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Performance Assessment of Cross-Directional
Control for Paper Machines

Qiugang Lu, Michael G. Forbes, R. Bhushan Gopaluni, Philip D. Loewen,
Johan Backstrom, and Guy A. Dumont

Abstract—The minimum variance controller (MVC) has been
extensively used as a benchmark in the performance assessment
of both univariate and multivariate control loops when the time-
delay is the fundamental performance limitation. In this paper,
the spatial and temporal performance limitations in the cross-
directional (CD) control of paper machines are analyzed. The
idea of minimum variance benchmarking is extended to the CD
process based on these performance limitations. Based on an
industrial CD controller, a user-specified benchmark, which is
more practical and less aggressive, is also proposed. In addition,
several related performance indices are proposed for the CD
process based on both the minimum variance benchmark and
the user-specified benchmark. Illustrative examples from a paper
machine simulator and industrial data sets are provided to show
the effectiveness of the proposed performance indices.

Index Terms—Performance assessment, minimum variance
benchmark, cross-direction processes, paper machine.

I. INTRODUCTION

THE function of a paper machine is to efficiently transform
a slurry of water and wood cellulose fibers into sheets of

paper. The array of actuators at the headbox across the paper
sheet is used to adjust the properties of the pulp distributed
across the paper sheet, and the array of sensors located at
the end of paper machine will measure the properties such
as basis weight, moisture, and thickness. A schematic of a
typical paper machine is illustrated in Figure 1. The goal is
to make the measured paper properties as close to desired as
possible by adjusting the actuators.

In the literature, the direction in which the paper sheet
travels is defined as machine direction (MD) and the di-
rection perpendicular to the sheet travel is defined as the
cross direction (CD), as shown in Figure 1. Compared with
MD control, CD control is much more complex due to the
characteristics associated with the CD processes [1], [2]. First,
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Fig. 1. The structure of a typical industrial paper machine with arrays of
actuators and sensors [29].

a typical industrial paper machine may be as wide as 10
meters with hundreds of actuator and measurement bins. If
modeled as a multivariable system, the huge dimension will
make the controller design a challenging problem [3]. Second,
due to the spatially-distributed nature of the CD process,
most CD process models are often ill-conditioned, and
consequently, a large portion of the eigenvector directions
with small eigenvalues are indeed uncontrollable [4]. Third,
the model uncertainty and the gain sign uncertainty associated
with the uncontrollable eigenvector directions make robust
stability especially difficult to achieve [5], [6]. So far, most
CD controllers are based on a model identified a priori from
experiments such as bump tests [7], [8]. Classical CD control
strategies include two dimensional loop shaping [28], CD
model predictive control (MPC) [38], and robust CD control
[9]. In these conventional CD control techniques, the quality
of the CD process model plays a vital role in determining
the closed-loop performance of control loops. However, as
the process operating conditions change [39], the quality of
the CD process model may deteriorate and consequently the
control performance will degrade. As a result, a new model
must be identified for the CD process. Therefore, it is desirable
to develop techniques to monitor the performance of CD
controllers using routine operating data.

When it comes to performance monitoring, a variety of
approaches have emerged since Harris first proposed using
the minimum variance controller (MVC) as a performance
benchmark [10]. The MVC benchmark is widespread since it
represents the minimum variance that a closed-loop system can
achieve when the time-delay is the fundamental performance
limitation. A time series model has to be fitted into the
measured output data and the first few coefficients are the
controller-invariant part (benchmark). The filtering and corre-
lating (FCOR) algorithm is proposed in [14] in which only
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the output measurements and the time delay are required to
calculate the minimum variance benchmark. Furthermore, the
MVC benchmark is extended from single-input single-output
(SISO) systems to multiple-input multiple-output (MIMO)
systems [11]–[13]. Note that for MIMO systems, the interactor
matrix has to be factored out as an analogy of the time-delay
for the SISO case in order to apply the MVC benchmark.
Moreover, it has been proved that the multivariate MVC is
able to achieve minimum variance in each individual output
channel provided the interactor matrix is simple or diago-
nal [14]. However, most MIMO systems under investigation
in performance monitoring are well conditioned with small
input and output dimensions. A suitable extension of MVC
benchmarking to the spatially distributed system, such as the
cross-direction of paper machines, has received relatively little
attention. The high dimensionality of measurements as well
as the poorly conditioned nature of the CD process model
presents significant challenges for performance monitoring
[39].

Nevertheless, in practice, most controllers implemented in
industrial processes differ from MVC due to the poor stability
margin and excessive actuation effort associated with achiev-
ing minimum variance. Therefore, more practical performance
monitoring benchmarks have been developed, such as gener-
alized MVC benchmark [31], linear quadratic control (LQG)
benchmark [14], model predictive control benchmark [24],
[32]–[34], user-specified benchmark [14], [15], etc. A user-
specified benchmark accounts for the practical situation where
the measured output variance is compared with a user-specified
target (can be defined based on the knowledge of actual
implemented controller) instead of a theoretical minimum.

So far there have been few articles focusing on the per-
formance assessment of CD processes. In [18], the deviation
of an implemented controller from the MVC is estimated
in terms of actual input-output data as well as the plant
model (known a priori). More practical considerations such as
actuator constraints are taken into account in the monitoring
process. In [19], the original CD model is decoupled into
a family of SISO systems and Harris’ MVC benchmark is
applied to each mode. More recently, the minimum variance
performance index for CD processes is proposed in [17]
which accounts for both time-delay performance limitations
in the temporal direction and spatial bandwidth performance
limitations in the spatial direction. A Bayesian method is em-
ployed in order to apply a Toeplitz structure to the coefficient
matrices for estimation in the time series model. However,
it is not straightforward to obtain a quantitative assessment
of the CD processes from the proposed methods. Thus it is
desirable to develop an intuitive performance index which
directly measures the control performance for the CD process.
Moreover, the performance index must be reasonably easy to
compute so as to implement it on-line.

However, control loop performance may deteriorate for
various reasons such as model-plant mismatch (poor quality
model), the change of disturbance characteristics, improper
tuning of controllers, etc. [32]. Among these factors the model-
plant mismatch (MPM) is vital since when the mismatch
degrades the control performance, system re-identification will

be required to produce an updated model and deploy it in
the controller. Note that it is not necessary to do model re-
identification for the other causes of performance degradation.
As system identification experiments are generally quite ex-
pensive and time-consuming [40], the sensitivity of the bench-
mark or performance index with respect to the model-plant
mismatch will be extremely important. An ideal performance
index would be an intuitive and reliable indicator sensitive
to mismatch, showing the current performance of control
systems. The engineers or automatic supervision systems can
make decisions as to whether further maintenance is necessary
based on this index. So far there have been several papers
investigating the effect on various performance indices caused
by MPM [16], [20]–[22]. However, for the CD process, there
is no relevant literature focusing on the relation between
performance indices and MPM. It is worth pointing out that the
most desirable case is to find a benchmark which is merely
sensitive to the model-plant mismatch while robust to other
factors such as disturbance model changes.

The objective of this paper is to propose performance
indices based on both MVC benchmark and user-specified
benchmark for the CD process, such that the MVC bench-
mark accounts for both the temporal and spatial performance
limitation. The performance index is expected to be sensitive
to MPM but insensitive to the spatial disturbances. The back-
ground knowledge on the variance partition and the process
model of the CD process are presented in Section II. In Section
III, the MVC benchmark for the steady-state profile and the
residual profile are derived. New performance indices based on
the MVC benchmark are proposed afterwards. Furthermore,
the MVC benchmarks are extended to the user-specified
benchmark in Section IV. A novel algorithm is developed
in Section V which significantly reduces the computational
complexity in the multivariate time series model estimation.
Finally, illustrative examples are provided to validate the
effectiveness of the proposed benchmarks. As the intended use
of the performance index is to reflect the quality of the model
used by the controller, it is desirable that the performance
index is insensitive to the spatial high-frequency disturbances
to avoid the drop of the performance index caused by the
disturbances. The sensitivity of proposed performance indices
to high frequency spatial disturbances is also analyzed in this
section.

II. PRELIMINARIES

In this section, a preliminary introduction to the commonly
used variance partition technique for the CD data set is
provided. The dynamic model and steady-state model for the
CD process are presented afterwards.

A. Variance Partition

A given data set Y ∈ Rm×N from a paper machine can
always be separated into machine-direction (MD), cross-
direction and residual components, where m is the number of
measurement bins, and N is the number of scans in the data set.
For details on the calculation and partitioning of variance, see
the Appendix A. In terms of CD control and CD performance
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Fig. 2. Illustration of the variation separation. (a): The steady-state profile plot. Note that the steady-state profile is replicated to have the same scan number
as the residual profile and CD profile; (b): The residual profile plot. Each CD bin has zero mean; (c): The overall CD profile. Note that the CD profile is
combined by the steady-state and the residual profile.

monitoring, the MD variation is not taken into account. The
data set without MD variation at time t is denoted as y(t)∈Rm

(CD profile), and we have

y(t) = yss + yr(t), (1)

where yss ∈ Rm is the steady-state profile, which is constant
over all scans. yr(t)∈Rm is the residual profile and is changing
over time. Figure 2 shows the graphs of the steady-state profile,
the residual profile and the CD profile. The process models for
the steady-state profile and the residual profile will be given
in the following subsection, and the motivation to treat them
separately will be presented in Section V.

B. Process Model

In the traditional CD control, the steady-state performance
is of great importance since most paper machines are
working in the regulatory mode at steady-state. The static
steady-state model of the CD process is expressed as,

yss = Guss + vss, (2)

where yss ∈ Rm is the steady-state controlled variable and
m is the number of data boxes. uss ∈ Rn is the steady-state
manipulated variable, where n is the number of actuator
zones. For typical paper machines, we usually have m >> n
and m is an integer multiple of n. G∈Rm×n is the steady-state
gain matrix and each column of G describes the sampled
spatial impulse response of a single actuator. Typically, G is
poorly conditioned and non-square with several times more
rows than columns. vss is the steady-state disturbance which
refers to a deterministic disturbance persistently acting on
the output, e.g., a spatial sinusoidal disturbance which is
not changing over time. For the CD process, the overall
disturbance is assumed to be a combination of the steady-
state disturbance vss and a filtered white noise vr(t), which
will be explained in (3).

When considering only the residual profile, we will have
the following model,

yr(t) = g(z−1)Gur(t)+ vr(t), (3)

where yr(t) = y(t)− yss can be considered as the deviation
of the process output from the steady-state value due to the

stochastic disturbances. Similarly, ur(t) = u(t)− uss,vr(t) =
v(t)− vss are the deviations of the manipulated variable and
disturbance from their steady-state values, respectively. g(z−1)
is usually a scalar transfer function representing the temporal
dynamics of the CD process. The variable z−1 represents the
unit back-shift operator. The output disturbance, vr(t) ∈ Rm,
is generally assumed to be filtered white noise. Note that the
subscripts r in (3) stand for the residual.

The scalar transfer function g(z−1) in (3) can further be
expressed as,

g(z−1) = z−d B(z−1)

A(z−1)
, (4)

where d stands for the time-delay and B(z−1) and A(z−1) are
scalar polynomials. Typically, the temporal model of the CD
process is assumed to be first order plus time-delay with unit
steady-state gain. Similarly, the stochastic disturbance vr(t)
in (3), is filtered white noise assumed to be temporally and
spatially separable, denoted as,

vr(t) =
C(z−1)

A(z−1)
φe(t), (5)

where C(z−1) and A(z−1) are scalar polynomials describing
the temporal filter while the constant matrix, φ , is used to
represent the spatial filtering of the white noise vector e(t). The
covariance matrix of the white noise vector e(t) is assumed
to be E[e(t)eT (t0)] = Σeδ (t− t0), where E is the expectation
operator, Σe is the covariance matrix and δ is the Dirac delta
function.

Remark 1: From the above description on the steady-state
and residual profiles, one is able to interpret each entry of the
steady-state profile yss as the mean of the corresponding output
channel (measurement bin). Each entry of the residual profile
yr(t) is the deviation of the profile from the corresponding
mean value.

III. THE MVC BENCHMARK FOR CD PROCESSES

In this section, the performance limitations for both the
steady-state model (2) and the residual dynamic model (3) are
illustrated. The MVC benchmarks for both models are devel-
oped analogously, and new performance indices are proposed
based on these benchmarks.
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A. MVC Benchmark for the Steady-State Profile

For the steady-state model (2), the optimal control input uss
which minimizes the output variance has the structure,

uss =−(GT G)−1GT vss, (6)

which is exactly the pseudo-inverse of G matrix. It has been
proved in [35] that if the controller has the structure (6) and
an integrator in the dynamic part, then the steady-state output
profile yss will contain no components in the column space
of G, which is regarded as the controllable subspace. If G
matrix is square and invertible, then the optimal input is able
to achieve zero steady-state output. Therefore, the structure
of G matrix limits the performance for the steady-state model
(2). For non-square G matrix with full rank, i.e., rank{G} =
min{m,n}, the output yss with minimal variance is,

yss = [I−G(GT G)−1GT ]vss. (7)

In order to demonstrate the controller form which is able to
achieve the minimal steady-state variance, we assume that the
controller K(z−1) has the following structure (refer to [35]),

K(z−1) = k(z−1)(GT G)−1GT . (8)

where k(z−1) is the scalar dynamic part of K(z−1). From (8),
the closed-loop sensitivity function is obtained as,

y(t) = [1+g(z−1)GK(z−1)]−1v(t). (9)

From singular value decomposition (SVD) of G, (9) is further
simplified as,[

yc(t)
yu(t)

]
=

[
1

1+g(z−1)k(z−1)
0

0 I(m−n)×(m−n)

][
vc(t)
vu(t)

]
,

(10)
where the subscripts c and u refer to spatially controllable and
spatially uncontrollable signals, respectively. If k(z−1) has an
integrator, at steady-state, (10) will become,[

yss,c
yss,u

]
=

[
0 0
0 I(m−n)×(m−n)

][
vss,c
vss,u

]
. (11)

It is clear that the MVC for the steady-state model (2) will
completely remove all disturbance components within the
controllable subspace. However, those disturbance components
within the uncontrollable subspace will not be affected by the
controller. Therefore, the spatially uncontrollable components
yss,u can be used as a benchmark for the MVC. Note that
the actual steady-state profile under a CD controller such as
CD-MPC (not spatial MVC) may have components left in the
controllable subspace.

B. MVC Benchmark for the Residual Profile

For the residual profile, in the spatial direction, as with
the steady-state case, due to there being more CD bins than
actuator zones, i.e., G is not square, not all of the directions
of the transfer matrix G are controllable. This means that it
is impossible to design a controller to reach zero error for
a given disturbance. Therefore, the structure of the G matrix
contributes to the spatial performance limitation in the CD
controller. In addition to the spatial performance limitation,

the residual profile (3) also suffers temporal performance
limitation due to the dynamics. In the temporal direction, the
time-delay forms the fundamental limitation on the controller
design, upon which various types of delay compensators arise
such as dead-beat controller, minimum variance controller,
Dahlin controller, etc.

For the disturbance model (5), from the Diophantine iden-
tity, we have

C(z−1)

A(z−1)
= F(z−1)+ z−d H(z−1)

A(z−1)
, (12)

where F(z−1) and H(z−1) are scalar polynomials, i.e.,

F(z−1) = f0 + f1z−1 + . . .+ fd−1z−d+1, (13)
H(z−1) = h0 +h1z−1 + . . .+hnhz−nh . (14)

Considering the profile at time t + d (supposing the current
time is t), from (12) we have

yr(t +d|t) = ŷr(t +d|t)+F(z−1)φe(t +d), (15)

where ŷr(t + d|t) represents the d-step-ahead prediction [23]
at t, namely,

ŷr(t +d|t) = B(z−1)F(z−1)

C(z−1)
Gur(t)+

H(z−1)

C(z−1)
yr(t). (16)

Note that the second term in (15) is the unpredictable future
profile due to the time delay, which is controller invariant. The
first term of (15) is controller-dependent and by minimizing
E[ŷr(t+d|t)ŷT

r (t+d|t)] we will achieve the minimum variance
of the residual profile. If the transfer matrix G in (16) is square
and invertible, it is possible to find an input sequence such that
ŷr(t+d|t)= 0. However, due to the special structure, G is often
non-square, and hence the minimum variance of ŷr(t +d|t) is
achieved by setting

ur(t) =−G† H(z−1)

B(z−1)F(z−1)
yr(t), (17)

where G† = (GT G)−1GT is the pseudo-inverse of G. It should
be noted that G† indeed represents the MVC in the spatial
direction due to the special structure of G (refer to (6) and
(11)) while H(z−1)

B(z−1)F(z−1)
denotes the temporal MVC due to time

delay. Therefore, (17) stands for the temporal and spatial MVC
for the residual model (3).

Based on previous observations, the profile at t +d in (15)
can be further decomposed as,

yr(t +d|t) = ŷr,c(t +d|t)+ ŷr,u(t +d|t)+F(z−1)φe(t +d)︸ ︷︷ ︸
controller-invariant

,

(18)
where the subscript c stands for spatially controllable, and the
subscript u refers to spatially uncontrollable part of yr(t+d|t),
where the controllable subspace is defined as the column space
of G, as for the steady-state case. It can be observed in (18) that
the last two terms are the controller-invariant, both spatially
and temporally, parts of the profile, and hence can be used to
define a benchmark for performance assessment. If the current
controller being implemented is MVC, then the first term on
the right hand side of (18) disappears.
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C. New Performance Indices

Based on the proposed MVC benchmarks for both the
steady-state profile and the residual profile in (7) and (18),
a new MVC performance index for the CD process can be
defined as

η1 =

trace
[

d−1
∑

i=0
FiΣeFT

i +Σŷr,u +diag(yss,uyT
ss,u)

]
trace(Σy,mse)

, (19)

where Fi = fiφ , Σŷr,u is the covariance matrix of the uncon-
trollable predicted profile ŷr,u, and diag(·) is a matrix formed
by the diagonal elements. For instance,

X =

[
x1 x2
x3 x4

]
, diag(X) =

[
x1 0
0 x4

]
.

The term in the denominator Σy,mse is defined as,

Σy,mse = Σyr +diag(yssyT
ss), (20)

where Σyr is the covariance matrix of the residual profile,
each element on the diagonal represents the variance of an
individual output channel of yr. For the term diag(yssyT

ss), each
element stands for the corresponding mean deviation from
zero of each individual output channel. In (19), the first term
of the numerator ∑

d−1
i=0 FiΣeFT

i represents the covariance of
unpredictable components in the residual profile. The second
term Σŷr,u indicates the covariance of the spatially uncontrol-
lable predicted residual profile. The third term diag(yssyT

ss)
stands for the spatially uncontrollable portion of the steady-
state profile. Thus the numerator of (19) specifies the measure
of both the residual MVC benchmark (18) and the steady-state
MVC benchmark (7). On the other hand, the denominator of
(19) represents the overall mean square error (MSE) of the
output profile. Hence, the new MVC performance index η1
is the ratio between the covariance of the benchmark of y(t)
and its total variance (see Appendix A). If the implemented
controller is the MVC, the index η1 will be equal to one as
the measured output y only contains the uncontrollable compo-
nents, which are exactly the terms shown in the denominator
of (19). Otherwise, η1 will be less than one and smaller value
of η1 implies worse control performance.

From the performance index in (19), we can see that
one has to separate the spatially uncontrollable components
ŷu(t) from ŷ(t) in (18) in order to evaluate the benchmark.
Besides, this performance index takes the spatially uncon-
trollable components into account. In industrial CD control
systems, the spatially uncontrollable components of the
disturbances almost remain untouched. Therefore, we expect
the performance index (19) to be sensitive to high-frequency
spatial disturbances. If there is a great amount of spatially
high-frequency disturbances (beyond the spatial bandwidth)
coming in, the performance index (19) will be inflated by these
high-frequency components, and therefore the performance
index will be always close to one (this will be illustrated
in the simulation part). In this case, the performance index
η1 becomes incapable of detecting the performance drop. An
alternative is to separate the white noise e(t) into spatially

uncontrollable components eu(t) and controllable components
ec(t), then (18) can be rewritten as,

yr(t +d|t) = ŷr,c(t +d|t)+F(z−1)φec(t +d)

+F(z−1)φeu(t +d)+ ŷr,u(t +d|t)︸ ︷︷ ︸
yr,u(t+d|t)

, (21)

where F(z−1)φeu(t + d|t) and ŷr,u(t + d|t) are combined as
yr,u(t+d|t), the uncontrollable parts of yr(t+d|t). Specifically,
define the projection operators Pc and Pu which project
the profile into the spatially controllable and uncontrollable
subspaces, respectively. For the column space framework, Pc
and Pu are defined as,

Pc = (GT G)−1GT , Pu = I− (GT G)−1GT . (22)

Then we have,

yr,u(t +d|t) = Puyr(t +d|t), yss,u = Puyss. (23)

From (23) one can see that the spatially uncontrollable com-
ponents of both the steady-state profile and the residual profile
can be extracted by using the operator Pu. In order to solve
the problem with the performance index (19) being sensitive to
spatially high-frequency disturbances, the following modified
performance index is suggested,

η2 =

trace
[

d−1
∑

i=0
FiΣec FT

i

]
trace(Σyc,mse)

, (24)

where Σec =E[eceT
c ] is the covariance matrix of the white noise

within the spatially controllable subspace. The covariance
matrix in the denominator is further expressed to be,

Σyc,mse = Σyr,c +diag(yss,cyT
ss,c), (25)

where Σyr,c is the covariance matrix of the spatially controllable
residual profile. The performance index (24) compares the
covariance of the unpredictable disturbance within the control-
lable subspace with the mean square error of the controllable
output profile. This performance index is not sensitive to high-
frequency spatial disturbances since the spatially uncontrol-
lable components have been removed before calculating the
performance index.

Remark 2: Note that the numerator of (24) includes only
the residual part, which makes sense since if the implemented
controller has the spatial MVC structure (6) and an integrator,
then the components of the steady-state profile within the con-
trollable subspace (the steady-state benchmark) will be zero.
However, since most implemented controllers are not MVC,
there will be components left in the spatially controllable
subspace, which explains the steady-state terms in (25).

Remark 3: The motivation of modifying performance
index η1 into η2 is as follows. If large spatial steady-state
disturbance is present in the output, e.g., spatial sinusoidal
disturbance with frequency beyond the spatial bandwidth,
both the numerator and the denominator of η1 will be
inflated. Consequently, η1 will be unable to assess the
controller performance as it will be always close to one,
independent of whether the controller is performing well
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or not. For η2, the spatially uncontrollable components
are removed from the steady-state profile and the residual
profile. In other words, η2 is indeed comparing the spatially
controllable, temporally uncontrollable residual profile with
the overall spatially controllable output profile. As a result,
the peformance index η2 will be able to reflect the per-
formance of the controller even with the presence of large
high-frequency steady-state disturbances.

IV. USER-SPECIFIED BENCHMARK

It has been well known that for control loops MVC requires
aggressive control actions and lacks robustness to model
uncertainties. Consequently, MVC is not widely used in the
process industry. In practice, to guarantee the robust stability
and performance, the implemented controllers are much
more sluggish than the MVC. If the MVC is still used as the
benchmark, then most industrial controllers will show very
low performance index even though the underlying control
loop is indeed operating with satisfactory performance.
In such cases, the observation of low performance index
based on MVC benchmark does not necessarily imply poor
controller design. Therefore, it is important to develop
practical benchmarks based on the specific controller that
is implemented on the process. The user-specified benchmark
is the outcome of this idea, where a filter is defined as the
desired closed-loop behavior and a parameter in the filter can
be tuned to change the aggressiveness and conservativeness of
the benchmark. In this section, the user-specified benchmark
will be adapted to the CD process to make our benchmark
more realistic.

For the CD process, we note that the spatial part of the
MVC, G† in (17), removes the components of the disturbance
profile within the subspace spanned by the columns of G.
However, due to the spatially-distributed nature, the G matrix
for most CD processes has a large condition number. The ill-
conditioned property of G implies that some of the singular
values are vanishingly small. Therefore, the corresponding
singular vector directions are considered uncontrollable and
avoided in the CD controller so as to ensure robust stability
and acceptable actuator action. It is therefore more realistic
to select those (pseudo) singular vector directions (or spatial
frequencies from the perspective of the Fourier matrix trans-
form) with significant mode gains and without wrong signs as
controllable directions [36], which typically corresponds to the
low spatial frequency range (specified by spatial bandwidth in
this paper).

The selection of the desired spatial benchmark is not fixed
depending on the specific CD controller that is being used.
For instance, if we are using CD MPC, we may choose a
spatial frequency dependent sensitivity function as the bench-
mark, which can be obtained from the steady-state weighting
matrices in the objective function when there are no active
constraints. In this paper, for simplicity, we choose the esti-
mated spatial bandwidth as the spatial benchmark, which can
be approximated from the spatial response width.

For the spatial bandwidth, the mathematical operators sepa-
rating the spatially controllable and uncontrollable components

Pc,user and Pu,user are constructed as,

Pc,user = PT
c Pc, Pu,user = I−PT

c Pc, (26)

where Pc = [P(1 : r, :) 0 P(m− r + 2 : m, :)]1, P is the m-
dimensional Fourier matrix and in Matlab it can be defined as
P = f f t(eye(m))/sqrt(m). r is the selected spatial bandwidth.
Notice that the selection of P will affect the performance
index but this effect will be so small that the decision
(e.g. as to the presence or not of MPM) based on the
performance index will not be influenced. Choosing P as the
Fourier matrix is for the sake of being consistent with the
definition of spatial bandwidth which is used in the tuning
of CD controllers and expressed in the frequency domain.
Moreover, it is more intuitive for the users to specify the
desired spatial bandwidth by choosing the Fourier matrix.
According to the rule-of-thumb proposed in [37], r can be
determined directly with the knowledge of spatial response
width. The spatially controllable components, for both residual
and steady-state profile, are

yss,user = Pc,useryss, yr,user(t) = Pc,useryr(t). (27)

In the temporal direction, when the implemented controller
is not MVC, the controllable (either from (22) or (26)) residual
profile yr,c(t) can be expressed as the impulse response form,

yr,c(t) = f0ec(t)+ f1ec(t−1)+ . . .+ fd−1ec(t−d +1)+
fdec(t−d)+ fd+1ec(t−d−1)+ . . . . (28)

For the temporal MVC, there will be no terms remaining after
the first d terms in the time series model (28). The temporal
user-specified term (scalar) GR(z−1) can be used to define a
desirable form for the remaining terms such that,

yr,c(t) = f0ec(t)+ . . .+ fd−1ec(t−d +1)+GR(z−1)ec(t−d).
(29)

The user-specified term GR(z−1) can be selected as [14],

GR(z−1) =
[
1−GF(z−1)

]
R(z−1), (30)

where GF(z−1) is the desired complementary sensitivity func-
tion with the first order form,

GF(z−1) =
1−αR

1−αRz−1 , (31)

and αR is the calculated via the desired closed-loop time
constant τdes,

αR = e−
Ts

τdes , (32)

where Ts is the sampling time. R(z−1) is from the dynamic part
of the disturbance model (5) via the Diophantine decomposi-
tion (12), R(z−1) = H(z−1)/A(z−1). By combining the spatial
user-specified controllable and uncontrollable operators (27)
and the temporal user-specified term (30), the user-specified
counterpart of η2 can be obtained as follows,

η2,user =

trace
[

d−1
∑

i=0
FiΣeuser F

T
i +Σuser

]
trace(Σyuser,mse)

, (33)

1Note that the colon follows Matlab’s notation. P(1 : r, :) represents the first
r columns of P, and P(m− r+2 : m, :) represents the last r−1 columns of P.
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where Σeuser = E[euser(t)eT
user(t)], euser(t) = Pc,usere(t), Σuser =

Var[GR(z−1)euser(t)]. The denominator of η2,user is,

Σyuser,mse = Σyr,user +diag(yss,useryT
ss,user), (34)

where Σyr,user = E[yr,user(t)yT
r,user(t)]. It can be seen that com-

pared with the MVC benchmark η2, in the spatial direction,
the only difference of η2,user is that the controllable projector is
replaced by a user-specified projector Pc,user, which is applied
to both steady-state and residual profiles. In the temporal
direction, an additional term GR(z−1) which represents the
desirable sensitivity function is included into the residual
benchmark. Note that this term is not applicable to the
steady-state profile since there are no dynamics (or time-delay
performance limitation) for the steady-state profile.

Remark 4: Note that (30) implies that in order to obtain
the user-specified benchmark, the disturbance model has to be
available, which is not realistic as the disturbance model may
change from time to time. However, for simplicity, we assume
the disturbance model is known in this paper. This assumption
is valid since there have been extensive methods proposed
on the identification of disturbance models using closed-loop
input-output data [24], [25].

Remark 5: If the user-specified term is selected to be the
same as the nominal closed-loop response (when the tuning
parameters of the controller are available), then the highest
achievable user-specified performance index will be one. In
this case, the value of the user-specified performance index
will make more sense and provide better indication of the
control performance.

V. PERFORMANCE MONITORING

In order to compute the previous performance indices, the
residual profile has to be fitted into a moving average model
(refer to (21) and (28)) to obtain the estimates of the impulse
response coefficient matrices and the white noise covariance.
However, due to the high input-output dimensions of the CD
processes, the computational burden plays an essential role
in the multivariate time series estimation. In this section, a
novel technique is proposed to reduce the computations in the
performance monitoring.

A. Vector Autoregressive Modeling

As illustrated in previous sections, to proceed with perfor-
mance monitoring, we need to perform the following multi-
variate time series identification,

yr(t) = Θ1yr(t−1)+ . . .+Θpyr(t− p)+ e(t), (35)

where e(t)∈Rm is the white noise vector. The Θi ∈Rm×m, i=
1,2, . . . , p, are the coefficient matrices to be estimated for the
vector autoregressive (VAR) process, where p is the temporal
order selected by the user. If Θi, i = 1,2, . . . , p, are chosen
to be full matrices, the estimation of the VAR model will
be computationally expensive. However, we can assume that
Θi, i = 1,2, . . . , p, are Toeplitz-structured, because in industry
most CD controllers have limited spatial response width,
which means that the CD multivariate controller will be band-
diagonal [28]–[30]. Furthermore, the plant G in general is

Toeplitz-structured, and as a result the closed-loop sensitivity
function will be approximately band-diagonal [27]. By tak-
ing advantage of the special structure of Θi, the estimation
problem can be greatly simplified through the basis matrices
method described below.

We construct basis matrices to decompose each Toeplitz-
structured coefficient as the sum of a series of scalars multi-
plied by simple basis matrices. Each Toeplitz-structured VAR
coefficient Θi matrix has the form,

Θi = toeplitz{θi,1, . . . ,θi,q, . . .}m×m

=



θi,1 θi,2 . . . θi,q
θi,2 θi,1 θi,2 . . . θi,q

...
. . .

. . .
. . .

...
. . .

θi,q . . . θi,2 θi,1 θi,2 . . . θi,q
. . .

. . .
. . .

. . .
. . .

. . .
. . .

θi,q . . . θi,2 θi,1 θi,2 . . . θi,q
. . .

...
. . .

. . .
. . .

...
θi,q . . . θi,2 θi,1 θi,2

θi,q . . . θi,2 θi,1


(36)

where q is the spatial order selected by the user. There are
only q unknown scalars to be estimated in each coefficient
matrix. The unknown scalars θi, j, j = 1, . . . ,q, are extracted
from Θi by rewriting the large dimensional matrix as the sum
of simple terms,

Θi =
q

∑
j=1

θi, jE j, (37)

where E j, j = 1, . . . ,q are basis matrices with the jth super-
diagonal and − jth subdiagonal entries as ones, while the other
entries are all zeros. For example, the basis matrix for the case
m = 6, j = 3, is

E3 =


0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

 . (38)

Thus the i-th term of the VAR model (35) can be written as,

Θiyr(t− i) =
q

∑
j=1

θi, jE jyr(t− i)

=
q

∑
j=1

θi, j ỹr,i j(t− i), (39)

where ỹr,i j(t − i) = E jyr(t − i). The overall VAR model be-
comes

yr(t) = θ11ỹr,11(t−1)+ . . .+θ1qỹr,1q(t−1)
+θ21ỹr,21(t−2)+ . . .+θ2qỹr,2q(t−2)
. . .

+θp1ỹr,p1(t− p)+ . . .+θpqỹr,pq(t− p)

+e(t)
4
= Ỹr(t−1)θ + e(t), (40)
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where

Ỹr(t−1) =
[

ỹr,11(t−1) ỹr,12(t−1) . . . ỹr,pq(t− p)
]
,

θ =
[

θ11 θ12 . . . θpq
]T

.

The following steps for identification are similar to the scalar
autoregressive model identification. There are various well-
developed techniques for this problem, e.g., the least squares
method. The residuals ê(t) resulting from the identification
are considered to be estimates of the innovations e(t). The
estimate of the coefficients θ is denoted as θ̂ . Then the
Toeplitz coefficients Θ̂i, i = 1, . . . , p, can be determined by
reconstructing θ̂ . By using the basis matrices, the estimation
of the VAR model (35) can be significantly simplified.

In order to calculate the performance indices, the VAR
model above is transformed into the following vector moving
average (VMA) model by using the technique in [26],

yr(t) = Φ̂0ê(t)+ . . .+ Φ̂d−1ê(t−d +1)+ Φ̂d ê(t−d)+ . . . ,
(41)

where

Φ̂0 = I, (42)

Φ̂i =
i

∑
j=1

Φ̂i− jΘ̂ j, i = 1, . . . ,d, . . . . (43)

Although the order of the VMA model (41) will be infinite,
we are only interested in the first d terms since they are
the coefficients required in evaluating the benchmark. When
applying this algorithm, d can be selected to be the time delay
in the model as an approximation of the true time delay in
the process. On the other hand, due to the spatial performance
limitation resulting from the structure of the transfer matrix G,
only the controllable components of the estimated residuals
êc(t) and the output profile yr,c(t) are considered. The covari-
ance matrix of the output under temporal MVC and within the
column space of G matrix is thus expressed as,

Σ̂mv =
d−1

∑
i=0

Φ̂iΣêcΦ̂
T
i , (44)

where Σêc =E[êc(t)êT
c (t)] is the covariance of the controllable

residual, êc(t). The overall estimated performance index η̂2 is
obtained as,

η̂2 =
trace(Σ̂mv)

trace(Σyc,mse)
, (45)

where η̂2 is the estimate of the performance index η2.

B. Performance Monitoring Algorithm

As illustrated in the previous sections, any given CD data
set (without MD variations) can be separated into steady-
state profile and residual profile. The steady-state profile is
obtained by averaging the data for each CD bin over all
scans. In order to calculate the performance indices (19), (24)
or (33), the steady-state profile yss has to be separated into
controllable parts yss,c and uncontrollable parts yss,u according
to the column space of G or the spatial bandwidth. A VAR
model (35) is applied to the residual profile yr(t) to obtain
the controller-invariant variation due to time-delay and spatial

bandwidth limitations. The uncontrollable parts of the steady-
state variation, yss,u, and the controller-invariant variations
of the residuals, yr,u, are combined to obtain the overall
benchmark in (19). The algorithm we propose to calculate
(24) is as follows:

1. For a given data set, Y , ensure the mean value of each
scan is zero (i.e., no MD variation).

2. Calculate the average CD profile by averaging the data
set across all scans, record it as yss. Remove the mean of
each CD bin to obtain the residual profile yr(t).

3. Perform Toeplitz-structure VAR estimation (35) using the
residual profile yr(t) with the selected spatial order q and
temporal order p. Ensure the whiteness of the white noise
estimate ê(t).

4. Transform the VAR model into a VMA model (41) and
obtain the coefficient matrices Φ̂i, i = 0, . . . ,d−1.

5. Construct the operator Pc based on the column space
(22), and get the following controllable components:
êc = Pcê(t), yr,c = Pcyr, yss,c = Pcyss,c.

6. Calculate the estimated minimum covariance Σ̂mv in (44)
and Σyc,mse in (45).

7. Obtain the estimated performance index from (45).
For the user-specified benchmark η2,user, in Step 5, the

operator Pc can be constructed based on the selected spatial
bandwidth (26). Besides, the temporal user-specified term can
be obtained from the knowledge of the desired closed-loop
time constant together with (30) and (32).

Remark 6: In order to obtain the performance index, one has
to fit the CD profile to the VAR model (35), which requires
each output channel to be zero meaned. Otherwise, there will
be an offset term showing up in (35), as illustrated in [26]. This
fact motivates the profile partition in Section II and III. After
splitting the output measurements into steady-state profile and
residual profile, we can simply fit only the residual profile into
(35).

VI. EXAMPLES

It has been mentioned that various factors such as poorly
tuned controller, model-plant mismatch, change of disturbance
dynamics, etc., can cause a drop in the performance index.
From the perspective of industry engineers, when the model
quality deteriorates, a new model has to be identified from
identification experiments. Therefore, it is of interest to find
whether the proposed performance benchmarks are sensitive
to model-plant mismatches. In this section, the validity of the
proposed performance benchmark for the CD process is tested
by data sets from both paper machine simulators and paper
mills. For simplicity, we only consider the case of controlling
a single paper property using a single actuator array.

A. Simulation Results

In this subsection, scenarios with various types of model-
plant mismatches are created to test the sensitivity of the
performance index. In this simulation, the employed control
strategy is the two-dimensional loopshaping technique. The
number of actuators in the array of the CD is 238, and the
number of CD bins downstream at the scanner side is 714.
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Fig. 3. Spatial impulse steady-state response and the temporal step response
of a single actuator. The negative peak of the spatial response is due to the
negative gain of the actuator spatial model.

The continuous steady-state spatial response shape of a
single actuator is determined by the four parameters, gain γ ,
width ξ , divergence β and attenuation α (see [38] for more
details). In the temporal direction, the actuator dynamic
model g(s) is assumed to be first-order plus time-delay with
unit steady-state gain,

g(s) =
1

τs+1
e−τds, (46)

where τ the time constant τ and τd is the time delay τd .
In the simulator, the nominal values of these parameters on
both the plant and the process model are set initially as γ0 =
−0.03,ξ0 = 164mm,β0 = 0.15,α0 = 7.0,τ0 = 17.34s,τd0 =
21s. Figure 3 illustrates the spatial steady-state impulse re-
sponse and the temporal step response of one actuator with
these nominal parameter values. This process is relatively easy
to control since there are no negative side lobes in the spatial
response shape. The controllers are properly tuned by using the
two-dimensional loop shaping technique based on the nominal
process model.

In order to investigate the sensitivity of the proposed
performance index in detecting the model-plant parametric
mismatch, scenarios with different levels of mismatch for these
spatial and temporal parameters are created. For convenience,
we manually increase and decrease the parameter values of the
plant while the parameter values of the process model used by
the controller remain unchanged. In the following simulations,
we denote γ,ξ ,β ,α,τ,τd without subscripts as the parameter
values in the plant. In addition, positive mismatches indicate
that the value of the parameter in the plant is greater than the
corresponding value in the model. For instance, positive gain
mismatch means the gain of the plant is greater than the gain
of the model used by the controller.

Figures 4-7 illustrate the simulation results with respect to
various levels of parametric mismatch for each parameter in
the spatial model of the actuator. Note that in this simulation,
the sampling time is 20 seconds and the data is selected
after the initial transient behavior has been settled down. The
number of scans in the selected portion of the data is 500.
The left-hand-side graph in each figure shows the comparison
between the spatial response shape of each mismatched plant
with that of the nominal case, from which we can know
the significance of the distortion the corresponding parametric
mismatch can cause in the spatial response shape. The graph
on the right-hand-side of each figure shows the corresponding
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Fig. 4. Performance indices for different levels of gain mismatch. Both the
user-specified benchmark and MVC benchmark are tested. Note that γ0 is the
nominal gain value used by the controller, γ is the actual gain value of the
process plant.
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Fig. 5. Performance indices for different levels of width mismatch. Both the
user-specified benchmark and MVC benchmark are tested. Note that ξ0 is the
nominal width value used by the controller, ξ is the actual width value of the
process plant.
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Fig. 6. Performance indices for different levels of divergence mismatch. Both
the user-specified benchmark and MVC benchmark are tested. Note that β0 is
the nominal divergence value used by the controller, β is the actual divergence
value of the process plant.
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Both the user-specified benchmark and MVC benchmark are tested. Note that
α0 is the nominal attenuation value used by the controller, α is the actual
attenuation value of the process plant. The four mismatched attenuation values
are practical scenarios in the industry.
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Fig. 8. Performance indices for different levels of time constant and time
delay mismatch. Both the user-specified benchmark and MVC benchmark are
tested. Note that τ0 and τd0 are the nominal time constant and time delay
value used by the controller, τ and τd are the actual time constant and time
delay value of the process plant.

calculated performance index for each case based on both
MVC benchmark η2 and user-specified benchmark η2,user.
One can see that in general the user-specified performance in-
dices are higher than the MVC benchmark, which agrees well
with the previous analysis as the user-specified benchmark is
more practical and less aggressive. These figures show that for
most cases of MPM, the performance indices based on both
the MVC benchmark and user-specified benchmark decrease
as the degree of MPM increases. However, the performance
indices of gain mismatch and width mismatch with γ = 0.75γ0
and ξ = 0.75ξ0 show better performance than the no MPM
case. It can be explained that the degree of mismatch is not
severe and within the tolerance of the implemented robust
controller and in these cases the true process is more close to
the model compared with the nominal case. However, for the
cases with large mismatches, all the performance indices drop.
Besides, the performance index is sensitive to the divergence
mismatch but not so sensitive to the attenuation mismatch.
Figure 8 shows the performance indices for the time constant
and time delay mismatches. One can see that the performance
indices are able to detect the drop in performance due to the
time constant or delay mismatch as well, but not so sensitive
as the spatial parameters. Note that for some cases (e.g. width
mismatch with ξ = 0.75ξ0), the indices show a slightly better
performance compared with the nominal case. Table I shows
the partitioned variances for each simulated case, in which σT ,
σCD, σRes refer to the total variance, CD variance (variance of
the steady-state profile) and residual variance. Note that there
is no MD variance since the MD profile has been removed
beforehand. By comparing these results with the previous
performance indices one can see, mostly, the larger variance
in either CD or residual than the nominal case will correspond
to worse control performance. Therefore we can conclude that
the proposed performance indices are not only affected by the
CD variance, but also the residual variance.

To demonstrate the advantage of the performance index
η2 over η1, another simulation is carried out with gain
mismatch γ = 2.0γ0 and a spatial sinusoidal disturbance (with
frequency greater than the closed-loop spatial bandwidth)
added to the output. The performance index is expected to
drop relative to the normal case due to the presence of gain
mismatch, however, it is desirable for the high frequency
spatial disturbance to affect the index as little as possible. The
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Fig. 9. Comparison of performance index η1 and η2 with high frequency
spatial disturbance

simulation results under this situation are illustrated in Figure
9. The performance index η1 with both positive gain mismatch
and high frequency spatial disturbance remains almost the
same as the normal case, while it drops a little for the case
with gain mismatch only. Thus it is not straightforward to
observe the performance deterioration in the presence of high
frequency spatial disturbance if we are using performance
index η1. However, for performance index η2, the presence
of high frequency spatial disturbance has almost no affect,
and the drop in the performance index is due to the gain
mismatch. Moreover, one may find from Figure 9 that the
performance index η1 is not so sensitive to the mismatch as
the index η2 since the drop due to gain mismatch is much
smaller compared with η2. Therefore, we can achieve reliable
assessment based on performance index η2. As mentioned
in the previous section, the misleading conclusion from η1
is a result of the energy of the deterministic high frequency
disturbance inflating both the covariance of the benchmark and
the actual output in (19). The ratio between the two covariance
matrices will be very close to one.

B. Industrial Example

In this subsection, data sets from a paper mill are used
to validate the effectiveness of the proposed techniques. The
number of actuators and CD bins in this example are 114 and
402, respectively. Figure 10a illustrates the measured profile of
the dry weight without MD variations. Note that the edges of
the profile that were not controlled have been removed. Figure
10b shows the corresponding actuator profile with lower bound
10 and upper bound 90. The sampling interval is 16 seconds
and the number of scans is 551. The implemented controller
is a multivariate CD-MPC. Performance monitoring with a
moving window of size 200 scans is applied to the measured
output profile, and the corresponding performance indices in
terms of the time is demonstrated in Figure 11a. Both the
user-specified benchmark (η2,user in the blue solid line) and
the MVC benchmark (η2 in the red dash-dotted line and
η1 in the black dashed line) are used in the calculation of
these performance indices. The VMA model in the algorithm
proposed in Section V is estimated repeatedly for each
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TABLE I
VARIANCE PARTITION FOR EACH SIMULATED CASE

γ MPM σT σCD σRes ξ MPM σT σCD σRes β MPM σT σCD σRes
γ = 0.50γ0 0.2575 0.0687 0.1888 ξ = 0.50ξ0 0.3715 0.1812 0.1903 β = 0.50β0 0.3804 0.1861 0.1943
γ = 0.75γ0 0.2454 0.0523 0.1930 ξ = 0.75ξ0 0.2391 0.0453 0.1937 β = 0.75β0 0.2434 0.0459 0.1975
γ = 1.50γ0 0.2511 0.0453 0.2059 ξ = 1.50ξ0 0.2621 0.0643 0.1979 β = 1.50β0 0.2571 0.0459 0.1975
γ = 2.00γ0 0.2739 0.0485 0.2253 ξ = 2.00ξ0 0.2979 0.1017 0.1961 β = 2.00β0 0.3497 0.1579 0.1918
α MPM σT σCD σRes τ MPM σT σCD σRes τd MPM σT σCD σRes
α = 2.3 0.2496 0.0505 0.1991 τ = 0.5τ0 0.2428 0.0480 0.1948 τd = 41 0.2448 0.0473 0.1976
α = 1.5 0.2595 0.0543 0.2052 τ = 2.0τ0 0.2406 0.0472 0.1933 τd = 61 0.2480 0.0491 0.1989
α = 1.0 0.2756 0.0594 0.2162 τ = 2.5τ0 0.2447 0.0480 0.1967 τd = 81 0.3093 0.1060 0.2033
α = 0.5 1.8128 0.2307 1.5758 τ = 3.0τ0 0.3007 0.1059 0.1948 τd = 101 0.4271 0.2224 0.2047

Note: For the normal case, σT = 0.2439, σCD = 0.0476, σRes = 0.1962.

window in order to the compute those performance indices.
For each window, on average, it takes only 1.68 seconds
to identify the VMA model, which is much less than the
sampling interval and thus fast enough for the online
monitoring. Note that there are no performance indices for the
first few scans since they are calculated only after the 200th
scan. It can be observed that all these performance indices
show consistent patterns except their levels. The performance
index η2 shows the worst performance since it is based on
the aggressive MVC benchmark. The high level of η1 is
due to that the spatially uncontrollable components in the
denominator and numerator of (19) are the majority. The user-
specified benchmark η2,user also shows higher performance
index than η2, which makes sense since η2,user is based on a
more practical and less aggressive benchmark.

For this industrial example, the user-specified benchmark
is specified based on the implemented controller. Thus good
control performance is expected to have η2,user close to one
(see Remark 5). However, from Figure 11a we find that
all these performance indices are less than 0.7, which is
not satisfactory. In order to investigate the root causes of
the low performance, we generated the steady-state profile of
both the dry weight and the actuator as well as the power
spectrum of the averaged dry weight profile, which are shown
in Figure 11b-d. From the spectrum plot, it is obvious that
some low frequency components are left in the controllable
range which contributes to the poor performance. These low
frequency components are due to the large fluctuations of the
dry weight profile in the first 60 bins and those around the
280th bin. From the averaged actuator profile, we find that the
actuator saturations in the first few zones and around the 85th
zone explain the reason that those fluctuations in the output
profile were not rejected. Therefore, the actuator saturation is
one root cause of the low performance index. However, further
diagnosis or data pre-processing techniques are required to
know if the model-plant mismatch is also one of the root
causes. For instance, in order to reduce the false positives on
the model-plant mismatch diagnosis, we may select a portion
of the data set in which there are no severe actuator saturations,
irregular disturbances or poorly tuned control to apply the
performance monitoring algorithm.

It should be pointed out that the computational speed of
the performance index is an important concern for the online
performance monitoring. For the simulator example and the
industrial example studied in this work, the computation

speed is fast enough (less than 3 seconds for each window),
compared with the sampling interval (more than 15 seconds
for most paper machines). Thus the proposed algorithms for
computing the performance indices are efficient enough for
online performance monitoring.

VII. SUMMARY

In this paper, the spatial and temporal MVC benchmark
for both the steady-state profile and the residual profile are
analyzed for the CD process of paper machines. Performance
indices are proposed based on the steady-state and residual
MVC benchmark. The sensitivity of these performance indices
with respect to large spatial high-freqency disturbances are
analyzed and compared. Furthermore, the corresponding user-
specified benchmark is put forward by taking into account the
desirable closed-loop dynamics in both temporal and spatial
directions. A novel technique is employed to improve the
efficiency of computations associated with the multivariate
time series model identification. The idea of this technique
is to decompose the coefficient matrices into a series of
simple multiplications between scalars and basis matrices. The
basis matrices are constructed based on the special structure
of the coefficient matrices. Data sets from a CD simulator
are used to test the sensitivity of the proposed performance
indices with respect to various types of mismatch existing
in the CD process as well as to the spatial high-frequency
disturbances. Finally, an industrial data set is introduced to
test the effectiveness of the proposed performance monitoring
technique.

APPENDIX A
VARIANCE PARTITION

For the measured two-dimensional data set Y ∈ Rm×N , it
has the following structure:

Y =

1 · · · j · · · N
1
...
i
...
m


y11
...

yi1
...

ym1

· · ·
. . .
· · ·
. . .
· · ·

y1 j
...

yi j
...

ym j

· · ·
. . .
· · ·
. . .
· · ·

y1N
...

yiN
...

ymN

 , (47)

where each row of Y refers to the N measurements of one data
box, while each column of Y represents the measured profile at
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Fig. 10. Three-dimensional plot of the profile from industrial data set. (a):
The dry weight profile with 376 measurement bins; (b): The actuator profile
with 114 actuator zones.

each scan across all the data boxes. The overall sample mean
of the data set Y is defined as,

Ȳ =
m

∑
i=1

N

∑
j=1

yi j

Nm
. (48)

The total sample variance σ2
T can be calculated as,

σ
2
T =

m

∑
i=1

N

∑
j=1

(yi j− Ȳ )2

Nm−1
. (49)

The CD sample variance σ2
CD can be calculated as,

σ
2
CD =

m

∑
i=1

(Ỹi− Ȳ )2

m−1
, (50)

where Ỹi = ∑
N
j=1

yi j
N . The MD sample variance σ2

MD can be
calculated as,

σ
2
MD =

N

∑
j=1

(Ỹj− Ȳ )2

N−1
, (51)

where Ỹj = ∑
m
i=1

yi j
m . The residual sample variance σ2

Res is
calculated as,

σ
2
Res = σ

2
T −σ

2
CD−σ

2
MD. (52)
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Fig. 11. The analysis of the industrial data. (a): The moving window
performance indices for the measured data. Blue solid line: η2,user; Red dash-
dotted line: η2; Black dashed line: η1; (b): The steady-state of the entire
dry weight profile; (c): The steady-state of the entire actuator profile with
lower bound and upper bound (red dash-dotted line); (d): The spectrum of
the averaged dry weight profile and the approximated spatial bandwidth (red
dash-dotted line).
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