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Abstract

Supply chain optimization for biomass-based power plants is an important research area due to greater

emphasis on renewable power energy sources. Biomass supply chain design and operational planning models

are often formulated and studied using deterministic mathematical models. While these models are beneficial

for making decisions, their applicability to real world problems may be limited because they do not capture

all the complexities in the supply chain, including uncertainties in the parameters. This paper develops

a statistically robust quantile-based approach for stochastic optimization under uncertainty, which builds

upon scenario analysis. We apply and evaluate the performance of our approach to address the problem of

analyzing competing biomass supply chains subject to stochastic demand and supply.

Keywords: renewable energy systems, biomass, optimization, uncertainty, scenario analysis, stochastic

approximation, robust estimation

1. Introduction

Presently, fossil fuels such as oil, coal and natural gas are the prime energy sources of the world. However,

it is anticipated that these sources of energy will be depleted within the next 50 to 100 years [8, 9, 17]. The

world is consuming more fossil fuel energy then is being discovered and the reserves of energy that can be

cheaply mined have reached peak production [8, 9, 17]. Moreover, the expected environmental damages, such5

as global warming, acid rain and urban smog due to the production of emissions from the combustion of

fossil fuels have compelled the world to reduce carbon emissions and shift towards utilizing sustainable and

renewable energy sources [17]. Biomass has been recognized as a promising alternative energy source, since

it is both renewable and CO2 neutral [12]. However, renewable energy production from biomass faces many

challenges due to uncertainty of its demand and continuous supply [6, 22]. The purpose of this study, is to10

develop and apply a stochastic optimization model to analyze the impact of inter-power plant competition

for the available feedstock on cost structures.

Conventional optimization based approaches for the design of biomass supply chain networks assume

that the operational characteristics, and hence the design parameters are deterministic [1, 11]. However,
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critical parameters, such as customer demand, prices, and resource capacities are usually uncertain. Sources15

of uncertainty in decision outcomes are typically due to three different conditions: (1) lack of knowledge,

such as the quality characteristics of available biomass feedstocks; (2) noise, such as measurement errors

or incomplete data; and (3) events that have not yet occurred, such as future energy demand or feedstock

supply shortages [13]. Uncertainty creates a range of concerns regarding the volatility of one decision versus

another.20

Common approaches to solving constrained optimization problems under uncertainty assign a probability

distribution to the unknown model parameters and maximize the expected value of an objective function

subject to constraints, which are satisfied on average or with high probability [16, 21, 5]. The expected value

of a random variable, X, written E(X), is equal to the weighted average of the outcomes of the random

variable, where the weights are given by the probabilities of those outcomes. Use of the expected value for25

selecting the best solution to a stochastic optimization problem explicitly assumes that the decision maker

is primarily interested in the average behavior of the performance metric and is not concerned with other

features of its distribution, such as quantiles or variance [2].

Dembo [5], proposed an extension of stochastic optimization, called scenario analysis (SA), in which uncer-

tainties are modeled using discrete probability scenarios that approximate the true probability distributions.30

The realism of the scenarios chosen and the accurate estimation of the corresponding probabilities enhance

the model performance. However, the SA approach generally leads to improved performance of the solution

even if there are errors in the estimations of both the actual scenario outcomes and their probabilities [3, 24].

In this paper, we describe a modified scenario analysis approach that is applicable to a wide range of

constrained optimization problems and is easily implementable. A preliminary variant of this methodology35

was motivated by a renewable energy research problem on biomass supply chain optimization [23]. Rather

than optimizing the average performance of a solution, we optimize its corresponding quantiles across a set of

sampled scenarios. The solutions obtained are statistically robust because they are not easily influenced by

extreme scenarios that have a low probability of occurring. An advantage of our approach is that uncertainties

do not need to be expressed in terms of a finite number of scenarios declared in advance. Instead, scenarios are40

sampled according to their estimated probability distribution. Another feature of our approach is the ability

to handle large complex stochastic problems by compiling them into a set of similar deterministic constraint

problems, which can be efficiently solved in parallel. This compilation allows us to use existing constraint

solvers without any modifications, as well as call upon the power of hybrid solvers for non-conventional

optimization problems.45

The remainder of this paper if organized as follows. In Section 2, we provide a brief discussion of scenario

analysis and potential advantages over the more familiar mean-based stochastic optimization approach. In

Section 3, we present our quantile-based scenario analysis (QSA) approach for stochastic optimization. In

Section 4, the motivating problem of this paper is formulated as a QSA problem. In Section 5, results

are presented and compared to those obtained using standard alternative optimization techniques. Finally,50
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Section 5 provides a summary and concluding remarks.

2. Constrained Optimization under Uncertainty

This section provides a brief introduction to stochastic optimization and scenario analysis. For more

details, the reader may consult the work of Birge and Louveaux in [4] and references therein.

2.1. Stochastic Optimization55

Most systems that need to be controlled or analyzed usually involve some level of uncertainty about the

values to assign to the model parameters, if not about the model structure itself. In many situations not

so much is lost by selecting a suitable model to represent the system and assigning reasonable values to the

model parameters. In other circumstances, ignoring uncertainty may invalidate implications one may wish to

draw from the analysis. Uncertainty can be incorporated into the problem in many ways. One that has been

used successfully in a wide variety of situations is to model the uncertain quantities as random variables and

assign them appropriate probability distributions. In the case of decision making under uncertainty, this leads

us to stochastic optimization. Given a probability space (Ω, p), where Ω is the set of possible realizations of

the random vector ω and p is the associated probability density function, the stochastic optimization problem

may be expressed in the standard inequality form of Equation (1).

maximize
x

E{J(x,ω)} =
∫
Ω

J(x,ω)p(ω)dω

subject to E{Ck(x,ω)} ≤ 0, k = 1, 2, . . . ,m
(1)

where the objective function, J (x,ω), and constraint functions, Ck (x,ω), depend on the optimization

variables x and the values of the random parameters ω ∈ Ω. Thus, J (x,ω) and Ck (x,ω), k = 1, 2, . . . ,m,

are explicit functions of the optimization variables, for a given realization of the random parameters ω

with probability function p(ω). Here, m represents the total number of constraints, some of which may be

deterministic and thus do not depend on ω. The goal is to choose x, such that the constraints are satisfied on60

average and the objective is large on average over the probability space Ω. A common stochastic optimization

approach, known as the sample average approximation (SAA) [18], is to pick sufficiently many independent

samples from Ω and use them to approximate p(ω) and correspondingly the expected value functions shown

in Equation (1). The SAA approach provides a solution that is not optimal for any given scenario, but

optimal on average. Thus, it does not provide any assurance on how well the solution will perform (in terms65

of maximizing the objective function and satisfying the constraints) for different realizations of the random

parameters ω. The scenario analysis approach described below addresses this issue.
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2.2. Scenario Analysis

As described in the seminal paper by Dembo [5], the multi-scenario stochastic optimization problem is

given by:
maximize

x
J(x,ω) (uncertain objective)

subject to Cu(x,ω) ≤ 0, (uncertain constraints)

Cd(x) ≤ 0 (deterministic constraints),

(2)

where a scenario is defined as a particular realization, ωi, of an uncertain scenario ω ∈ Ω, where i ∈ I, and

I is an index set whose elements label (or index) specific members of the set Ω. Note that for each realized70

scenario, ωi ∈ Ω, the above problem reduces to a deterministic subproblem. It is evident that the solution of

a single scenario poses no difficulty. On the other hand, solving each subproblem does not provide a definite

way of determining what a reasonable solution to the original stochastic problem should be.

A fundamental issue in scenario analysis is how to combine the solutions from different scenarios to form

a single reasonable solution to the underlying stochastic problem. As described by Dembo [5], a common

coordination model that combines the scenario solutions into a single feasible solution is given by:

x̂ = argmax
x

∑
i∈I
||J(x,ωi)− vi||2p(ωi) +

∑
i∈I
||Cu(x,ωi)− ci||2p(ωi)

subject to Cd(x) ≤ 0,
(3)

where vi = J(xi,ωi), ci = Cu(xi,ωi) and xi is the optimal solution of scenario ωi. The coordinating model

incorporates the random constraints into the objective function as a penalty. Associated with each scenario,75

ωi, is a probability p(ωi). This model attempts to track the scenario solutions as closely as possible while

still maintaining feasibility. We may think of the solution, x̂, as a centroid of the various scenario-solutions,

or simply as the average solution. In short, the scenario optimization approach to stochastic optimization

proceeds in two stages:

(a) Compute a solution to the deterministic problem for each scenario.80

(b) Solve a coordinating model to find a single feasible policy.

The problem referred to in stage (a) could be a linear, nonlinear or mixed-integer programming problem

[5]. Alternatively, it could consist of a system of equations with stochastic coefficients or be any function

dependent on stochastic parameters [5]. Nevertheless, for any assumed scenario, this problem is deterministic

and can be solved using known algorithms [5].85

The scenario analysis approach assumes that the number of scenarios is finite and that their corresponding

probabilities are known. However, in practice this may not be the case, because the scenarios may come from

a continuous distribution or their distribution (discrete or continuous) may not be known. Furthermore,

although the scenario analysis approach attempts to find a solution that performs well across the scenarios, a
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more accurate and comprehensive comparison of the performance distribution associated with each candidate90

solution is desirable.

3. QSA Algorithm Description and Mathematical Formulation

3.1. QSA Algorithm

Our approach examines the performance of a solution xi, for a given scenario, ωi ∈ Ω, across other

scenarios in Ω. Specifically, we evaluate the performance of xi at a scenario ωj , i, j ∈ I, based on two

criteria: (1) its objective function value J(xi,ωj), and (2) its constraint performance functions defined as

ψk(xi,ωj) = Ck(xi,ωj)+, k = 1, 2, . . . ,m. (4)

The exponent (+) indicates that only positive values are considered. The constraint performance functions

express the magnitude of the deficiency of each unsatisfied constraint.95

Our approach uses the concept of quantile of a distribution. A quantile, qα of a distribution is a value

which divides the distribution such that there is a given proportion, α of values below the quantile. For

example, the median is the 0.5 quantile representing the central value of the distribution, such that half the

values are less than or equal to it. The proposed approach is as follows. For each scenario solution xi, i ∈ I,

we define the random variable J(xi,ω) with a cumulative distribution function (CDF) denoted by Fxi
, and

the random variables ψk(xi,ω), with CDFs denoted by Gxik, k = 1, 2, . . . ,m. The CDFs Fxi
and Gxik

convey the overall objective and constraint performance of the solution xi across scenarios, respectively. We

consider coordination models of the following form

maximize
i∈I

f(F−1
xi

(t)),

subject to gk(G−1
xik

(t)) ≤ 0, k = 1, 2, . . . ,m
(5)

that are based on different functionals of the quantile functions F−1
xi

and G−1
xik

. For example, if we are

interested in maximizing a weighted average of the quantiles of the objective and constraint distributions,

then we may wish to solve the following coordination model

maximize
i∈I

∫ 1

0
F−1

xi
(t) · φ0(t)dt

subject to
∫ 1

0
G−1

xik
(t) · φk(t)dt ≤ γk, k = 1, 2, . . . ,m,

(6)

where the functions φ0(t) and φ1(t) are weighting functions, which must be positive and integrate to unity over

the range 0 to 1 and γk are appropriate tolerances. This formulation of the problem attempts to maximize

a weighted average of the quantiles of the objective function, subject to satisfying a weighted average of the

quantiles of the constraint performance functions, also called a risk spectrum [19]. In practice, the CDFs

5



Fxi
and Gxik are unknown and may be estimated using Monte Carlo simulation. Assuming that we are able100

to sample from the probability space, (Ω,P ), of scenarios, then Fxi
and Gxik may be estimated using the

algorithm outlined in Algorithm 1. A visual representation of the procedure used to obtain the distribution

of the objective function, Fxi
, is shown in Figure 1. A similar procedure is applied to obtain the distribution

of the constraints, Gxik.

Once the deterministic solutions to the sampled scenario problems have been calculated, the QSA method105

can be used to obtain solutions with distinct probabilistic characteristics without having to perform any

additional optimization.

Algorithm 1: QSA Algorithm
for i in 1 to n do

// sample a scenario from Ω

ωi ∈ Ω
// solve the deterministic subproblem

xi = argmax
x

J(x,ωi) subject to Ck(x,ωi), k = 1, 2, . . . ,m

end
// evaluate each scenario solution across all sampled scenarios

for i in 1 to n do
for j in 1 to n do

hij = J (xi,ωj)
for k in 1 to m do

cijk = ψk (xi,ωj)
end

end
end
// estimate the objective and constraint CDFs for each solution

for i in 1 to n do

F̂xi
(t) = 1

n

n∑
j=1

I (hij ≤ t)

for k in 1 to m do

Ĝxik(t) = 1
n

n∑
j=1

I (cijk ≤ t)

end
end
// obtain the QSA solution, for example

x∗ = argmax
i∈{1,2,...,n}

∫ 1
0 F
−1
xi

(t) · φ0(t)dt

subject to∫ 1
0 G

−1
xik

(t) · φk(t)dt ≤ γk, k = 1, 2, . . . ,m
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Figure 1: Diagram of the QSA Approach

3.2. Stopping Rule

A drawback of most metaheuristics is the absence of an effective stopping criteria [14]. Most methods

stop after a given number of iterations or a maximum number of consecutive iterations is performed without110

improvement in the best known solution. In this section, we present a probabilistic stopping rule for the

QSA algorithm when solving problems of the form specified in Equation (5).

Let x̂ be the QSA solution obtained using a set, Ω1 ⊂ Ω, of n1 realized scenarios. Let ρ be the probability

that a randomly chosen scenario from the set Ω, whose deterministic solution, x̃, satisfies the constraints

gk(G−1
x̃k (q)) ≤ 0, k = 1, 2, . . . ,m, in Equation (5) and has a better performance over the set Ω1 than that of x̂.

We propose a stopping rule based on statistical evidence that ρ < ρ0, for some specified value ρ0. We sample

an additional set of n2 � n1 independently and identically distributed scenarios, Ω2 ⊂ Ω. Let 0 ≤ N ≤ n2

be the number of sampled scenarios in Ω2 with solutions that have a better performance over the set Ω1

than x̂. Suppose that the observed value of N is k. Our stopping rule tests the hypothesis H0 : ρ ≥ ρ0 vs.

H1 : ρ < ρ0 as follows. We reject H0 at level α if PH0(N ≤ k) ≤ α, for ρ ≥ ρ0. Under, H0 : ρ ≥ ρ0, N follows

the Binomial distribution, Bin(n2, ρ) with ρ ≥ ρ0. It can be shown [10] that

sup
ρ≥ρ0

P (Bin(n2, ρ) ≤ k) = P (Bin(n2, ρ) ≤ k) =
k∑
i=0

(
n2

i

)
ρi0(1− ρ0)n2−i (7)

and we reject H0 : ρ ≥ ρ0 in favour of H1 : ρ < ρ0 at level α if the RHS of Equation (7) is less than α, where

α is a specified small probability, such as 0.05 corresponding to a 95% confidence level.

4. QSA Formulation of the Competing Biomass Supply Chains Problem115

To investigate the performance of the QSA approach for energy supply chain design and optimization

under uncertainty, we discuss a supply chain network design problem for supplying forest biomass feedstock

to three competing power plants within a study region. We assume that the power plant locations are given,

and that they utilize only one type of feedstock, namely forest harvest residue (FHR), which includes tops
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and branches and unmerchantable wood left after stand harvesting. Each power plant is associated with an120

annual energy demand expressed in terms of giga.

The area of the study region is 400 km2 and is divided into 625 forest cells representing 16 km2 each.

The grid cells have an annual technical availability of FHR that is computed as a product of the harvesting

factor and the theoretical availability of FHR at each cell. The harvesting factor is a value between 0 and 1,

which evaluates the harvesting capability of a grid cell. The FHR available at each grid cell is also associated

with a wet basis moisture content. The wet basis moisture content is used to describe the water content of

biomass and is defined as the percentage equivalent of the ratio of the weight of water to the total weight of

the biomass. When it comes to biomass, the higher the moisture content the lower the net energy content.

The energy content of a wet ton of FHR was calculated using Equation (8), which expresses the relationship

between lower heating value, l, and wet basis moisture content, m, as an average for wood in terms of BTU

per ton [15].

l(m) = (8660− 9712m)× 2240 (8)

The constants 8660 and −9712 in Equation (8) are in units of BTU per lb and represent the estimated

average higher heating value of wood (across several species), and the effect of the moisture content on the

lower heating value of wood, respectively. The multiplication factor 2240 is the conversion factor from lb to

long ton (t).125

The cost of procurement of a green ton of biomass was calculated based on processing and transportation

costs. The processing cost includes harvesting, grinding, chipping and piling of FHR. The transportation

cost from a forest cell to a power plant was assumed proportional to the distance between them. The vehicle

considered for transporting forest biomass feedstock is a tractor-trailer with a 53-foot semitrailer and a

payload of 40.55 tons. A cost of $5.24 per green ton (gt) was included to account for loading and unloading130

operations. The charge-out rate for a biomass truck with operator was fixed at $85 per hour (h). An average

driving speed of 50 km/h was assumed. With this information, the cost of transporting forest biomass from

each road cell of the study region to the three power plants was established. The remaining parameters are

subject to random variability: biomass availability per forest cell; harvesting factor per forest cell; processing

cost per forest cell; average FHR moisture content per forest cell; energy demand at each power plant.135

The random parameters are assumed to be independent and normally distributed with mean and standard

deviations given in Table 1. A Gaussian random field with an exponential correlation function was used to

model the spatial dependence in FHR availability and the moisture content between grid cells, as shown in

Figures 2 and 3 with respect to the location of the three biomass plants. Realizations of the values of the

random parameters represent specific scenarios. For a single scenario, the parameters, indices and variables140

used for developing the optimization model are listed in Table 1, with random parameters being assigned

normal distributions.

The objective function, which identifies the FHR catchment area of each power plant that minimizes the

overall procurement cost, is specified in Equation (9) below. The constraints used in the model are specified
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Table 1: Optimization Model Notation

Symbol Description Units Value/Distribution

Sets
M : set of power plants – {1, 2, 3}
U : set of forest cells – {1, 2, . . . , 160000}

Indices
m: power plant – m ∈M
u: forest cells – u ∈ U

Parameters
λ : load/unload overhead $ · gt−1 5.24
α: harvesting factor % N(61, 5)
β: processing cost at roadside $ · gt−1 N(26, 3)

ε: average driving speed of truck km · hr−1 50
ν : truck capacity gt 40.55
δm: annual energy demand of each power

plant
MMBTU N(850000, 16000)

N(1100000, 20000)
N(1300000, 24000)

θu: availability of FHR in the uth forest cell gt N(4900, 280)
ηu: wet basis moisture content of FHR in

the uth forest cell
% N(50, 3)

dmu: distance from the uth forest cell to the
mth power plant

km Euclidean distance

τmu: charge out rate for a truck driver $ · hr−1 85
Variables

xmu : amount of annual FHR harvested from
the uth forest cell for the mth power
plant

gt –
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in Equations (10) to (12). To use a more compact notation, let x = (x11, x12, . . . , xmu) represent the vector

of decision variables and ω be the vector of model parameters.

minimize
x

J(x;ω) =
∑
m∈M

∑
u∈U

xmu ×
(
β + λ+ 2dmu × τmu

ν

)
(9)

subject to
∑
u∈U

l(ηu)× xmu ≥ δu ∀m ∈M (10)

∑
m∈M

xmu ≤ ϑus ∀u ∈ U (11)

xmu ≥ 0 ∀(m,u) ∈M × U (12)

The R package “Rglpk”, which is an R interface to the GNU linear programming Kit (GLPK), was used to

solve the resulting deterministic linear optimization scenario subproblems [7]. GLPK is open source software

for solving large-scale linear programming (LP), mixed integer linear programming (MILP) and other related145

problems.

In accordance with the QSA coordination model described in Equation (6), we seek a solution that

minimizes the overall FHR procurement cost, subject to satisfying at least (1 − γ1) × 100% of the energy

demand. We give an exponential increase in importance to the upper quantiles of the stochastic cost function

and define the objective weight function, φ0, in Equation (1) as

φ0(t) =


et

(et−1) if 0 ≤ x ≤ 1

0 othewise.
(13)

This resembles a minimax optimization, but instead of minimizing the worst-scenario performance we mini-

mize a weighted average of the performances across all scenarios and assign larger penalties to less desirable

performances. We define the constraint weight function, φ1, in Equation (1) as

φ1(t) =

1 if t = q1

0 othewise,
(14)

where the parameter 0 < q1 < 1 represents the probability of satisfying the demand constraint. For this

problem, the QSA penalty function, used in evaluating the ith solution in the jth scenario, is defined as

follows:

C1 (xi,ωj) = 1
3

3∑
m=1

(
δmi − ymij

δmj

)+
, (15)

where δmi is the energy demand of the mth power plant in the jth scenario, and ymij is the energy produced

by the mth power plant when applying the ith solution to the jth scenario. Here, the exponent (+) indicates

that only positive values of the parenthetical expression are considered. In other words, we do not penalize
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for exceedance of the demand. Equation (15) calculates the overall percentage of unfilled demand across the150

three power plants for a given solution and scenario.

Notice that a larger demand will typically incur a greater procurement cost. Hence, it would be erroneous

to compare solutions in terms of the total procurement cost, because the demand is not fixed between

scenarios. A larger demand will typically incur a greater procurement cost. If FHR is to be used as a fuel,

its value lies in its energy content and not in its weight. In order to make valid comparisons between scenario

solutions, the procurement cost should be made relative to the amount of energy produced. To this end, the

total procurement cost of each solution and scenario combination is divided by the corresponding amount of

energy obtained from the procured FHR. Thus, for the proper comparison of solutions evaluated at different

scenarios we replace Equation (9) with

J̃(x;ω) = J(x;ω)∑
m∈M

∑
u∈U

l(ηu)× xmu
, (16)

which is in units of dollar per MMBTU.

5. Results

In this section, we evaluate the performance of the QSA approach for solving the stochastic optimization

problem described in Section 4. In particular, we want to examine (1) its ability to identify optimal solutions155

(2) its precision and accuracy and (3) its computational complexity and scalability. To this effect, we compare

the solution obtained by the QSA approach to that obtained by scenario analysis (SA) as described by Dembo

[5].

The QSA approach for this problem minimizes a weighted average of the quantiles of the procurement

cost, obtained across scenarios, according to the weight function given by Equation (13). We restrict attention160

to solutions that have a 90% probability of satisfying at least 95% of the demand across scenarios. Thus,

q1 = 0.05 in Equation (14). In contrast, the SA approach minimizes the coordination model given in Equation

(3), where J(xi,ωi) = J̃(xi,wj), Cu(x,ωi) = C1 (xi,ωj), and Cd(x) is the deterministic constraint given in

Equation 12. Minimization of the The SA coordination model was done using the spectral projected gradient

method for large-scale optimization with simple constraints implemented in the“BB” package in R [20].165

In order to asses the performance of the QSA approach, we compare its solution to that obtained using

the standard SA approach. It was found that even for this modest stochastic optimization problem, the

computational time of the SA method was so significant that it is almost time prohibitive to compute for

a large number of scenarios. Given this limitation of the SA approach, a total of n = 500 scenarios were

sampled from their underlying Gaussian distribution. A computation time of 119.7 and 1.3 minutes was170

required to solve this problem running on a 3.6 GHz Intel Xeon processor for the QSA and SA methods,

respectively. This tremendous savings in computational time is an enormous advantage of the QSA method.

To assess if the solution converged, we sampled an additional 200 scenarios and used the stopping rule of
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Equation (7) with ρ0 = 0.05. All of the 200 additionally sampled scenarios yielded solutions with lower

performance compared to that of the QSA solution, resulting in a p-value of 3.51 × 10−5. Therefore, we175

have strong evidence that the solution converged and reject the null hypothesis, H0 : ρ ≥ 0.05 in favor of

H1 : ρ < 0.05. In other words, we are confident that the QSA solution identified from the one thousand

sampled scenarios is among the top 5% of possible scenario solutions for this problem.

The optimal catchment areas identified by the QSA and SA solutions are shown in Figures 4 and 5,

respectively. The catchment area for the QSA solution is much more compact than that of the SA solution.180

The SA solution attempts to perform well on average. As a result, it tends to over collect in order to

compensate for extreme scenarios with very poor FHR availability. This phenomenon is illustrated very

clearly in Figure 5. Poor yields were simulated in several scenarios across the middle belt region of the study

region, which is why the SA solution tries to skip it over. These outlier scenarios had no influence on the

QSA solution, since it optimizes the quantiles of the objective and constraint distributions, which are much185

less sensitive to outliers than the mean. The CDF of the procurement cost obtained by the QSA and SA

solutions are shown in Figure 6. The x-axis of Figure 6 represents the cost of procurement in dollar per

MMBTU. Likewise, the empirical CDF of the constraint on the unfilled demand is shown in Figure 7. The

x-axis of Figure 7 corresponds to the overall percentage of unfilled demand, which was calculated using Eq.

(15). The y-axis of Figure 7 describes the probability that the overall percentage of unfilled demand will be190

less than or equal to the quantity on the x-axis. The distribution of the cost function of the QSA solution is

strictly less than that of the SA solution. Thus, the QSA solution consistently outperforms the SA solution

in terms of minimizing the cost in each scenario. The 0.90 quantile of unfilled demand constraint distribution

is 4.76%, which satisfies the requirement that it be less than 5.0%. The SA solution on average collects 22.7%

more FHR than the QSA solution to meet the same energy demand. Table 2 compares several quantiles of195

the cost distribution of the QSA and SA solutions.
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Table 2: Quantiles of the Cost Distribution of the QSA and SA Solutions

Quantile QSA SA
0.10 6.28 7.11
0.25 6.47 7.30
0.50 6.71 7.53
0.75 6.91 7.77
0.90 7.19 8.01

6. Conclusion

Standard approaches for optimization under uncertainty define the best solution as the one with the

best expected value of the performance metric, subject to satisfying a set of constraints. However, when

other statistics or attributes of the distribution of the objective function are more appropriate for comparing200

solutions (e.g. upper or lower quantiles, inter quartile range, overall dispersion, etc.), then the expected value

based approaches are not able to accommodate the selection needs.

We presented a robust quantile-based scenario analysis procedure (QSA) for optimization under uncer-

tainty. We applied our approach to address the problem of analyzing a system of biomass supply chains,

which are competing for the same feedstock, subject to stochastic demand and supply in addition to numerous205

constraints. In such circumstances, it is important to identify solutions that will, with high probability, meet

the energy demand and satisfy the problem constraints, for the majority of scenarios. The energy demand

and feedstock supply were considered uncertain, but with known distributions. Our method was able to

provide a solution that minimizes a weighted average of the procurement cost distribution, while satisfying

at least 90% of the energy demand with a probability of 95%.210

We compared the performance of the QSA approach to that of the classical SA approach for stochastic

optimization. Results show that the QSA approach is the best performing method in terms of computational

complexity and the percentage of scenarios solved optimally while satisfying the stochastic constraints.
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