0) and Xt+1|(Xt = xt, θt) ∼ p(·|xt, θt), (1)

for all t ∈ N. In (1), {θt}t∈N ∈ Θ ⊆ R
r are model pa-

rameters. The state process {Xt}t∈N is hidden, but ob-
served through a sensor process {Yt}t∈N. It is assumed
that {Yt}t∈N is conditionally independent given a state
process {Xt}t∈N with marginal density p(y|x, θ), such that

Yt|(X0, . . . , Xt = xt, . . . , XN , θt) ∼ p(·|xt, θt), (2)

for all t ∈ N. All the density functions are with respect to
a suitable dominating measure, such as Lebesgue measure.
Although (1) and (2) represent a wide-class of time-series
models, the model form considered here is given below:

Model 2.1. Non-linear SSM with non-Gaussian noise

Xt+1 = ft(Xt, θt, Vt); (3a)

θt+1 = ht(Xt, θt, Xt+1); (3b)

Yt = gt(Xt, θt,Wt). (3c)

Model 2.1 represents a class of time-varying, nonlinear
stochastic SSMs that is ubiquitous in many engineering
systems. For example, in process industries, the dynam-
ics of many of the unit operations, such as distillation

columns, chemical reactors and separation units can be
represented by Model 2.1. For notational convenience, ex-
plicit dependence of Model 2.1 on the input signal has
been suppressed; however, all the derivations that appear
in this paper hold with the input signal included. The
assumptions on Model 2.1 are discussed next.

Assumption 2.2. The dynamics of {θt}t∈N is given by

ht(Xt, θt, Xt+1) ≡ G
(1)
t Xt +G

(2)
t θt +G

(3)
t Xt+1,

where G
(1)
t ∈ R

r×n, G
(2)
t ∈ R

r×r and G
(3)
t ∈ R

r×n, such

that G
(2)
t is invertible for all t ∈ N.

Assumption 2.3. {Yt}t∈N is state-oriented with the prob-
ability of false alarm Prf = 0 and detection Prd = 1.

Assumption 2.4. {Vt}t∈N and {Wt}t∈N are mutually in-
dependent sequences of independent random variables, as-
sumed to be known a priori in their distribution classes and
parametrized by a known and finite number of moments.

Assumption 2.5. {ft; gt}t∈N is a pair of nonlinear func-
tions such that for xt ∈ X and θt ∈ Θ, the pair {ft; gt}t∈N

is Ck(X ) and Ck(Θ), respectively, where k ≥ 2.

Assumption 2.6. For vt ∈ R
n; {ft}t∈N is Ck(Rn), and

for wt ∈ R
m; {gt}t∈N is Ck(Rm), where k ≥ 1. For ran-

dom realizations (xt+1, xt, θt, vt) ∈ X × X × Θ × R
n and

(yt, xt, θt, wt) ∈ Y ×X ×Θ×R
m satisfying (3a) and (3c),

respectively; ∇vtf
T
t (xt, θt, vt) and ∇wt

gTt (xt, θt, wt) have
rank n and m, respectively, such that using the implicit
function theorem, p(xt+1|xt, θt) = p(Vt = f̃t(xt, θt, xt+1))
and p(yt|xt, θt) = p(Wt = g̃t(xt, θt, yt)) are defined, where
f̃t := X × Θ×X → R

n and g̃t := X ×Θ× Y → R
m.

We only consider a linear time-varying parameter case (see
Assumption 2.2), and assume that there are no false or
missed observations (see Assumption 2.3). Assumption 2.4
is a standard assumption required by many of the adaptive
state estimation methods, and Assumptions 2.5 and 2.6
are regulatory conditions required in the computation of
the PCRLB. Another model used in this paper is a special
case of Model 2.1, and is represented as follows:

Model 2.7. Non-linear SSM with additive noise

Xt+1 = ft(Xt, θt) + Vt; (4a)

θt+1 = G
(1)
t Xt +G

(2)
t θt +G

(3)
t Xt+1; (4b)

Yt = gt(Xt, θt) +Wt, (4c)

where Vt ∼ N (vt|0, Qt) and Wt ∼ N (wt|0, Rt) are Gaus-
sian random variables with zero mean and finite variance.

2.2. Adaptive State Estimation

In this section, we discuss the problem of adaptive state
estimation, which is basically defined as state estimation
under unknown model parameters. In Bayesian settings,
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the solution to the adaptive state estimation problem is
given by solving the nonlinear filtering problem. The non-
linear filtering problem for Model 2.1 is an active area of
research, and is briefly introduced here. Let θ⋆t ∈ Θ be
the true, but unknown model parameters generating Yt,
then under the Bayesian settings, the adaptive state es-
timation problem is formulated by first ascribing an ini-
tial prior density θ0 ∼ p(θ0), such that θ⋆0 ∈ supp p(θ0),
and then defining Zt ≡ [Xt, θt]

T as a Z(⊆ R
s=n+r) val-

ued extended Markov process. The Bayesian inference on
{Zt}t∈N is then performed by constructing the joint poste-
rior or filtering density p(zt|Y1:t), which encapsulates the
available statistical information on Zt given a measure-
ment sequence Y1:t. Once {p(zt|Y1:t)}t∈N is available, a
point estimate for the states and parameters is computed.
The recursive computation of {p(zt|Y1:t)}t∈N is referred to
as the nonlinear filtering problem, and it provides a solu-
tion to the adaptive state estimation problem for Model
2.1. In general, the adaptive state estimation problem has
proved to be a nontrivial problem. This is because no
analytical solution to {p(zt|Y1:t)}t∈N is available even for
linear SSMs, with Gaussian noise, or when X is a finite
set (Andrieu et al. (2004)). Thus, with finite computing
capabilities, an optimal Bayesian estimator that solves for
the adaptive state estimation problem exactly is not realiz-
able for Model 2.1. A recent surge of interest in developing
advanced numerical and simulation methods to solve the
adaptive state estimation problem has left researchers and
practitioners inundated with a large number of approx-
imate, but tractable Bayesian estimators to select from.
The main problem addressed in this paper is stated next.

Problem Statement. Given a prior density (Z0 = z0) ∼
p(z0), devise a strategy for adaptive state estimation in
Model 2.1 operating under Assumptions 2.2 through 2.6.

Remark 2.8. The prior density (Z0 = z0) ∼ p(z0) is as-
sumed to be known. Although the choice of a prior density
is crucial in the Bayesian inference theory, its design is not
considered here. Some guidelines to design an efficient
prior density can be found in Tulsyan et al. (2012).

The choice of an efficient Bayesian estimator for adaptive
state estimation in Model 2.1 is still an open problem. This
is because there is no single tractable Bayesian estimator
that is guaranteed to provide a consistent performance for
a given system under all operating conditions (Minvielle
et al., 2010). A practitioner is thus left with no clear sub-
stitute for the optimal Bayesian estimator. An approach to
resolve this dilemma is to start with a family of tractable
Bayesian estimators and switch between them as and when
required, so as to maintain a high overall estimation per-
formance. Naturally, the switching need to depend on the
performance of the estimator that accounts for the uncer-
tainty in the model parameters, and other process specific
conditions. Despite the strong practical interest in evalu-
ating the performance of Bayesian estimators for adaptive
state estimation, it remains one of the most complex prob-
lems in Bayesian inference theory (Šimandl et al., 2001).

2.3. Contributions

We propose a performance metric-based switching strat-
egy for adaptive state estimation in Model 2.1. The initial
results reported by the authors in Tulsyan et al. (2013d)
use a performance metric-based filter switching strategy
for state estimation under known model parameters case.
The focus of this paper is to generalize the results in Tul-
syan et al. (2013d) for adaptive state estimation problems.
New results on the stability of the switching strategy are
also provided in this paper. The proposed switching strat-
egy uses posterior Cramér-Rao lower bound (PCRLB) in-
equality as a performance metric, which is discussed next.

3. Posterior Cramér-Rao Lower Bound

The conventional Cramér-Rao lower bound (CRLB) pro-
vides a theoretical lower bound on the mean square error
(MSE) of any maximum-likelihood (ML)-based unbiased
state or parameter estimator (Ljung, 1999). An analo-
gous extension of the CRLB to Bayesian methods was de-
rived by Trees (1968), and is commonly referred to as the
PCRLB inequality. The extension of the PCRLB inequal-
ity for a class of nonlinear SSMs was derived by Tichavský
et al. (1998), and is given in the next two lemmas.

Lemma 3.1. Let {Y1:t}t∈N be a randomly sampled mea-
surement sequence generated from Model 2.1 under As-
sumption 2.3, then the MSE for a Bayesian estimator that
solves for {p(zt|Y1:t)}t∈N is bounded from below by

Pt|t ≡ Ep(Zt,Y1:t)[(Zt − Ẑt|t)(Zt − Ẑt|t)
T] < J−1

t , (5)

where: Pt|t ∈ S
s
++ is the MSE; Ẑt|t ≡ Ẑt(Y1:t) := R

tm →
R

s are the point estimates for the states and parameters;
and Jt ∈ Ss++ and J−1

t ∈ Ss++ are the posterior Fisher
information matrix (PFIM) and the posterior Cramér Rao
lower bound (PCRLB), respectively.

Proof. See Trees (1968) and Tichavský et al. (1998) for
a detailed proof of the inequality.

Lemma 3.1 states that the MSE performance of a Bayesian
estimator is always greater than or equal to the PCRLB,
such that Pt|t − J−1

t ∈ Ss+ holds for all t ∈ N. A recursive
approach to compute the PFIM for Model 2.1 was derived
by Tichavský et al. (1998), and is given next.

Lemma 3.2. For a given prior density (Z0 = z0) ∼ p(z0),
a recursive method to compute the PFIM for Model 2.1,
operating under Assumptions 2.2 through 2.6, is given by

J11
t+1 =H33

t − (H13
t )T[J11

t +H11
t ]−1H13

t ; (6a)

J12
t+1 =(H23

t )T − (H13
t )T[J11

t +H11
t ]−1(J12

t +H12
t ); (6b)

J22
t+1 =J22

t +H22
t

− (J12
t +H12

t )T[J11
t +H11

t ]−1(J12
t +H12

t ), (6c)
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where:

Jt+1 =

[
J11
t+1 J12

t+1

(J12
t+1)

T J22
t+1

]
; (s× s) (7a)

H11
t = Ep(X0:t+1,θt,Y1:t+1)[−∆

Xt

Xt
log pt]; (n× n) (7b)

H12
t = Ep(X0:t+1,θt,Y1:t+1)[−∆

θt
Xt

log pt]; (n× r) (7c)

H13
t = Ep(X0:t+1,θt,Y1:t+1)[−∆

Xt+1

Xt
log pt]; (n× n) (7d)

H22
t = Ep(X0:t+1,θt,Y1:t+1)[−∆

θt
θt
log pt]; (r × r) (7e)

H23
t = Ep(X0:t+1,θt,Y1:t+1)[−∆

Xt+1

θt
log pt]; (r × n) (7f)

H33
t = Ep(X0:t+1,θt,Y1:t+1)[−∆

Xt+1

Xt+1
log pt]; (n× n) (7g)

and pt = p(Xt+1|Zt)p(Yt+1|θt, Xt+1). The PFIM at t = 0
is computed using the relation J0 = Ep(Z0)[−∆

Z0

Z0
log p(Z0)].

Proof. See Tichavský et al. (1998) for proof.

In (7a), the sub-matrices J11
t+1 ∈ S

n
++ and J22

t+1 ∈ S
r
++ are

the PFIMs for the states and the parameters, respectively.
The Assumptions 2.5 and 2.6 ensure that the PCRLB
exists. The expectations in (7b) through (7g) make the
PCRLB independent of the states, parameters and mea-
surements. In fact, the PCRLB only depends on: the
dynamics described in Model 2.1; the noise characteristics
of {Vt}t∈N and {Wt}t∈N; and the prior (Z0 = z0) ∼ p(z0).
The PCRLB inequality is general and is valid for any
Bayesian estimator that solves for {p(zt|Y1:t)}t∈N, and for
any dynamical system represented by Model 2.1. In the
next section, the performance of a Bayesian estimator is
discussed using the PCRLB inequality in Lemma 3.1.

4. Assessment of Bayesian Estimators

Even though an optimal Bayesian estimator that computes
the joint posterior {p(zt|Y1:t)}t∈N exactly may not be real-
izable in finite time for Model 2.1, the PCRLB provides its
second-order performance limit. Therefore, using Lemma
3.1, the MSE performance of a Bayesian estimator can
be compared against the PCRLB, such that the best per-
forming estimator is the one that has its MSE closest to or
equal to the PCRLB. Note that although comparing the
MSE against the PCRLB allows for performance assess-
ment of Bayesian estimators, it is not convenient to use
in this form. This is because assessing the performance
of a Bayesian estimator using (5) requires simultaneous
monitoring of the MSE and PCRLB. Moreover, for cer-
tain Bayesian estimators or in certain systems, the MSE
and PCRLB may be scaled poorly. To avoid the scalability
issues, we define the performance of an estimator as

Φt ≡ J−1
t ◦ P ◦−1

t|t , (8)

where Φt ∈ R
s×s is a performance matrix that provides a

measure of goodness of a Bayesian estimator. The diago-
nal elements in Φt correspond to the scaled MSE for the
states and parameters, while the off-diagonal elements pro-
vide the scaled cross-MSE. For performance assessment,

we only consider the diagonal entries of Φt. Further, the
definition in (8) assumes that the Hadamard inverse of
Pt|t exists for all t ∈ N. While the diagonal entries of Pt|t

are strictly greater than zero (since Pt|t ∈ S
s
++), the off-

diagonal entries may be zero. In such situations, (8) can
not be computed for all t ∈ N. As a remedy, since we are
only interested in the scaled MSE entries, the performance
matrix can be alternatively defined as follows

Φt(i, j) ≡

{
J−1
t (i, i)[Pt|t(i, i)]

−1 if i = j,

0 otherwise.
(9)

It is straightforward to check that Φt exists, and the diag-
onal entries of Φt and Φt are the same for all t ∈ N. In the
rest of the paper, it is assumed that the performance ma-
trix given in (8) is defined for all t ∈ N, with (8) replaced
by (9) at sampling time instants where (8) does not exist.
The properties of Φt are discussed next.

Lemma 4.1. Let J−1
t ∈ Ss++ and Pt|t ∈ S

s
++ be such that

they satisfy (5), and Φt be defined as in (8) then for each
i = 1, . . . , s and for all t ∈ N, we have

0 < Φt(i, i) ≤ 1.

Proof. The conditions Pt|t(i, i) > 0 and J−1
t (i, i) > 0

imply Φt(i, i) = J−1
t (i, i)[Pt|t(i, i)]

−1 > 0 for each i =

1, . . . , s. Also, from (5), the condition Pt|t(i, i) ≥ J−1
t (i, i)

implies Φt(i, i) = J−1
t (i, i)[Pt|t(i, i)]

−1 ≤ 1. Combining
the two yields 0 < Φt(i, i) ≤ 1 for i = 1, . . . , s.

Lemma 4.1 states that Tr[Φt] ∈ (0, s] for all t ∈ N. The
bounds in Lemma 4.1 are general and valid for any Bayesian
estimator. The bounds in Lemma 4.1 are conservatively
constructed, but can be refined by exploiting the specifics
of a Bayesian estimator. This is discussed in Lemma 5.9.
The choice of (8) as a performance metric is motivated by
our ability to effectively bound it. Therefore, in situations,
or for systems, where the MSE of PCRLB are poorly scaled
or unbounded, the performance of a Bayesian estimator is
always bounded. Note that, if required, other performance
metrics can also be defined from (5).

In (8), Φt depends on the point estimate Ẑt|t ∈ R
s com-

puted by an estimator. A common approach to compute
Ẑt|t ∈ R

s is to minimize Tr[Pt|t] ∈ R+. This is referred to
as the minimum mean square error (MMSE) estimate, and

is given by Ẑt|t = Ep(Zt|Y1:t)[Zt]. Other estimates, such as
the maximum a posteriori (MAP) estimate are also com-

monly used (Trees, 1968). Since the choice of Ẑt|t ∈ R
s is

non-unique in general, the estimate, for which, the estima-
tor performance is maximized, is discussed next.

Theorem 4.2. Let Ẑt|t ∈ R
s be an MMSE point estimate

then for each i = 1, . . . , s

Ẑi
t|t ∈ argmin

Zi

t|t
∈R

Pt|t(i, i) = argmax
Zi

t|t
∈R

Φt(i, i). (10)

Here, [Ẑ1
t|t, Ẑ

2
t|t, . . . , Ẑ

s
t|t]

T ≡ Ẑt|t.
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Proof. If Ẑt|t is an MMSE estimate, then Ẑt|t can be
computed component-wise as follows (Trees, 1968):

Ẑi
t|t ∈ argmin

Zi

t|t
∈R

Pt|t(i, i). (11)

From (8), we have the relation

Φt(i, i) = J−1
t (i, i)[Pt|t(i, i)]

−1, (12)

for all i = 1, . . . , s. Now since Φt(i, i) > 0 (from Lemma
4.1) and Pt|t(i, i) > 0 (since Pt|t ∈ S

s
++), we can write

Pt|t(i, i) = [Φt(i, i)]
−1J−1

t (i, i), (13)

for all i = 1, . . . , s. Substituting (13) into (11) yields

Ẑi
t|t ∈ argmin

Zi

t|t
∈R

[Φt(i, i)]
−1J−1

t (i, i), (14)

for all i = 1, . . . , s. Since J−1
t ∈ Ss++ is independent of Ẑt|t

(see Lemma 3.2), (14) can be written as

Ẑi
t|t ∈ argmin

Zi

t|t
∈R

[Φt(i, i)]
−1 = argmax

Zi

t|t
∈R

[Φt(i, i)], (15)

for all i = 1, . . . , s. The last equality results from the fact
that Φt(i, i) > 0 for all i = 1, . . . , s (from Lemma 4.1),
which proves the theorem.

According to Theorem 4.2, the performance of a Bayesian
estimator, as measured in terms of (8), is maximized for
the choice of the MMSE estimate; however, in practice,
such an estimate can only be approximately computed.
This is because the MMSE estimate computation requires
computation of {p(zt|Y1:t)}t∈N, which as discussed earlier,
is difficult to compute for Model 2.1. Note that the objec-
tive of Theorem 4.2 is to only highlight that the perfor-
mance of an estimator can be maximized for the choice of
an MMSE point estimate; however, the user has the flex-
ibility to select any other point estimate. In fact, MMSE
point estimates are often not the best choice for multi-
modal posterior density functions. Nevertheless, irrespec-
tive of the choice of the point estimate, the performance
of an estimator can be assessed using (8). In fact, (8) not
only provides a tool to assess the performance of different
estimators, it can also be used to design the estimation
strategy itself. The design of a strategy for adaptive state
estimation in Model 2.1 is discussed in the next section.

5. A Switching Strategy

In this section, a switching strategy is proposed for adap-
tive state estimation in Model 2.1. The strategy is moti-
vated by the fact that there is no single Bayesian estimator
that is guaranteed to perform optimally for a given non-
linear system and under all operating conditions. An ap-
proach to resolve this dilemma is to use a switching strat-
egy; wherein, we start with a family of Bayesian estima-
tors, and switch between them as and when required based

on their performance. Formally, this is done as follows –
let B be any arbitrarily chosen bank containing F ∈ N

Bayesian estimators, such that i ∈ F ≡ {1, 2, . . . , F} indi-
cates the index in B. In the switching strategy, the per-
formance of F estimators are first assessed using (8), and
then the estimator with the highest performance metric is
selected for delivering the state and parameter estimate at
t ∈ N. There are different ways in which a switching strat-
egy can be implemented, two of which are given below:

Algorithm 5.1. Average-case switching strategy
Input: Ẑi

t|t ∈ R
s and Φi

t ∈ S
s for all i ∈ F.

Output: Point estimate Ẑit
t|t ∈ R

s, where it ∈ F.

Step 1: Compute Tr[Φi
t] for all i ∈ F.

Step 2: Solve: it ∈ argmaxi∈F
Tr[Φi

t].

Step 3: Select Ẑit
t|t as the point estimate.

In Algorithm 5.1, the average-case switching strategy is
based on the performance of an estimator in estimating all
the states and parameters of Model 2.1. The estimator in
bank B, corresponding to the index in Step 2 is called the
active estimator, and the estimate in Step 3 corresponds to
the estimates from the active estimator. Alternatively, it
is possible to implement the switching strategy as follows

Algorithm 5.2. Best-case switching strategy
Input: Ẑi

t|t ∈ R
s and Φi

t ∈ S
s for all i ∈ F.

Output: Point estimate Ẑit
t|t ∈ R

s, where it ∈ F.
Step 1: Set j ← 1.
Step 2: While j ≤ s, repeat

Solve: it ∈ argmaxi∈F
[Φi

t(j, j)].

Select Ẑit
t|t(j) as the point estimate.

Set j ← j + 1.
end while

Observe that compared to Algorithm 5.1, which is a 1 di-
mensional switching strategy, Algorithm 5.2 provides an
s dimensional strategy, wherein, each state and parame-
ter has its own switching defined. Note that although the
final estimate for the states and parameters at each sam-
pling time are possibly selected from different estimators,
Algorithms 5.1 and 5.2 require that all F estimators in
bank B are running in parallel at all sampling times. In
other words, all the estimators in the bank estimate all
the states and parameters of the system at each sampling
time, but only the ones suggested by Algorithms 5.1 and
5.2 are selected as the final estimate.

It should be noted that both Algorithms 5.1 and 5.2
operate at a frequency of 1.0 switch per sampling time. In
many control and monitoring applications, the estimates
obtained at such a high frequency may cause severe chat-
tering (undesirable phenomenon of high amplitude and
high frequency oscillation of a digital signal). The chatter-
ing problem can be mitigated by implementing a delayed
switching strategy; wherein, the frequency can be reduced
from 1.0 to 1/λ switches per sampling time, where λ ∈ N.
Another approach to reduce chattering in Algorithms 5.1

5



and 5.2 is to use a low-pass filter switching strategy. Using
a low-pass filter (e.g., moving average, exponential mov-

ing average) on the sequence of estimates {Ẑit
t|t}t∈N will re-

duce any significant chattering effects. Note that the above
modifications of Algorithms 5.1 and 5.2 will of course be
sub-optimal; nevertheless, they are practical and easy to
implement on a digital computer. The switching can be
implemented in many other ways; however, we only focus
on Algorithms 5.1 and 5.2. Next, we discuss the optimality
of the estimates obtained from Algorithms 5.1 and 5.2.

Result 5.3. Given B, with F ∈ N estimators, let Ẑi
t|t ∈ R

s

be an MMSE estimate computed by the i-th estimator for
all i ∈ F, then the state and parameter estimates generated
from Algorithms 5.1 and 5.2 are the MMSE estimates in
the average and optimal sense, respectively.

For a bank B with F ∈ N estimators, each estimator cal-
culates its own approximate MMSE estimate. Now for a
given set of approximate MMSE estimates, Algorithm 5.1
selects the estimate from the estimator with maximum av-
erage performance (as measured by the trace of the perfor-
mance matrix). Algorithm 5.2 implements a similar strat-
egy, but at a more individual level – for each states and pa-
rameters. In fact, the very construction of Algorithms 5.1
and 5.2, ensure that Algorithms 5.1 and 5.2 yield MMSE
estimates in the average and optimal sense, respectively.

Remark 5.4. Result 5.3 establishes the optimality of the
switching strategy only with respect to a bank of Bayesian
estimators; however, compared to the optimal Bayeisan
estimator, the switching strategy is still sub-optimal.

Despite the observation in Remark 5.4, the key advantage
of the proposed switching strategy is that it provides an
optimal approach to combine a set of sub-optimal Bayesian
estimators. In other words, the switching strategy is at
least as good as all existing estimators in the bank B. In
theory, if the optimal estimator is included in the bank B
then Algorithms 5.1 and 5.2 select the optimal estimator
for all t ∈ N. This is because an optimal estimator is
efficient, i.e., Φt(i, i) = 1 for all i = 1, . . . , s.

It is highlighted that the quality of estimates obtained
with Algorithms 5.1 and 5.2 is proportional to the quality
of estimators in bank B. Note that the switching strategy
does not provide any independent solution to the adaptive
state estimation problem, but instead, it provides an op-
timal approach to combine existing estimators to deliver
estimates, that are at least as good as the estimates from
the individual estimators. In this paper, no restriction is
placed on the choice of B. The user has full flexibility to
decide its construction. Of course, there are computational
considerations in choosing B, this is discussed next.

The implementation of the switching strategy through
Algorithms 5.1 and 5.2 incurs significant computational
costs in computing the point estimates and performance
matrix for each estimator at each sampling time. Even
though, the estimate is only selected from a single best

performing estimator, we need to run F estimators in par-
allel at each sampling time. Therefore, to keep the over-
all computational complexity of Algorithms 5.1 and 5.2
low, it is important to select low-computational cost, but
high-performance estimators in the bank B. A systematic
approach to reduce the computational complexity of Al-
gorithms 5.1 and 5.2 is to use a dynamic bank; wherein,
the estimators can be automatically included or removed
based on the operating conditions. For example, when the
system dynamics are linear or mildly nonlinear, the use of
Kalman-based estimators are more economical; whereas,
while operating in highly nonlinear regimes, the SMC-
based estimators are known to perform better. The con-
struction of such a dynamic bank will of course depend on
the measure of the system nonlinearity, which even for sim-
ple dynamical systems is either nontrivial to compute or
requires enormous computational effort. Fortunately, for
many of systems with the first principle models available,
the system nonlinearity can assessed at least qualitatively.
Although the construction of a dynamic filter bank is not
considered in this paper, but if required, it can be readily
incorporated with Algorithms 5.1 and 5.2. Next we discuss
the stability of the switching strategy. First, some stan-
dard results on the boundedness of stochastic processes are
recalled (Agniel and Jury, 1971; Tarn and Rasis, 1976).

Definition 5.5. A stochastic process {γt}t∈N is stable or
exponentially bounded in mean square if there exists real
numbers η ∈ R, ν ∈ R+ and 0 < ρ < 1, such that

Ep(γt)||γt||
2 ≤ η||γ0||

2ρt + ν, (16)

holds for all t ∈ N.

Definition 5.5 implies that {γt}t∈N is stable only if there
exists a finite upper bound, such that limt→+∞ η||γ0||2ρt+
ν = ν. The necessary conditions for the stability of a
stochastic process are given next.

Lemma 5.6. For {γt}t∈N, let vmin, vmax, µ ∈ R+, 0 < λ <
1, and V : R→ R be such that the following inequalities

vmin||γt||
2 ≤ V (γt) ≤ vmax||γt||

2, (17a)

Ep(γt|γt−1)[V (γt)]− V (γt−1) ≤ µ− λV (γt − 1), (17b)

hold for t ∈ N then {γt}t∈N is bounded in mean square,
such that (16) holds for t ∈ N with η = vmaxv

−1
min, ρ =

(1− λ) and ν = µv−1
min

∑t−1
k=1 ρ

k.

Proof. See Reif et al. (1999) for a detailed proof.

Lemma 5.6 gives the conditions for a stochastic process to
be stable. The process we are interested in analysing is
the estimation error γt = Zt − Ẑt|t for all t ∈ N. The next
lemma discusses the stability of the estimation error.

Lemma 5.7. Let Ẑt|t ∈ R
s be an estimate computed by

a Bayesian estimator. Let Pt|t ∈ S
s
++ and J−1

t ∈ Ss++ be
the MSE of the estimator and the PCRLB for Model 2.1,
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respectively. If γt = Zt − Ẑt|t is a stable process for all
t ∈ N then Tr[Pt|t] is bounded from below and above by

Tr[J−1
t ] ≤ Tr[Pt|t] ≤ ηTr[P0|0]ρ

t + ν (t ∈ N), (18)

where η ∈ R, ν ∈ R+ and 0 < ρ < 1 are real numbers
defined in Lemma 5.6.

Proof. Note that for the stochastic process γt = Zt−Ẑt|t,
we have Ep(γt)||γt||

2 = Tr[Pt|t]. Now, since γt is stable,

substituting γt = Zt−Ẑt|t into Definition 5.5 and using the

result Pt|t − J−1
t ∈ Ss+ from Lemma 3.1, we get (18).

Lemma 5.7 provides a lower and upper bound on the MSE
of a Bayesian estimator with stable estimation error. Note
that Lemma 5.7 is also valid for estimators with unstable
estimation error, in which case, the lower bound is still
given by Tr[J−1

t ] (since Tr[J−1
t ] is independent of the es-

timator); however, the upper bound is infinite (since η,
ν and ρ are infinite). Using Lemma 5.7, we define the
stability of an estimator in terms of its estimation error.

Definition 5.8. Let Pt|t ∈ S
s
++ be the MSE for a Bayesian

estimator, with Tr[P0|0] < +∞, then the estimator is sta-
ble if there exists η ∈ R, ν ∈ R+ and 0 < ρ < 1, such that
the upper bound on Tr[Pt|t] in Lemma 5.7 is finite with

lim
t→+∞

ηTr[P0|0]ρ
t + ν = ν. (19)

From Definition 5.8, a stable estimator is the one with a
finite MSE upper bound. Now, before discussing the sta-
bility of the switching strategy, a bound on Φt in (8) is
derived. Observe that the lower bound on Φt in Lemma
4.1 is trivial for it is valid for any given Bayesian estima-
tor; however, using Lemma 5.7, an estimator specific lower
bound on Φt is defined, and is given next.

Lemma 5.9. If Pt|t ∈ S
s
++ denotes the MSE for a stable

estimator then its performance Φt at t ∈ N is bounded
from below and above by the following inequality

Tr[J−1
t ]

ηTr[P0|0]ρt + ν
< Tr[Φt] ≤ s, (20)

where η ∈ R, ν ∈ R+ and 0 < ρ < 1 are real numbers
given by Lemma 5.6.

Proof. From Lemma 4.1, the upper bound on Tr[Φt] is
s or Tr[Φt] ≤ s. To derive the lower bound, note that for
Pt|t ∈ S

s
++, the upper bound in (18) can be written as

Pt|t(i, i) ≤ ηTr[P0|0]ρ
t + ν, (21)

for all i = 1, . . . , s, or alternatively as

[Pt|t(i, i)]
−1 ≥

1

ηTr[P0|0]ρt + ν
, (22)

since ηTr[P0|0]ρ
t+ ν > 0 (see Lemma 5.7). Now using the

relations J−1
t (i, i) > 0 (see Lemma 3.1) and (22), we get

Φt(i, i) = J−1
t (i, i)[Pt|t(i, i)]

−1 >
J−1
t (i, i)

ηTr[P0|0]ρt + ν
, (23a)

for all i = 1, . . . , s. Finally, since Φt(i, i) > 0 and J−1(i, i) >
0 for all i = 1, . . . , s, we can write

Tr[J−1
t ]

ηTr[P0|0]ρt + ν
< Tr[Φt], (24)

which completes the proof.

Lemma 5.9 provides a nontrivial bounds on the perfor-
mance of an estimator. In contrast to Lemma 4.1, Lemma
5.9 delivers bounds that depend on the estimator. Using
Lemma 5.9, Definition 5.8 can be alternatively stated in
terms of the PCRLB. This is given next.

Remark 5.10. A stable Bayesian estimator with Tr[P0|0] <
∞ satisfying the condition (19) in Definition 5.8 also sat-
isfies the relation (from Lemma 5.9)

lim
t→+∞

Tr[J−1
t ]

ηTr[P0|0]ρt + ν
> 0. (25)

Similarly, if the estimator is unstable, the denominator in
(25) grows unboundedly, such that

lim
t→+∞

Tr[J−1
t ]

ηTr[P0|0]ρt + ν
= 0. (26)

Using Lemma 5.9 and Remark 5.10, the stability of the
switching strategy is given next.

Theorem 5.11. Let the bank B contain F ∈ N estimators
indexed by set i ∈ F. Let the MSE for all the estimators
at at t = 0 be P0|0, then the performance of the switching
strategy for Model 2.1, and implemented with Algorithm
5.1 satisfies

Tr[J−1
t ]

ηjt Tr[P0|0]ρ
t
jt
+ νjt

< Tr[Φit
t ] ≤ s, (27)

where ηi ∈ R, νi ∈ R+ and 0 < ρi < 1 are real numbers
given by Lemma 5.6 for each estimator i ∈ F and it ∈ F is
the estimator index computed by Algorithm 5.1 and

jt ∈ argmin
i∈F

[ηi Tr[P0|0]ρ
t
i + νi]. (28)

Proof. Observe that from Lemma 5.9, we have Tr[Φi
t] ≤

s for all i ∈ F or Tr[Φit
t ] ≤ s, where it ∈ F. Now from

Algorithm 5.1, we have the following relation

max
k∈F

Tr[Φk
t ] ≥ Tr[Φj

t ], (29)

for all j ∈ F. From Algorithm 5.1, we have

it ∈ argmax
i∈F

Tr[Φi
t], (30)
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which when substituted into (29) yields,

Tr[Φit
t ] ≥ Tr[Φj

t ], (31)

for all j ∈ F, or we can write (31) for the index jt ∈ F as

Tr[Φit
t ] ≥ Tr[Φjt

t ] >
Tr[J−1

t ]

ηjt Tr[P0|0]ρ
t
jt
+ νjt

. (32)

The last inequality uses Lemma 5.9 for index jt ∈ F. This
completes the proof.

Theorem 6.1 ensures that the performance of the switching
strategy is bounded and also guarantees that it yields the
tightest performance bounds (recall that jt ∈ F in (27)
yields the largest lower bound on Tr[Φit

t ]).

Corollary 5.12. Let the bank B contain F ∈ N estima-
tors, of which Fs ≤ F are stable, where Fs ∈ Fs ⊆ F and
Fs ≥ 1, then the switching strategy for Model 2.1, and
implemented with Algorithm 5.1 is stable such that

lim
t→+∞

Tr[J−1
t ]

ηjt Tr[P0|0]ρ
t
jt
+ νjt

> 0, (33)

where jt is given by (28) in Theorem 5.11.

Proof. Here we only need to show that the index jt in
(28) in Theorem 6.1 corresponding to a stable estimator,
such that jt ∈ Fs. First, such an index exist since Fs ≥ 1.
Next, (28) can be simplified and written as

jt ∈ argmin
i∈Fs⊆F

[ηi Tr[P0|0]ρ
t
i + νi], (34)

where the domain is now over the space of stable estima-
tors. This is because from Definition 5.8, the objective
function in (28) is not finite for unstable estimators, and
therefore, can be removed from F. Now since jt ∈ Fs, from
(25) in Remark 5.10, we have the required result. .

According to Corollary 5.12, as long as the bank B has at
least one stable estimator, the switching strategy is guar-
anteed to choose the best performing stable estimator at
each sampling time. The stability of Algorithm 5.2 can be
similarly established by modifying Theorem 5.11; however,
for the sake of brevity the details are skipped here.

6. Numerical Computation

The switching strategy discussed in Section 5 provides an
efficient strategy for adaptive state estimation in Model
2.1; however, the switching can only be computed off-line.
This is because the PCRLB, required to compute the per-
formance matrix in Algorithms 5.1 and 5.2, involves multi-
dimensional integrals that do not admit any closed form
solutions for Models 2.1 and 2.7. In applications, such as
control and monitoring, the design, performance evalua-
tion and selection of estimators are mostly done a priori
or off-line. For our purposes, we compute the switching

off-line, but is always implemented in real-time. This is
justified, since the PCRLB is independent of the states,
parameters and measurements (see Section 3).

Monte-Carlo (MC) method is a popular class of numer-
ical methods to approximate complex integrals. Using MC
methods, the PCRLB can be approximated by simulating
M i.i.d. sample paths (zj0:t, y

j
1:t)

M
j=1 ∈ Z

t+1 × Yt starting
with M i.i.d. initial draws distributed according to p(z0).
The procedure to compute a MC approximation of the
PCRLB is well known, and is not included here for the
sake of brevity. See Tulsyan et al. (2013d) and Bergman
(2001) for details on how PCRLB approximations are com-
puted. Here, we only present PCRLB approximations for
Model 2.7, but first, we show how the dimension of the
expectations in Lemma 3.2 can be reduced for Model 2.7.

Lemma 6.1. For a stochastic system represented by Model
2.7 and operating under Assumptions 2.2 through 2.6, the
matrices (7b) through (7g) can be written as:

H11
t = Ep1

[∇Xt
fT
t (Xt, θt)]Q

−1
t [∇Xt

fT
t (Xt, θt)]

T; (35a)

H12
t = Ep1

[∇Xt
fT
t (Xt, θt)]Q

−1
t [∇θtf

T
t (Xt, θt)]

T; (35b)

H13
t = Ep1

[−∇Xt
fT
t (Xt, θt)]Q

−1
t ; (35c)

H22
t = Ep1

[∇θtf
T
t (Xt, θt)]Q

−1
t [∇θtf

T
t (Xt, θt)]

T

+Ep2
[∇θtg

T
t (Xt+1, θt)]R

−1
t+1[∇θtg

T
t (Xt+1, θt)]

T; (35d)

H23
t = Ep1

[−∇θtf
T
t (Xt, θt)]Q

−1
t + Ep2

[∇θtg
T
t (Xt+1, θt)]

×R−1
t+1[∇Xt+1

gTt (Xt+1, θt)]
T; (35e)

H33
t = Q−1

t + Ep2
[∇Xt+1

gTt (Xt+1, θt)]R
−1
t+1

× [∇Xt+1
gTt (Xt+1, θt)]

T, (35f)

where p1 = p(Xt, θt) and p2 = p(Xt+1, θt).

Proof. (35a): Note that H11
t = Ep̃t+1

[−∆Xt

Xt
log pt] in

(7b), where p̃t+1 = p(X0:t+1, θt, Y1:t+1) and pt = p(Xt+1|Zt)
p(Yt+1|θt, Xt+1) can be written as (Tichavský et al., 1998)

H11
t = Ep̃t+1

[∇Xt
log pt][∇Xt

log pt]
T. (36)

Now, since ∇Xt
log p(Yt+1|Xt+1, θt) = 0, we have

[∇Xt
log pt]

= ∇Xt
[log p(Xt+1|Zt) + log p(Yt+1|θt, Xt+1)], (37a)

= ∇Xt
[log p(Xt+1|Zt)]. (37b)

Substituting (37b) into (36) yields

H11
t = Ep̃t+1

[Gt][Gt]
T, (38)

where Gt = [∇Xt
log p(Xt+1|Zt)]. Noting that the inte-

grand in (38) is a function of {Xt+1, Zt}, we have

H11
t = Ep(Xt+1,Xt,θt)[Gt][Gt]

T, (39a)

= Ep(Xt,θt)p(Xt+1|Xt,θt)[Gt][Gt]
T. (39b)

Now, for Model 2.7, we can write

Gt = [∇Xt
fT
t (Xt, θt)]Q

−1
t [Xt+1 − ft(Xt, θt)]. (40)
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Substituting (40) into (39b), and noting Ep(Xt+1|Zt)[Xt+1−

ft(Xt, θt)][Xt+1−ft(Xt, θt)]
T = Qt, we get (35a). The ex-

pressions (35b) through (35f) can be similarly derived.

Lemma 6.1 reduces the dimensions of the integrals in (7b)
through (7g) from (t + 1)(n + m) + s to s. Using MC
sampling methods, as discussed in Tulsyan et al. (2013d),
the integral (35a), for instance, can be approximated as

H̃11
t =

1

M

M∑

i=1

[∇Xt
fT(X i

t , θ
i
t)]Q

−1
t [∇Xt

fT(X i
t , θ

i
t)]

T, (41)

where {X i
t , θ

i
t}

M
i=1 ∼ p(xt, θt) and H̃11

t is an M sample MC
estimate of H11

t . The MC estimates of (35b) through (35f)
can be similarly computed. It can be shown that the MC
approximation of the PCRLB asymptotically converges to
the true PCRLB (Tulsyan et al., 2013d). Finally, it is
highlighted that for M < +∞, the MC approximation of
the PCRLB may not satisfy Pt|t − J−1

t < 0 for all t ∈ N.

7. Example

The strategy for adaptive state estimation proposed in Sec-
tion 5 is general, and is applicable to many engineering sys-
tems, including chemical, mechanical and aerospace. We
demonstrate the efficacy of the switching strategy on a
ballistic target tracking problem at re-entry phase (Farina
et al., 2002; Li and Jilkov, 2001; Ristic et al., 2003).

7.1. Setup

Consider a target launched along a ballistic flight whose
kinematics are described in a 2-D Cartesian coordinate
system. This particular description of the kinematics as-
sumes that the only forces acting on the target at any
given time are the forces due to gravity and drag. All
other forces (e.g., centrifugal acceleration, Coriolis accel-
eration, wind, lift force, and spinning motion) are assumed
to be negligible or have a small effect on the target dynam-
ics. With target position and velocity at t ∈ N given as
(xt, ht) and (ẋt, ḣt), respectively, the target motion in its
re-entry phase can be described by (Tulsyan et al., 2013a):

Xt+1 = AXt +GFt(Xt) +G[0 − g]T + Vt, (42)

where Xt ≡ [xt ẋt ht ḣt]
T is a hidden stochastic state

process, and the matrices A and G are as follows

A = I2×2 ⊗

[
1 ∆
0 1

]
, G = I2×2 ⊗

[
∆2/2
∆

]
. (43)

Here, ∆ is the time lapse between two consecutive radar
measurements. In (42), F (Xt) models the drag force,
which acts in a direction opposite to the target velocity.
In terms of the hidden states, F (Xt) can be modelled as

Ft(Xt) = −
gρ(ht)

2θt

√
(ẋ2t + ḣ

2

t )

[
ẋt
ḣt

]
, (44)

Table 1: Parameter values used in the example.

Variables Symbol Values

acceleration due to gravity g 9.8 m/s
2

radar sampling ∆ 2 s
total tracking time N 120 s
noise parameters γ 1

σl 0.1 km
σǫ 0.017 rad

probability of detection Prd 1
probability of false alarm Prf 0

where: g is the acceleration due to gravity; θt ∈ R is
the unknown ballistic coefficient (model parameter), whose
value depends on the shape, mass and the cross sectional
area of the target; and ρ(ht) is the air density, such that
ρ(ht) = α1e

(−α2ht), where: α1 = 1.227kgm−3, α2 = 1.093×
10−4m−1 for ht < 9144m; and α1 = 1.754kgm−3, α2 =
1.4910× 10−4m−1 for ht ≥ 9144m. In (44), Vt ∼ N (0, Qt)
is an independent sequence of multivariate Gaussian ran-
dom variables, with zero mean and covariance

Qt = γI2×2 ⊗

[
∆3/3 ∆2/2
∆2/2 ∆

]
, (45)

where γ ∈ R+ is the noise intensity, which accounts for
all the forces neglected in (42), including any deviations
arising due to system-model mismatch. The target mea-
surements Yt = [Lt, Et]

T, where Lt is the target range
and Et the target elevation are collected by a dish radar
assumed to be stationed at the origin, such that

Yt =

[ √
(x2t + h2t )

arctan(ht/xt)

]
+Wt, (46)

where Wt ∼ N (0, Rt) is a zero mean Gaussian with

Rt =

[
σ2
l ∆
0 σ2

e

]
, (47)

where σl ∈ R+ and σe ∈ R+ are standard deviations for
the range and elevation readings. The target elevation an-
gle is assumed to be between 0 and π/2 radians. The pa-
rameters used in this example are given in Table 2. More-
over, it can be shown that the system satisfies Assumptions
2.4 through 2.3. Let Zt = [XT

t , θt]
T be a vector of hidden

target states and ballistic coefficient. The prior is Z0 ∼
N (Mz0 , Cz0), with Mz0 = [232km, 2.290 cos190okms−1,
88km, 2.290 sin190okms−1, 40000kgm−1s−2]T and [Cz0 ]

0.5

= diag([1km, 20ms−1, 1km 20ms−1 , 20kgm−1s−2]). Now,
the objective is to estimate {Zt}t∈N in real-time.

7.2. Results

The results presented in this section are valid only under
the settings and assumptions considered in Section 7.1.
Starting with Z0 ∼ N (Mz0 , Cz0), Fig.1 gives the PCRLB
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Figure 1: The PCRLB associated with the target states and ballistic coefficient. The results are based on M = 2000 MC simulations.
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Figure 2: Performance of estimators in bank B.

for {Zt}t∈N. The PCRLB is obtained as J−1
t (i, i), where

i = 1, . . . , 5. In the interval 0 ≤ t ≤ 60, the PCRLB for
{θt}t∈N is almost constant. This is due to the absence of
drag at higher altitude, where the air density ρ(ht) is thin,
and the target dynamics are linear (i.e., F (Xt) is approxi-
mately zero), such that the radar measurements contain no
additional information to estimate {θt}t∈N. In the inter-
val 60 < t ≤ 90, due to thicker air density, the drag force
increases drastically; and the PCRLB for {Xt}t∈N grows,
but that of {θt}t∈N decreases sharply. Finally, in the seg-
ment 90 < t ≤ N , the PCRLB for {Zt}t∈N decreases.

The artificial dynamics approach (ADA) is a popular
class of Bayesian estimators for adaptive state estimation
(Kantas et al., 2009). In ADA, an artificial noise is added
to {θt}t∈N, such that it no longer involves any determinis-
tic transitions. The ADA can be implemented with both
Kalman and SMC-based filters; however, there are two
long-standing problems with the ADA approach, as iden-
tified and summarized in (Kantas et al., 2009):
(a) the dynamics of the parameters is related to the width

of the kernel and the variance of the artificial noise,
which are often difficult to fine tune; and
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Figure 3: The switching strategy implemented with Algorithms 5.1 and 5.2.

Table 2: Comparing different Bayesian estimators with the switching strategy implemented through Algorithms 5.1 and 5.2 using the sum of
the trace of normalized MSE (SNMSE).

EKF UKF SIR ASIR Algorithm 5.1 Algorithm 5.2

SNMSE 798 5915 668 670 562 489

(b) transforming the estimation problem, by adding ar-
tificial noise to the parameters modifies the original
problem, so that, it becomes hard to quantify the bias
introduced in the resulting estimates.

The first issue was addressed in Tulsyan et al. (2013c);
wherein, an approach to auto-tune the kernel width was
developed. For the second issue, Tulsyan et al. (2013b)
proposes a systematic approach that can be used to per-
form error analysis in Bayesian estimators, including the
ADA. It is important to note that like other Bayesian esti-
mators, such as practical filtering, MCMC and SMC2 esti-
mator, the ADA is also a sub-optimal estimator. Consider
a bank B with the following ADA estimators:
(a) Extended Kalman filter (EKF);
(b) Unscented Kalman filter (UKF);
(c) Sequential importance resampling (SIR) filter;
(d) Adaptive SIR (ASIR) filter.
Here, EKF and UKF are the Kalman-based filters, while
SIR and ASIR are the SMC-based filters. A complete
description of the EKF, UKF and SIR filters, including
their implementation can be found here (Ristic et al., 2003;
Ching et al., 2006; Chen et al., 2005; Wenzel et al., 2006;
Su et al., 2003), while the description for the ASIR fil-
ter can be found in Tulsyan et al. (2013c). To assess
the performance of the above four estimators in approxi-
mating {p(zt|Y1:t)}t∈N, we construct a bank B, with F =
{1, 2, 3, 4}. This paper does not advocate the use ADA
estimators over other Bayesian estimators. It is possible
for other estimators to outperform ADA estimators on the
given problem. Here, the choice of ADA estimators is for
illustrative purposes; however, the user has the flexibility
to design their own bank B.

Fig.2 gives Tr[Φt] values for the estimators in B. From
Fig.2, it is clear that the estimators have a high perfor-
mance in the interval 0 ≤ t ≤ 70, but plummet in the
interval 70 < t ≤ N . This is due to the large drag force
at lower altitude, which shifts the dynamics from linear to
nonlinear, and thus making tracking difficult. Note that in
Fig.2, Tr[Φt]) > 5 for certain estimators. This is due to the
error in computing the MC approximation of the PCRLB
(see Section 6). Figs.3(a) and (b) give the average-case and
best-case switching strategies (see Algorithms 5.1 and 5.2,
respectively) for this problem. At higher altitude, where
the target dynamics are linear, both the strategies sug-
gest using EKF, but then switch to other advanced filters,
such as SIR and ASIR at lower altitude. Although Algo-
rithm 5.2 extensively uses UKF in estimating {Zt(4)}t∈N

and {Zt(5)}t∈N (see Fig.3(b)), due to its poor average-
performance (see Fig.2), its use is not recommended by Al-
gorithm 5.1 (see Fig.3(a)). Note that although the switch-
ing in Figs.3(a) and (b) are computed off-line, it is im-
plemented in real-time. This is because the switching in
Figs.3(a) and (b) are independent of any particular realiza-
tion of the input-output data. Table 2 compares different
estimators and strategies based on their sum of the trace
of normalized MSE (SNMSE) values, which is defined as

SNMSE =

T∑

t=1

Tr
[
Pt|t ◦ [J

−1
t ]◦−1

]
=

T∑

t=1

Tr[Φ◦−1
t ]. (48)

It is clear that in terms of SNMSE, Algorithm 5.1 out-
performs all other estimators; however, amongst different
strategies, Algorithm 5.2 yields the smallest SNMSE. In
fact the SNMSE for Algorithm 5.2 reflects the best per-
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formance achievable for the choice of bank B. Note that
the SNMSE for Algorithm 5.2 is about 13% less than that
obtained with Algorithm 5.1, but then, computationally,
Algorithm 5.2 is 1.5 times slower to implement.

The simulation suggests that, at least in theory, it is
possible to improve the tracking performance of estimators
at lower altitude. This can be achieved by either choosing
new estimators in the bank or by carefully redesigning the
existing ones; however, note that redesigning estimators
with specific properties (e.g., low estimation bias) require a
thorough understanding of the underlying approximations.

8. Conclusions

A PCRLB inequality-based tool for performance assess-
ment of multiple Bayesian estimators is developed. Using
the PCRLB-based metric, an approach to compute the
MMSE point estimates in the the average and optimal
sense is developed for adaptive state estimation in gen-
eral nonlinear SSMs. Compared to existing estimators,
the switching method achieves a higher performance by
optimally combining a given set of sub-optimal estima-
tors. The efficacy of the tool was illustrated on a ballistic
target tracking problem at re-entry phase.
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