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Abstract

The collection of sawmill residues is an important logistic activity for the pulp and paper industry, which

use the biomass as a source of energy. We study a vehicle routing problem for a network composed of a

single depot and 25 sawmills, in the Lower Mainland region of British Columbia, Canada. The sawmills

serve as potential suppliers of biomass residues to the depot, which in turn processes and distributes the

residues to the pulp and paper mills. This problem consists of identifying the best daily routing schedule for

a fixed number of trucks. The objective is to maximize the ratio of energy returned on energy invested, while

satisfying a minimum daily amount of dried biomass residues. There are several random components in the

problem, including the availability and moisture content of the biomass residues. We use a combination of

scenario analysis and heuristics to solve this stochastic vehicle routing problem.

Keywords: renewable energy systems, routing algorithms, robust estimation, uncertainty, stochastic

approximation, logistics modeling.

1. Introduction

The deleterious impacts of climate change coupled with the ongoing urbanization of countries around the

world have led to a global effort to reduce greenhouse gas emissions for energy production, especially in the

transportation sector. The transport sector is responsible for approximately one quarter of greenhouse gas

emissions in both Europe and America, making it the second largest emitting sector after energy (European5

Commission, 2009; United States Environmental Protection Agency, 2015). A plethora of studies show

that urban freight transport could be vastly more efficient. According to the European Commission 24%

of commercial trucks that operate in Europe are empty (United States Environmental Protection Agency,

2015). McElroy estimates that commercial trucks drive 19 billion needless miles each year in the United States

alone (Jaffe, 2015). Thus, significant economic and environmental savings may be achieved by reducing truck10

transport.

This paper describes a case study of planning truck routes for the collection of sawmill residues (or

waste) in the Lower Mainland region of British Columbia, Canada. A symbiotic relationship exists between

sawmills and pulp mills. Approximately 50% of a log, by volume, gets turned into lumber at a sawmill. The

residue waste from the process is utilized by the pulp mills to produce both pulp and excess green energy.15
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Analogously, the majority of pulp mills rely on purchased sawmill residue chips for most, if not all, of their

chip supply. Consequently, the sale of residue chips has become an essential revenue stream for the sawmills.

The pulp mills have the necessary expertise, infrastructure and potential to be future large scale producers

of biomass based transportation fuels (Mercer International Group, 2010). In the past, the design of the

residue collection routes has been done manually.20

The real-life residue collection problem under consideration may be described as follows. There are a total

of 25 sawmills in the region and a single depot. The location of the sawmills and the depot are given along

the streets of a defined road network. The biomass residue produced by the sawmills must be collected by

a fleet of trucks with known capacities. The average daily amount of residues produced by each sawmill are

subject to variability. Each truck may collect residues from several sawmills before returning to the depot to25

unload. Truck drivers work 8 hour shifts that start at 9am and end at 5pm. The trucks leave the depot at

the start of the day at 9am and are allowed to make several, potentially different, routes in a single day. A

truck must return to the depot to unload after completing a route. In addition, all trucks must return to the

depot before the end of the day at 5pm. The amount of residues that should be collected on a daily basis

is determined by the energy demand from the pulp mills that are being supplied by the depot. There are a30

limited number of identical vehicles available with a capacity of 30 tonnes that are used to collect residues

in the considered region.

Information regarding the mass, measured in green tonnes (gt), and energy density, measured in (GJ/tonne)

of the residues available at each sawmill is not known and highly variable. The energy density of the residues

depends on their moisture content and heating value. The wet basis moisture content is used to describe the35

water content of biomass and is defined as the percentage equivalent of the ratio of the weight of water to

the total weight of the biomass. In this study, the average daily amount of residues produced at each sawmill

and their corresponding moisture content are estimated using historical data. Established conversion factors

were used to convert from wet to dry weight and energy density (Briggs, 1994).

The time to load the vehicles at the sawmills as well as the time to unload them at the depot are based40

on estimates provided from earlier studies (Macdonald, 2009). The driving distance and travel time between

the sawmills and the depot were calculated using the RgoogleMaps package in R (Loecher & Ropkins, 2015).

As the residue collection problem includes random parameters and processes, it is stochastic by nature. The

objective is to schedule the collection activities and identify collection routes that maximize the total energy

returned on energy invested (EROEI). The EROEI is defined as the ratio of the amount of usable energy45

acquired from a particular energy resource to the amount of energy expended to obtain that energy resource.

The described problem can be viewed as a periodic vehicle routing problem (PVRP) with a limited number

of vehicles. The basic vehicle routing problem (PVRP) is a very well known and widely studied problem in

combinatorial optimization. The objective is to route the vehicles, with each route starting and ending at

the depot, so that all customer supply demands are met and the total travel distance is minimized. As this50

is a computationally very hard problem, which cannot be solved by exact methods, in practice heuristics
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are typically used for this purpose (Nuortio et al., 2006). The stochastic periodic vehicle routing problem

(SPVRP) arises when some of the elements of the problem are not known exactly, such as the travel times,

product availability or customer demands.

The stochastic problem presented in this paper is solved using the quantile-based scenario analysis (QSA)55

approach (Zamar et al., 2017). This method analyzes the performance of solutions obtained from solving

deterministic realizations of the stochastic problem and identifies the solution that optimizes chosen quantiles

of the stochastic objective function, subject to satisfying conditions on given quantiles of the constraint

distribution. An advantage of this approach is that it requires only that each deterministic version (i.e.,

scenario) of the stochastic problem be solvable.60

The remainder of this paper is organized as follows. The proposed model and its input requirements are

presented in Section 2.1. The heuristic routing and scheduling methodologies are explained in Section 2.2,

followed by results in Section 3. The main conclusions of the study are provided in Section 4.

2. Methods

2.1. Optimization Model65

In this section we formally define the SPVRP model for this study. The problem is defined on a graph

G = {V,A}, where the set of nodes V = Vd ∪ Vs consists of a single depot Vd = {0}, m sawmills, Vs =

{1, . . . ,m}, and a set of arcs A = {(i, j) | i, j ∈ V, i 6= j}. Let K = {1, . . . , n} be the set of trucks with

capacity ck, k ∈ K. Let dij and tij be the travel distance and time associated with arc (i, j), respectively. In

addition, each node, j ∈ Vs, has an inventory hj with an average moisture content ωj and a mass flow rate βj70

for loading a truck. Define the set Rk = {1, . . . , rk}, k ∈ K, where rk denotes the number of routes assigned

to truck k. Let δjkl represent the mass of residues picked up at node j ∈ Vs by truck k ∈ K on its l ∈ Rk
assigned route. Let θ be the required moisture content of the biomass residue for conversion into heat and

power at the pulp mills. Let η represent the calorific value of the biomass at a moisture content of θ, and T

be the temperature at which it is stored. The time required to load a truck at a given node j ∈ Vs is given75

by αj + βjδjkl, where αj is the truck setup time at node j. Similarly, the time required to unload a truck at

the depot is given by α0 + β0ck. The parameters tij , αj , βj , hj and ωj , ∀(i, j) ∈ A, are unknown quantities,

which are assumed to be normally distributed. Thus, tij , αj , βj , ωj and hj are stochastic variables.

For a specific realization of the random variables tij , αj , βj , ωj , and hj , ∀(i, j) ∈ A, the deterministic

problem can be modeled using the following additional variables. Let uk = 1, k ∈ K, if and only if the driver

of truck k has had a lunch break and uk = 0 otherwise. Let γ be the time alloted for a lunch break. Define

the set of arcs between nodes that do not originate from the depot as As = {(i, j) | i ∈ V, j ∈ Vs, i 6= j}. Let

xijkl = 1 if and only if truck k ∈ K uses arc (i, j) on its lth assigned route and xijkl = 0 otherwise. The
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optimization model for the SPVRP problem is given in Eq. (1).

maximize J(x, δ) =

∑
(i,j)∈As

∑
k∈K

∑
l∈Rk

δjkl ·
[
1−

(
ωj − θ(1−ωj)

1−θ

)(
1 + (100−T )η1+η2

η4

)]
· xijkl∑

(i,j)∈A

∑
k∈K

∑
l∈Rk

xijkl · dij
∝ e1

e2
(1a)

subject to
∑
j∈V

∑
l∈Rk

x0jkl = 1, ∀k ∈ K (1b)

∑
i∈V

∑
l∈Rk

xi0kl = 1, ∀k ∈ K (1c)

∑
i∈V

∑
l∈Rk

xijkl =
∑
i∈V

∑
l∈Rk

xjikl, ∀j ∈ V, k ∈ K (1d)

∑
k∈K

∑
l∈Rk

δjkl ≤ hj , ∀j ∈ Vs (1e)

κ · ck ≤
∑
j∈Vs

δjkl ≤ ck, ∀k ∈ K, l ∈ Rk (1f)

δjkl ≥ 0, ∀j ∈ Vs, k ∈ K, l ∈ Rk (1g)

δ0kl = 0, ∀k ∈ K, l ∈ Rk (1h)

xijkl ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ K (1i)∑
j∈Vs

∑
k∈K

∑
l∈Rk

δjkl ≥ δ∗ (1j)

∑
l∈Rk

ukl = 1, ∀k ∈ K (1k)

∑
(i,j)∈As

∑
l∈Rk

xijkl(tij + αj + βjδjkl)

+
∑
i∈V

∑
l∈Rk

xi0kl(ti0 + α0 + β0ck) + γ ≤ τ, ∀k ∈ K
(1l)

The goal is to reduce the EROEI ratio, denoted by the function J(x, δ), in Eq. (1a). To simplify the

notation, the decision variables are compactly expressed as the route schedule, x, and the amount of residues,80

δ, to pick up from each sawmill visited in each route. We assume that the energy obtained from a green tonne

of biomass, e1, at a moisture content of θ and the energy spent per kilometer (km) traveled, e2, are both

constants. In such case, the EROEI is proportional to the mass of the dried biomass (to the desired moisture

content θ) divided by the distance traveled in collecting it. The energy required for drying the biomass is

also reflected in J(x, δ). This is achieved by subtracting, from the numerator, the quantity of dried biomass85

that would be required to generate the energy needed to dry the delivered residues to the desired moisture

content, θ. Lemma 1 shows how to calculate this quantity. Eqs. (1b) and (1c) ensure that all k trucks must

leave and return to the depot at the end of each route. Eq. (1d) ensures that the inflow and outflow must

be equal except for the depot node. Eq. (1e) ensures that the trucks cannot pick up more residues than are

available at each sawmill node. Eq. (1f) ensures that each truck must come back at least κ×100% full at the90
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Table 1: Optimization Model Notation

Symbol Description Units Set Notation/Indices

Sets
V0: depot node – V0 = {0}
Vs: sawmill nodes – Vs = {1, 2, . . . ,m}
A: arcs connecting the nodes – A = {(i, j) | i, j ∈ Vs ∪ V0, i 6= j}
K: trucks – K = {1, 2, . . . , n}
Rk routes assigned to truck k – Rk = {1, 2, . . . , rk}, k ∈ K

Parameters
ck : truck capacity tonnes k ∈ K
κk : minimum required payload

for truck k per route
gt k ∈ K

λ : time allowed for lunch
break

hr –

τ : maximum daily operating
hours for a truck driver

hr –

θ required moisture content
of the dried biomass

%

hj : inventory at node j gt j ∈ Vs
wj : wet basis moisture content

of residues at sawmill j
% j ∈ Vs

η: net calorific value of one
tonne of biomass at a
moisture content of θ

GJ · tonne−1 –

αj setup time for loading a
truck at sawmill j

hr j ∈ Vs

βj mass flow rate for loading
a truck at sawmill j

gt · hr−1 j ∈ Vs

α0 setup time for unloading a
truck at the depot i

hr –

β0 mass flow rate for unload-
ing a truck at the depot

gt · hr−1 –

dij travel distance between
nodes i and j

km i, j ∈ V0 ∪ Vs

tij travel time between nodes
i and j

hr i, j ∈ V0 ∪ Vs

uk: logical value indicating if
truck k had lunch

– k ∈ K

Variables
rk: number of routes assigned

to truck k
– k ∈ K

xijkl : logical value indicating if
truck k uses arc (i, j) on
its lth assigned route

– k ∈ K, i, j ∈ V0 ∪ Vs, l ∈ Rk

δikl : amount of residues picked
up by truck k at node i on
its lth assigned route

gt k ∈ K, i ∈ Vs, l ∈ Rk
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end of each route, where 0 < κ ≤ 1. Eq. (1f) also ensures that the truck capacity ck is never exceeded. Eqs.

(1g) and (1h) enforce non-negativity and that the trucks are empty when leaving the depot at the start of

each route. Eq. (1i) enforces binary variables. Eq. (1j) ensures that the minimum daily amount of required

tonnes of sawmill residues, δ∗ is met. Eq. (1k) ensures that each truck driver takes a lunch break. Finally,

Eq. (1l) ensures that each truck operates a maximum of τ hours. It is convenient to represent the solution95

to this problem as a set of collection runs. The lth collection run represents the ensemble of routes assigned

to each truck on their lth route. As such, solutions to the SPVRP are presented in this form.

Lemma 1. Let δ be a delivered amount of biomass in green tonnes and ω be its corresponding wet basis

moisture content. Let θ ≤ ω be the required moisture content of the biomass for conversion into energy and

T be the temperature at which the biomass is stored. If the net calorific value of the biomass at a moisture

content of θ is η GJ · tonne−1, then the net energy gained after drying (assuming 100% burner efficiency) is

equivalent to that stored in

δ

[
1−

(
ω − θ(1− ω)

1− θ

)(
1 + (100− T )4.19× 10−3 + 2.26

η

)]
(2)

tonnes of biomass at a moisture content of θ, where 4.19×10−3 and 2.26 represent the specific heat and latent

heat of vaporization of water in GJ · tonne−1, respectively (Perrot, 1998).

Proof. The wet basis moisture content of biomass is the percentage equivalent of the ratio of the weight of

water to the total weight of the biomass. We can write

ω = δω

δω + δ(1− ω) , (3)

where δω is the weight of water in the delivered biomass, in tonnes. Let y be the allowed weight, in tonnes,

of the dried biomass where θ is the required moisture content, then y satisfies

y

δ(1− ω) + y
= θ. (4)

From Eq. (4) we have:

y = δθ(1− ω) + θy (5)

⇒ y(1− θ) = δθ(1− ω) (6)

⇒ y = δθ(1− ω)
1− θ , (7)

thus the amount of water, in tonnes, that must be evaporated from the delivered biomass is

δω − y = δω − δθ(1− ω)
1− θ . (8)
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If T is the temperature (in degrees Celsius) at which the biomass is stored and η is the net calorific value (in

GJ · tonne−1) of the biomass at a moisture content of θ, then the number of tonnes of biomass that would

be required to generate the energy needed to evaporate δω − y tonnes of water is given by:

z = (100− T )4.19× 10−3 + 2.26
η

[
δω − δθ(1− ω)

1− θ

]
, (9)

where the first term in the product corresponds to the energy required to heat one tonne of water to its100

boiling point plus the energy to change its state all divided by the energy stored in one tonne of biomass at

a moisture content of θ. From Equations (8) and (9) we have that the net energy gained (assuming 100%

burner efficiency) is equivalent to that stored in

δ − (δω − y)− z = δ −
(
δω − δθ(1− ω)

1− θ

)
− (100− T )4.19× 10−3 + 2.26

η

(
δω − δθ(1− ω)

1− θ

)
(10)

= δ

[
1−

(
ω − θ(1− ω)

1− θ

)(
1 + (100− T )4.19× 10−3 + 2.26

η

)]
(11)

tonnes of biomass at a moisture content of θ.

2.2. Simulation Model105

Deterministic versions of the SPVRP (where all parameter values are known in advance) are generally

solved using heuristics, whereas stochastic dynamic versions of these problems are typically solved using

simulation, where at time t one would solve an optimization problem using only what is known at that time.

We solve the SPVRP problem presented earlier using the quantile-based scenario analysis (QSA) approach

described in Zamar et al. (2015). A discrete even simulation model based on the heuristic illustrated in110

At the 
Depot

Take a lunch 
break.

Start

Find the 
optimal 
cluster 
route.

No

Yes Yes

EndNo

Assign the 
route.

Delay due 
to  lunch 

break.

Update the inventory
 at the depot and 
at the sawmills.

Delay due to  
transportation, loading 

and unloading.

Lunch time? Enough time?

Figure 1: The Logic Flowchart for Truck Operations in the Simulation Model.
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Figure 1 was implemented to solve each scenario. To make the problem more manageable, we first cluster

the sawmill nodes based on their distance matrix and restrict attention to routes within each cluster. Thus,

our approach does not consider routes that span across clusters, which are unlikely to be selected due to

their Hamiltonian distance. The Hamiltonian distance of a set of nodes is the shortest path, made up from

the edges connecting the nodes, which passes through each node. The QSA method samples scenarios from115

their underlying distribution and solves each scenario separately. The solution of each deterministic scenario

problem is evaluated across the sampled scenarios to provide an estimate of the objective and constraint

satisfaction distribution of each solution. Solutions are then ranked based on their corresponding objective

and constraint distribution quantiles. For this application we maximize the 0.5 quantile (median) of the

stochastic objective function shown in equation (1a), subject to satisfying two quantile constraints on the120

resulting procurement amounts given by equation (1j).

The objective distribution corresponds to the EROEI while the constraint distribution represents the

fulfilled portion of the demand as described in Eqs. (1a), and (1j), respectively. We restrict attention to

solutions that have a 90% probability of satisfying at least 90% of the demand across scenarios.

3. Results and Discussion125

We applied our simulation model coupled with the QSA approach to solve the previously described SPVRP

problem. A map of the study region is shown in Figure 2, which identifies the locations of the 25 sawmills

and the single depot. The depot requires a minimum of 180 dry tonnes of biomass. Here, dry tonnes refers

to the mass of the biomass at a moisture content of θ = 0.3 × 100%. The net calorific value of one tonne

of biomass, η, is assumed to be fixed at 12.2 GJ · tonne−1 (FAO, 2013). The temperature, T , at which the130

biomass is stored at the depot is assumed to be fixed at 20 ◦C.

The random parameters that distinguish the scenarios are categorized as follows: (1) the residue available

at each sawmill, hj ; (2) the moisture content of the residue available at each sawmill, ωj ; (3) the time required

to travel between the nodes (sawmills and the depot), tij ; (4) the truck setup time at the depot and the

sawmills, α0 and αj ; and (5) the load and unload flow rates at the sawmills and the depot, β0 and βj . The135

random parameters hj and ωj are modeled based on published summary data (BC Bioenergy Network and

Biomass Availability Study Working Group, 2012) on biomass residue availability and moisture content at

each of the sawmill nodes. The random parameters αj and βj , i ∈ V , describing the setup, load and unload

times, are modeled based on the values calculated by FPInnovations in their assessment of economically viable

biomass (Macdonald, 2009). The expected travel time, tij , and the exact travel distance, dij , ∀(i, j) ∈ A,140

between nodes were calculated using the RgoogleMaps package in R (Loecher & Ropkins, 2015).

A summary of the distributions of the random parameters included in the model are shown in Table 2. The

average available biomass residue at each sawmill node was modeled as a multivariate normal distribution

based on their average annual production. Spatial variogram models were fit using the sp package in R

to represent the wet basis moisture content of the biomass residue available at each sawmill node (Bivand145
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Figure 2: The study region comprises 25 sawmills (S1–S25) across the Lower Mainland of BC, and a single depot (DEP) located
in Mission. The sawmills have been spatially clustered into four distinct color-coded groups.

Table 2: Stochastic Input Data

Mean SD

Total Available Residue (gt) 1010.2 31.6

Residue Per Node (gt) 40.4 10.3

Moisture Content (%) 38.0 3.8

Setup Time (hrs) 0.1 0.01

Load Time Rate (hrs/tonne) 0.02 0.002

Unload Time Rate (hrs/tonne) 0.01 0.001

Travel Time (hours) 1.5 0.6

et al., 2008). The travel time between a pair of nodes was modeled as an exponential random variable with

a mean equal to the expected travel time. The mean and standard deviation of the travel time, averaged

across all pairs of nodes, are included in Table 2. Similarly, the mean and standard deviation of the biomass

residue available at each sawmill node, averaged across all the sawmill nodes, are provided in Table 2. For

completeness, the mean and standard deviation of the total available biomass residue across all the sawmill150
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nodes are also given in Table 2. The number of sawmills, m = 25, the number of available trucks, n = 3,

and the distance between nodes, dij , ∀(i, j) ∈ A, are all known and assumed to be fixed. The The number of

trucks needed was established by adding one truck at a time and repeating the simulation until the required

dry tonnes of daily biomass residues was achieved.

0.00

0.25

0.50

0.75

1.00

0.35 0.40 0.45 0.50
Dry tonnes per km traveled

C
D

F Method
MS
QSA

(a) CDF of the EROEI

0.00

0.25

0.50

0.75

1.00

160 180 200
Procurement (dry tonnes)

C
D

F Method
MS
QSA

(b) CDF of the Procurement

Figure 3: Performance distributions of the QSA and MS solutions. (a) shows the cumulative distribution function of the energy
returned on energy invested (EROEI). The QSA solution is more efficient as it consistently delivers more dry tonnes of biomass
per km traveled. (b) shows the cumulative distribution function of the total amount of biomass procured. The MS solution
consistently delivers more dry tonnes of biomass than required thereby producing a surplus at the depot.

The simulation model was implemented using the R system for statistical computing (Team et al., 2016).155

A total of 1000 scenarios were simulated by sampling from the appropriate distribution of each random

parameter included in the model. The parameters were considered to be statistically independent. To

control the amount of biomass procured on a daily basis, we restrict attention to solutions that have a 90%

chance of satisfying 90% of the daily demand of 180 dry tonnes of biomass. Moreover we only consider

solutions with a probability of 10% of exceeding the demand. This will compel the QSA solution to seldom160

exceed the required daily demand, but at the same time consistently meet at least 90% of the demand. Each

truck was required to come back at least 70% full at the end of each route, thus κ = 0.70 in equation (1g).

The sawmill nodes were clustered into four groups based on their travel distance matrix using the k-

medoids method implemented in the package cluster (Maechler et al., 2015). The number of clusters was

estimated by the method of optimum average silhouette width (Kaufman & Rousseeuw, 1990). The four165

Table 3: QSA Optimal Schedule

Truck 1 Truck 2 Truck 3 Distance (km) Weight (tonne) Ratio (tonne/km) Time (hrs)

S22 S19,S20 S18,S15,S22 54.3 57.0 1.05 4.6

S20,S23,S25 S22,S14,S25 S2 118.3 57.1 0.48 5.6

S2 S17,S16 S24 217.4 58.3 0.27 9.0
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Figure 4: Out of sample performance of the QSA and MS solutions. (a) shows the probability density function of the energy
returned on energy invested (EROEI). The QSA solution is more efficient as it has a consistently larger ratio of dry tonnes
delivered per km traveled. (b) shows the probability density function of the total amount of biomass procured. The dotted lines
show where 90% and 100% of the demand is met. The MS solution consistently delivers a great deal more than the required
180 dry tonnes of biomass thereby producing a surplus at the depot. In contrast, the QSA solution is much more accurate and
precise in delivering the required amount of biomass.

clusters are depicted in Figure 2 and the cluster sizes are 3, 5, 7 and 10, respectively. Given the time

constraints imposed by the sawmills and the truck drivers operating hours, each truck was able to perform a

maximum of 3 routes per day. This fact was learned from the simulation results. The optimal routes selected

for each truck by the QSA method are shown in Table 3. Each row in Table 3 corresponds to a collection

run. From the first row, we see that the first collection run consists of sending the first truck to sawmill S22,170

the second truck to sawmills S19 and S20, and the third truck to sawmills S18, S15 and S22, in this order.

We denote this route combination as [S22,(S19,S20),(S18,S15,S22)]. The total distance traveled in the first

collection run is 54.3 km and an accumulated time of 4.6 hours is required on average. The average amount

of biomass obtained in the first collection run is 57.0 dry tonnes of biomass residue per day. Thus, the first

collection run yields a performance ratio (EROEI) of 1.05 tonnes per km traveled. Recall, that EROEI has175

been adjusted for the energy spent during collection. Similarly, the performance of collection runs 2, and 3

are shown in the corresponding rows of Table 3. Notice the big drop in the EROEI between the first and

second collection runs. This is attributed to the fact that the sawmills closest to the depot are nearly depleted

after the first collection run. Sawmill nodes S22 and S2 are repeatedly visited as they are relatively close to

the depot and have a large production of residues with a low moisture content. The QSA solution collects on180

average 172.4 dry tonnes of biomass residue per day. This gives an EROEI of 0.44 tonnes per km traveled.

A computation time of 3.91 minutes was required by the QSA method to solve this problem running on an

Intel Xeon 3.6 GHz processor.

The cumulative distribution function of the EROEI for the QSA solution is shown in Figure 3a. Similarly,

the distribution of the amount of residue collected is shown in Figure 3b. As can be seen in these figures,185
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the QSA solution has an EROEI that ranges between 0.40 and 0.50 and consistently meets at least 90%

of the demand (i.e., 162 dry tons). In addition, we can see from Figure 3b that the QSA solution seldom

exceeds the demand by much. The corresponding distributions obtained using the mean scenario (MS) are

also included for comparison. The MS solution is obtained by taking the expected value of the sampled

scenarios and solving the resulting deterministic problem. As can be seen in Figure 3a, the QSA solution is190

able to consistently obtain a lower EROEI than that of the MS solution while meeting 90% of the demand

at least 90% of the time. Figure 3b shows that the QSA solution stays much closer to the target demand

than that of the MS solution, which has a tendency to over collect.

To validate the QSA solution, we applied it to a new set of 1000 randomly generated scenarios and

evaluated the performance of its solution based on the EROEI and total dry tonnes of delivered biomass to195

the depot. The probability density function for each of these performance measures are shown in Figures

4a and 4b, respectively. In cross-validation, the QSA solution obtained a 90% probability of collecting 90%

of the demand and a median EROEI of 0.44 residue dry tonnes per km traveled. On the other hand, the

MS solution obtained a 90% probability of collecting 95% of the demand and has a median EROEI of 0.41

residue dry tonnes per km traveled. As can be seen in Figure 4b, the MS approach tends to excessively over200

collect and has an estimated 75% probability of exceeding the required demand of 180 dry tonnes of residue

per day. In contrast the QSA approach collects between 162 and 180 dry tonnes of residue 73% of the time

(area enclosed between the dotted lines in Figure 4b) and only exceeds the demand 17% of the time. This is

a convenient feature of the QSA solution because the depot has a limited storage capacity and throughput.

4. Conclusion205

In this case study, a simulation approach was used to solve a stochastic periodic vehicle routing problem,

where the goal is to efficiently collect biomass residues from a set of sawmills. Several key factors, such as

the moisture content and the amount of available residues are uncertain. The optimal routing schedule was

obtained by maximizing the energy returned on energy invested (EROEI). Our approach was found to be

more efficient in terms of minimizing the EROEI and more accurate and precise in terms of meeting the daily210

demand than by simply solving the expected value or mean scenario.
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