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Abstract

In process and manufacturing industries, alarm systems play a critical role in ensuring safe and efficient

operations. The objective of a standard industrial alarm system is to detect undesirable deviations in

process variables as soon as they occur. Fault detection and diagnosis (FDD) systems often need to be

alerted by an industrial alarm system; however, poorly designed alarms often lead to alarm flooding and

other undesirable events. In this paper, we consider the problem of industrial alarm design for processes

represented by stochastic nonlinear time-series models. The alarm design for such complex processes faces

three important challenges: 1) industrial processes exhibit highly nonlinear behavior; 2) state variables are

not precisely known (modeling error); and 3) process signals are not necessarily Gaussian, stationary or

uncorrelated. In this paper, a procedure for designing a delay timer alarm configuration is proposed for

the process states. The proposed design is based on minimization of the rate of false and missed alarm

rates – two common performance measures for alarm systems. To ensure the alarm design is robust to any

non-stationary process behavior, an expected-case and a worst-case alarm designs are proposed. Finally, the

efficacy of the proposed alarm design is illustrated on a non-stationary chemical reactor problem.
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Introduction

Modern process industries are equipped with highly automated fault detection and diagnosis (FDD) systems

to maintain process safety and reliability standards. The primary objective of an alarm system is to alert

the plant operator every time a fault occurs or the process deviates from its normal behavior. According to

the Abnormal Situation Management Consortium (ASM), the US petrochemical plants alone lose more than

$10 billion per year due to abnormal plant situations and from the lack of an efficient alarm management

strategies.2 A recent global survey conducted in different countries around the world, including the USA,

the UK, Canada, the Europe Union and Japan, indicated that about 42% of abnormal operations were

caused due to human error alone as shown in Figure 3. This is partly due to the complex tasks performed

by the plant operators that include presentation, processing, and handling of thousands of alarm signals

generated by different unit operations in a process plant. As process and manufacturing industries pace

toward increased automation by deploying a large number of smart sensors, without an efficient alarm

management system in place, process monitoring is expected to become an increasingly daunting task.3

An efficient alarm system is critical for setting up an efficient FDD system; however, there is a subtle

difference between the FDD algorithms4,5, 6 and the alarm design algorithms. The FDD algorithms are

designed to work online to identify faults by appropriately processing the measurements while the process

is running. On the other hand, alarms are designed offline prior to starting a process and the design is

not changed online. FDD algorithms are often designed to identify specific known faults whereas alarms

are designed for almost every measured process variable. In fact, all industrial sensor measurements are by

default given appropriate alarm limits in the distributed control systems.

The design and performance evaluation of alarm systems has received considerable attention from the

academic and industrial communities.7,8, 9 While an alarm installation and operations involve a number of

key steps that include the design, processing, presentation and management, the alarm design has received

little attention. The alarm design is a critical first step in setting up an efficient alarm management system.

Many industrial incidents, for example, the Deepwater Horizon oil spill in 2010,10 the Buncefield fire in

2005,11 the BP Texas City refinery explosion in 200512 have been attributed in parts to the poor design of
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alarm systems.

An alarm design method can be classified as either a signal-based or a model-based design method.13

While, the model-based design methods rely on comparing the actual process behavior against the expected

predicted normal behavior, the signal-based methods largely rely on the historical process data and a priori

process knowledge.14,15 The signal-based methods are generally the method of choice for alarm designs in

process industries. This is because (i) the signal-based methods do not require any process models, which are

nontrivial to build for industrial systems, and (b) the resulting alarm designs can be readily implemented

on almost all modern distributed computer systems (DCS) and supervisor control and data acquisition

(SCADA) systems. In contrast, the model-based design methods, although less commonly used in process

industry, tend to be more accurate provided high-quality models are available.7 In general, obtaining a

high-accuracy model for complex industrial processes is nontrivial, barring for smaller unit operations, such

as reactors and heat-exchangers, where high-accuracy models can still be developed in a reasonable amount

of time.

For the model and data-based alarm design methods, the most common alarm generation procedure is

the simple limit-checking method; wherein, an alarm is generated by comparing the signal with the alarm

threshold.7,14 See Figure 4(a) for illustration. The signal illustrated in Figure 4(a) is a generic signal,

and can either represent the actual process variable being monitored, as often the case is in a signal-based

method or alternatively, it can also represent a residual signal generated in a model-based method. In Figure

4(a), the simple limit-checking method generates an alarm every time the signal crosses the threshold.

Despite the simplicity of the limit-checking method, a proper selection of the alarm threshold is critical

for it directly influences the rate (or probability) of false and missed alarms (FAR/MAR) – a common

measure of alarm performance. A false alarm (false positive) is an alarm that is raised while the process

is still in normal operations, and a missed alarm (false negative) occurs when the alarm is not raised even

when the process is behaving abnormally (see Figure 4(b) for illustration). For instance, for the alarm

threshold chosen in Figure 4(a), several samples in the normal operations (i.e., for time ≤ 125) fall above

the alarm limit thereby causing false alarms. Similarly, several samples in the abnormal operations (i.e., for
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time > 125) fall below the alarm limit thereby causing missed alarms. Figure 4(b) represents the state of

the alarm for the signal in Figure 4(a). Technically, the false and missed alarms are both detrimental to the

safe-process operation and should be minimized for an improved alarm performance.

To reduce the rates of false and missed alarms, and to desensitize the alarm systems to external process

noise and disturbances, delay timers are commonly used.16,17 A standard n-sample on-delay timer is an

alarm configuration that is triggered when the process variable is continuously over the alarm threshold

for at least n samples. Similarly, once the alarm is raised, it is cleared only if m consecutive samples go

below the alarm threshold. This is referred to as an m-sample off-delay timer alarm configuration. Figures

4(b) and 4(c) show the alarms generated using a 0−sample and 1−sample on-delay timer configuration,

respectively. Comparing Figures 4(b) and 4(c), it is clear that the 1−sample delay-timer is able to reduce

the rates of false and missed alarms. In fact, it is true that increasing the delay timer reduces the rates of the

false and missed alarms. The industrial alarm standards set by the Engineering Equipment and Materials

User Association (EEMUA)18 and the International Society for Automation (ISA)17 recommend values for

the delay-timers based on the nature of the process variable. Table 1 provides suggested delay times for

different process variables. Note that Table 1 only provides guidelines to design delay-timer alarms, but are

by no means optimal for a given process variable. Thus for a delay-timer alarm configuration, the threshold

limit and the delay time constitute the two main alarm design parameters. The optimal tuning for these

alarm parameters for a given process is still an open problem. Apart from the (on/off) delay timers, other

alarm configurations, such as the deadband19 and the generalized delay timers20 are also effective in dealing

with complex process dynamics and noise sensitivities.

Contributions

The alarm design problem has received little attention so far from researchers in industry and academia.

While the alarm design has been studied for linear, Gaussian, and stationary systems with uncorrelated

signals,20,21,22,23,24,25 the real systems often tend to be nonlinear, non-Gaussian and exhibit complex cor-

relations in the dynamics. This is particularly true for a closed-loop system, since a closed system induces
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strong system correlations even if the open-loop system has uncorrelated states. In this paper, we consider

the alarm design problem for monitoring complex chemical processes represented by a stochastic nonlinear

time-series model.

Given a stochastic nonlinear time-series model representation of a process, we are interested in designing

a univariate delay timer alarm configuration for the process states. This is a challenging problem since: (1)

the process can exhibit highly nonlinear behavior; (2) the state variables are not precisely known (due to

modelling and discretization errors); and (3) the process states are not necessarily Gaussian, stationary or

uncorrelated. The proposed method addresses the aforementioned issues to obtain a robust alarm design.

The performance of the delay-timer is assessed based on the FAR and MAR rates. The conventional

definitions for the FAR and MAR26,27,3 – defined for Gaussian and stationary signals – are not applicable

under the current settings, and are appropriately modified. Further, to ensure that the alarms are robust

to any non-stationary process behavior, an expected and worst-case robust delay-timer alarm designs are

proposed. Finally, the efficacy of the proposed alarm design is illustrated on a continuous stirred tank

reactor (CSTR) reaction system. To the authors’ best knowledge, none of the aforementioned challenges

have been addressed previously in the context of alarm design.

Scope and Limitation

The proposed design is a model-based alarm design. It assumes that the process, for which the alarms

are sought, can be represented using a time-series model representation. This limits the scope of the work

to small processes or unit operations, in particular, for which such models are readily available or can be

generated in a reasonable amount of time. Further, to ensure that the model is robust, we explicitly ac-

count for any modeling error, process uncertainties or noise. Further, the alarm design considered here is

purely model-based and assumes limited access to the historical data. This makes the proposed alarm design

method ideal in situations where the historical data is either unavailable or limited. For example, during

the plant commissioning and start-up stage, or in the pharmaceutical manufacturing, where usually one or

two campaign trials are performed before the current good manufacturing practice (cGMP) run. All these
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scenarios are included within the scope of the current work. The notation is discussed next.

Notation: A random variable is denoted by X and its realization x. If a random variable X ∼ p(x) then X

is distributed according to the probability density function (PDF) p(x), such that P (X ≤ a) represents the

probability of X ≤ a. A sequence of a random variable is given by X1:t = {X1, . . . , Xt}, where X1, . . . Xt

are random variables. R+, P, and N denote the sets of non-negative reals in R, the set of non-negative reals

in the interval [0, 1], and the set of integers, respectively. ∨ denotes a logical conjunction operator.

The remainder of the paper is organized as follows: the problem of alarm design is formally outlined first;

the definition and design of a robust on-delay timer alarm configuration are discussed next; followed by the

use of particle methods to evaluate the performance of the alarm system; and finally, the efficacy of the

proposed robust alarm design is demonstrated on a simulation example.

Problem Statement

The alarm design problem addressed in this paper is formally stated in this section, but first we outline

the process for which the alarms are sought. Let Xt ∈ X ⊆ Rn describe a discrete-time, first-order Markov

state process with initial density X0 ∼ p(x0) and a transition density Xt+1|(Xt, Ut) ∼ p(xt+1|xt, ut), where

ut ∈ U ⊆ Rp are exogenous control variables. To summarize, we have the following representation

Model 1. Stochastic nonlinear time-series model

X0 ∼ p(x0), (1a)

Xt+1|(Xt, Ut) ∼ p(xt+1|xt, ut), (1b)

The densities in Model 1 are parametrized by θ ∈ Θ ⊆ Rk. The set θ ∈ Θ is assumed to be known, and thus

for simplicity explicit dependency on θ is not shown. In situations, where θ is unknown, several methods

are available to estimate the unknown parameters. For example,28,29,30 provides a list of Bayesian and

likelihood methods for parameter estimation in stochastic nonlinear time-series model. Finally, Model 1
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represents a general class of stochastic nonlinear time-series model.31 A sub-class of Model 1, considered in

this paper is defined as follows

Model 2. Stochastic nonlinear, non-Gaussian model

X0 ∼ p(x0), (2a)

Xt+1 = ft(Xt, Ut, Vt), (2b)

where ft : Rn × Rp × Rn → Rn is an n-dimensional state transition function and Vt ∈ Rn is the state noise

sequence.

Many unit operations (e.g, reactors, distillation columns; dryers) can be represented by Model 2. For

example, the concentrations of species inside an isothermal continuous stirred tank reactor (CSTR) can be

represented as given below

Example 1. (Semibatch Reactor) The concentration of n species, denoted by Xt ∈ Rn, in an isothermal

CSTR of constant volume γ ∈ R+ with initial concentration X0 ∼ p(xo), and flow rates Ut ∈ Rp can be

modeled as follows32,33

ft(Xt, Ut, Vt) ≡ Sr(Xt) +
1

γ
GUt −

1

γ
1TUtXt + Vt, (3a)

where: S ∈ Rn×q and G ∈ Rn×p are the stoichiometric and volumetric concentration matrices, respectively,

with q denoting the number of independent reactions, and 1p is a vector of ones of dimension p; the vector

r : Rn → Rq is the rate function; and Vt ∈ Rn is the additive state noise sequence.

Definition 1. (Proper Signal) A signal {Zt}t∈N is proper if there exists a tβ ∈ N such that {Zt}t∈N for all

t ≤ tβ represents normal operations and {Zt}t∈N for all t > tβ represents abnormal operations.

Definition 1 assumes that a proper signal starts in the normal operating region and in finite time transitions

into the abnormal operating region. The assumed order of process operation in Definition 1 is strictly

for mathematical convenience and has no bearing on the material presented here. We make the following

assumptions on Model 2
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Assumption 1. {Vt}t∈N ∈ Rn is a sequence of independent random variables distributed according to

Vt ∼ p(vt), and defined independent of X0 ∼ p(x0).

Assumption 2. p(x0) and p(vt) are known in their classes (e.g., Gaussian, uniform, Rayleigh) and are

parametrized by finite number of moments (e.g., mean, variance).

Problem 1. For a process represented by Model 2 under Assumptions 1 and 2, design a univariate delay

timer for the process state {Xt}t∈N using a proper input signal {Ut}t∈N.

Problem 1 assumes that a proper input signal is available for designing the alarm system. Here, the input

sequence is proper in the sense defined in Definition 1. In practical settings, a proper input signal can be

constructed based on process knowledge or process design. More on the use of proper input signal is discussed

later. In Problem 1, Assumptions 1 and 2 are the regulatory conditions that allow for the simulation of

Model 2 for a given input signal. Finally, the simplifying assumptions on the Gaussianity, stationarity, or

uncorrelated nature of the states in Model 2 are not made in this paper, which are the standard assumptions

in most of the existing work on alarm design.26,23

On-Delay Timer Alarm Configuration

A limit-checking alarm generation method raises an alarm every time a process variable {Xt}t∈N exceeds

certain predetermined threshold limit. If At ∈ {0, 1} denotes the state of the alarm, then At = 0 represents

the “off” state and At = 1 represents the “on” state. Assuming n = 1, a limit-checking method generates

an alarm sequence {At}t∈N as follows

At ≡


1 if Xt ≥ Sx (or Xt ≤ Sx)

0 otherwise

, (4)

where Sx ∈ R is the alarm trip point. Similarly, for n ≥ 2 alarms are generated by defining (4) for each

state. Here we only consider a univariate alarm design, where the objective is to design an alarm system

for a single state in Model 2. Now without the loss of generality, only one-sided univariate alarm design is

considered here that is raised when Xt ≥ Sx. Now based on how the alarm generation mechanism in (4)
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is implemented, a host of alarm configurations, such as deadband,3 delay timers34 and generalized delay

timers20 can be studied and designed.

A delay timer alarm configuration, also called a debounce timer alarm configuration is preferred in

industries for its simplicity. Intuitively, the human beings prefer to wait for a while before reacting to

any abnormality to avoid any temporary over or under reaction. A delay timer uses the same principle

to minimize the operator reaction to unknown process disturbances and process noise.3 For example, an

nx-sample on-delay timer triggers only after {Xt}t∈N is continuously over Sx for at least nx samples. For

an nx-sample on-delay timers, if the system returns back to the normal operations before nx samples, the

alarm is not activated. Similarly, once an alarm is raised, it will be cleared right away if one sample goes

below the alarm trip point. Mathematically, if Āt ∈ {0, 1} denotes the state of the alarm for an nx-sample

on-delay timer, then {Āt}t∈N is generated as follows

Āt ≡


1 if Xt−nx ≥ Sx∨, . . . ,∨Xt ≥ Sx

0 otherwise

. (5)

It is easy to see that for nx = 0, Āt = At for all t ∈ N. Similarly, in the case of an mx-sample off-delay

alarm configuration, once an alarm is raised it is cleared only when {Xt}t∈N is continuously under Sx for

mx consecutive samples. In this paper we only consider the design of an nx-sample on-delay timer alarm

configuration, but can be extended to include an mx-sample off-delay alarm configuration. Based on the

alarm generation mechanism in (5), it is clear that for an on-delay timer, nx and Sx are the two main alarm

design parameters. An appropriate choice of (nx, Sx) is critical for it affects the performance of the alarm

configuration. The design of (nx, Sx) for a univariate on-delay timer is discussed next.

Design and Assessment of On-Delay Timers

For an on-delay timer alarm configuration, a poor choice of (nx, Sx) results in two types of misclassified

alarm errors – false positive (or false alarm) and false negative (or missed alarm). A false alarm is an alarm

that is raised while {Xt}t∈N is still in normal operations, and a missed alarm occurs when the alarm is not

raised even when {Xt}t∈N is behaving abnormally. The performance of an on-delay timer alarm system
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through the use of a receiver operating characteristic (ROC) curve is discussed next.

ROC-based Alarm Design

The FAR and MAR provide a reliable measure of the accuracy of a univariate alarm system design. Assuming

that the FAR and MAR for an nx-sample on-delay timer alarm is known, the accuracy of the alarm system

can be graphically represented through a receiver operating characteristic (ROC) curve.22 In statistics, an

ROC curve is a graphical plot illustrating the performance of a binary classifier system. The ROC curve is

created by plotting the true positive rate against the false positive rate as the discrimination threshold is

varied. The use of ROC curves in alarm design was first introduced in,22 where the true positive rate was

replaced by the missed alarm rate. Therefore, an ROC curve for a univariate alarm system captures the

trade-off between the FAR and MAR as Sx is varied in R. A schematic of an ROC curve for an nx-sample

on-delay timer alarm configuration obtained for different nx values as Sx is varied, as shown in Figure 5.

It is possible to choose (nx, Sx) ∈ N × R directly from the ROC curve in Figure 5. This is achieved by

choosing the alarm parameters in the set (nx, Sx) ∈ N × R one at a time. For example, the EEMUA and

ISA recommend nominal values for the delay timers based on the nature of the process variable (see Table

1). Based on these guidelines, nx can be fixed a priori, and an optimal Sx found by varying Sx ∈ R until an

acceptable FAR and MAR is achieved (see Figure 5 for illustration). Typically, these acceptable FAR and

MAR values are decided by the process safety engineers and are usually available a priori. This approach

to alarm design is referred to as the ROC-based alarm design. The ROC-based alarm design can also be

implemented by keeping Sx fixed, and varying nx ∈ N until the desired FAR and MAR are achieved.

Normal and Abnormal Operations

The definitions of FAR and MAR are based on the clear understanding of the process behavior in the

normal and abnormal operating conditions. Specifically, we are interested in characterizing the normal and

abnormal operations of a process state {Xt}t∈N. First, note that it is plausible to define such regimes since

{Xt}t∈N is a proper signal. This is because simulating Model 2 with a proper input signal {Ut}t∈N yields a
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proper state signal {Xt}t∈N.

One approach to construct a probabilistic representation of the normal and abnormal operations of a

process variable is to use the measurements. In fact several parametric and non-parametric change-detection

algorithms, such as Shewhart chart, moving average charts, cumulative sum procedures, generalized likeli-

hood ratio test, Bayesian and information criterion approaches can be used to detect multiple change-points

within a signal.35,36 Once the multiple change-points are detected, the data can be classified into the normal

or abnormal process behavior based on prior process information. Once all the different sections of a signal

have been classified, a histogram method can be used to find the probability density functions (PDFs) of the

underlying normal and abnormal operations.23 Of course this last step assumes that the signal in the normal

and abnormal regions are individually independent and identically distributed stationary signal.23,26,27 For

example, Figure 6 shows a schematic of the PDFs under normal and abnormal operations for the variable in

Figure 4(a). The PDFs in Figure 6 are constructed assuming that the signal in Figure 4(a) is independent

and identically distributed stationary signal under both normal and abnormal operations (see Figure 4(a)

for details).

Despite the success with existing methods in characterizing the normal and abnormal operations, under

the current settings, existing methods are not applicable since {Xt}t∈N is non-stationary. In fact, even if

the change-points for {Xt}t∈N are known (assuming {Xt}t∈N is measured), a histogram method can not

be used to construct the PDFs for {Xt}t∈N under the normal and abnormal operations (since {Xt}t∈N is

non-stationary). To address these limitations, we propose the use of Model 2 to construct the PDFs for

{Xt}t∈N under the normal and abnormal process operations.

Assumption 3. The time of fault tβ ∈ N is known such that {Xt}t∈N is in normal operations for t ∈

{0, 1, . . . , tβ − 1} and in abnormal operations for t ∈ {tβ , tβ + 1, . . . , tN}, where tN ∈ N denotes the fixed

time-length of the signal.

In Assumption 3 the time of fault is assumed to be known a priori; however, in practice, this may not be

true. In fact, the objective of any FDD system is to compute the magnitude and time of occurrence of a

fault. Since this paper only addresses the problem of alarm design, and not that of an FDD system, we
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will assume that the time of fault is known a priori. Further in Assumption 3, we consider that the process

starts normally at t = 0 but transits into the abnormal region at time t = tβ . It also assumes that there is

only a single transition from the normal to abnormal operation in the time horizon t ∈ {0, . . . , tN}.

Observe that for a process described by Model 2, the density function p(xt) provides a suitable prob-

abilistic representation of the state {Xt}t∈N. In other words, the PDF p(xt) encompasses all statistical

information about {Xt}t∈N under the normal and abnormal operations. Now under Assumption 3, p(xt)

can be decomposed as follows

p(xt) =


pN (xt) for t = 0, . . . , tβ − 1,

pF (xt) for t = tβ , . . . , tN ,

(6)

where Xt ∼ pN (·) and Xt ∼ pF (·) represent the PDFs of {Xt}t∈N under the normal and abnormal operations,

respectively. For now, pN (·) and pF (·) in (6) are assumed to be known; however, later we describe a sequential

particle approach to approximate pN (·) and pF (·) via simulation of Model 2. Finally, a schematic of pN (·)

and pF (·) are shown in Figure 7. Note that the PDFs in Figure 7 are strictly shown for illustrative purposes

to highlight that the current framework supports non-Gaussian distributions as well. This is a significant

departure from the existing work on alarm design where the PDFs under the normal and abnormal operations

are assumed to be Gaussian (see Figure 6, for example).

FAR and MAR Calculations

Given a probabilistic representation of {Xt}t∈N under the normal and abnormal operations in (6), let

Ft(nx, Sx) and Mt(nx, Sx) denote the FAR and MAR for an nx-sample on-delay timer alarm system, re-

spectively. Here (nx, Sx) ∈ N× R are the alarm parameters that need to be designed.

As discussed earlier, for nx = 0, the rate of false alarm Ft(0, Sx) for a 0-sample on-delay timer alarm

system is the Type 1 error committed in raising the alarm under normal operations the moment Xt ≥ Sx.

Intuitively, Ft(0, Sx) is defined as the area under the PDF pN (·) for Xt greater than Sx (see Figure 7 for
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illustration). Mathematically, we define Ft(0, Sx) as follows

Ft(0, Sx) ≡ PN (Xt > Sx) =

∫ +∞

Sx

pN (dxt), (7)

where pN (dxt) ≡ pN (xt)dxt is the probability distribution of {Xt}t∈N under normal operations. Similarly, for

a 0-sample on-delay timer alarm system, the rate of missed alarm Mt(0, Sx) is the Type II error committed

by not raising the alarm for Xt < Sx under abnormal operations. In other words, Mt(nx, Sx) is the area

under the PDF pF (·) for Xt less than Sx (see Figure 7). Similar to (7), Mt(nx, Sx) can be mathematically

defined as follows

Mt(0, Sx) ≡ PF (Xt < Sx) =

∫ Sx

−∞
pF (dxt), (8)

where pF (dxt) ≡ pF (xt)dxt is the probability distribution of {Xt}t∈N under the abnormal operations. It is

clear from the FAR and MAR expressions in (7) and (8) that lowering the alarm threshold Sx reduces the

probability of missed alarms but increases the probability of false alarms, and vice verse. See Figure 7 for

illustration.

Now extending the definitions of FAR and MAR in (7) and (8) for an nx-sample on-timer delay alarm

system, we can define the rate of false alarm Ft(nx, Sx) as the Type I error committed in raising the alarm

after nx continuous samples satisfy the condition Xt ≥ Sx in the normal operating regime. Assuming

nx < tβ the rate of false alarms for an nx-sample on-timer delay alarm can be defined as

Ft(nx, Sx) ≡ PN (Xt−nx ≥ Sx, . . . , Xt ≥ Sx) = (9)
0 for t = 0, . . . , nx − 1∫ +∞

Sx

· · ·
∫ +∞

Sx︸ ︷︷ ︸
nx+1 terms

pN (dxt−nx:t), for t = nx, . . . , tβ − 1
,

for all Sx ∈ R. In (9), pN (dxt−nx:t) ≡ pN (xt−nx:t)dxt−nx:t is the joint probability distribution function

for the random sequence Xt−nx:t ≡ {Xt−nx , Xt−nx+1,...,Xt} under the normal operations. Note that for an

nx-sample on-timer delay alarm system, since an alarm is raised only after all nx continuous samples have

satisfied the condition Xt ≥ Sx, there are no false alarms for the nx−1 continuous samples satisfying Xt ≥ Sx
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in the normal operating regime. Thus for any nx ∈ N, we have Ft(nx, ·) = 0 for all t = 0, . . . , nx−1 (see (9)).

Now observe that for nx = 0, the rate of false alarms Ft(0, Sx) in (9) is same as (7) for all Sx ∈ R. Similarly,

for an nx-sample on-timer delay alarm configuration, the rate of missed alarm Mt(nx, Sx) is defined as the

Type II error committed in not raising the alarm since nx continuous samples satisfy the condition Xt < Sx

in the abnormal operating regime. Assuming tβ +nx < tN , the MAR for an nx-sample on-timer delay alarm

can be defined as follows

Mt(nx, Sx) ≡ PF (Xt−nx < Sx, . . . , Xt < Sx) = (10)
1 for t = tβ , . . . , tβ + nx − 1∫ Sx

−∞
· · ·

∫ Sx

−∞︸ ︷︷ ︸
nx+1 terms

pF (dxt−nx:t) for t = tβ + nx, . . . , tN
,

for all Sx ∈ R. In (10), pF (dxt−nx:t) ≡ pN (xt−nx:t)dxt−nx:t is the joint probability distribution function for

the random sequence Xt−nx:t ≡ {Xt−nx , Xt−nx+1,...,Xt} under the abnormal operations. Observe that for

an nx-sample on-timer delay alarm configuration, if an alarm is raised after nx continuous samples satisfy

the condition Xt ≥ Sx, we still miss the alarms for the nx − 1 continuous samples satisfying Xt ≥ Sx in the

abnormal operating regime. Thus for any nx ∈ N, we have Mt(nx, ·) = 1 for all t = tβ , . . . , tβ + nx − 1 (see

(10)). Finally, observe that the rate of missed alarm in (10) for nx = 0 is same as (8).

Observe that the FAR and MAR for an nx-sample on-delay timer defined in (9) and (10), respectively,

are time-varying. This is because Model 2 represents a non-stationary process model. In other words, for

any (nx, Sx) ∈ N × R, the joint density functions – pN (xt−nx:t) in (9) and pF (xt−nx:t) in (10) – need to

be computed for each sampling time t ∈ N. Figure 8 shows a schematic of the density functions pN and

pF under the normal and abnormal operations. It is clear from Figure 8 that the density functions not

only exhibit non-i.i.d. behavior, but are in fact also non-stationary and non-Gaussian. This poses a unique

challenge as existing histogram-based methods can not be used to compute the FAR and MAR in (9) and

(10), respectively, as these methods explicitly require {Xt}t∈N to be an i.i.d. sequence.26

Observe that although the FAR and MAR in (9) and (10), respectively, are defined for a non-stationary

process, it can also be used under a stationary process conditions. Assuming 2nx < tβ − 1 and for any
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τ ∈ {2nx, . . . , tβ − 1}, the FAR in (9) under stationary normal operations simplifies as follows

Ft(nx, Sx) =


0 for t = 0, . . . , nx − 1

KN for t = nx, . . . , tβ − 1

, (11)

where

KN =

∫ +∞

Sx

· · ·
∫ +∞

Sx︸ ︷︷ ︸
nx+1 terms

pN (dxτ−nx:τ ),

for all Sx ∈ R. Observe that the joint density function in (11) is time-invariant for all (nx, Sx) ∈ N × R.

Similarly, assuming tβ + 2nX ≤ tN , for any γ ∈ {tβ + 2nX , . . . , tN} the MAR in (10) under stationary

abnormal operations simplifies to

Mt(nx, Sx) =


1 for t = tβ , . . . , tβ + nx − 1

KF for t = tβ + nx, . . . , tN

, (12)

where

KF =

∫ Sx

−∞
· · ·

∫ Sx

−∞︸ ︷︷ ︸
nx+1 terms

pF (dxγ−nx:γ),

for all Sx ∈ R. Thus (11) and (12) highlight that the FAR and MAR definitions in (9) and (10), respectively,

are generic and can be used under the stationary and non-stationary process normal and abnormal process

operations. Finally, note that no Gaussianity or other simplifying assumptions are made on the underlying

density functions in (9) and (10) or (11) and (12).

Robustness

The FAR and MAR in (9) and (10) can be used with the ROC-based method (see Section c) to select

an optimal parameter set (nx, Sx) ∈ N × R for an nx-sample on-timer delay timer alarm configuration.

Despite the simplicity of the design method, observe that for a time-varying FAR and MAR in (9) and (10),

respectively, the parameter set (nx, Sx) ∈ N × R needs to be designed at each t ∈ N. In other words, the

time-varying FAR and MAR yields an ROC curve that is also time-varying. Note that designing an alarm
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system at each sampling time is not only impractical, it may lead to serious process upsets and unsafe process

operations. Observe that this time-varying alarm design problem arises due to the time-varying FAR and

MAR in (9) and (10), respectively. One approach to make the alarm systems robust to any non-stationary

process disturbances and fluctuations is to consider the following robust definitions of FAR and MAR

FE(nx, Sx) =
1

(tβ − 1− nx)

tβ−1∑
t=nx

Ft(nx, Sx), (13a)

ME(nx, Sx) =
1

(tN − tβ − nx)

tN∑
t=tβ+nx

Mt(nx, Sx), (13b)

where FE(nx, Sx) and ME(nx, Sx) are the expected-case FAR and MAR, respectively. Observe that (13a)

and (13b) are time-invariant and robust to any non-stationary process behavior. Also, since Ft(nx, Sx) = 0

for t = 0, . . . , nx − 1 and Mt(nx, Sx) = 1 for t = tβ , . . . , tβ + nx − 1 (see (9), and (10), respectively), these

terms are not used in the calculations (see (13a) and (13b)). This ensures that the expected FAR and MAR

are not biased for large nx ∈ N values.

The new FAR and MAR definitions in (13a) and (13b) can also be used in the expected-case ROC-based

alarm design. This is done by using (13a) and (13b) to construct an ROC curve. Note that while the

FAR and MAR in (13a) and (13b) yield an expected-case alarm design, it is also possible to formulate a

worst-case alarm design by considering the following definitions for the FAR and MAR

FW (nx, Sx) = max
t∈{nx,...,tβ−1}

Ft(nx, Sx), (14a)

MW (nx, Sx) = max
t∈{tβ+nx,...,tN}

Mt(nx, Sx), (14b)

where FW (nx, Sx) and MW (nx, Sx) are the worst-case FAR and MAR, respectively. Again, the worst-case

alarm design can be performed by computing the ROC curve using the worst-case FAR and MAR in (14a)

and (14b). In summary, the new FAR and MAR definitions in (13a) – (13b) and (14a) – (14b) yield an

expected-case and worst-case alarm designs, respectively. In the next section, a sequential particle method

is discussed to compute the FAR and MAR.
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Particle Methods

The computation of the FAR and MAR in (13a) – (13b) and (14a) – (14b), respectively, require the density

functions pN and pF under the normal and abnormal operations to be known a priori; however, in practice,

this is rarely true and often need to be estimated from data. Now as discussed earlier, the non-stationary

process behavior exhibited by {Xt}t∈N limits the use of data-based methods discussed in.26,23 In this paper,

we propose to calculate pN and pF using Model 2 directly. This is done as follows. First note that using

the Law of Total Probability, the density function pN , for example, can be written as follows

pN (xt) =

∫
p(xt, xt−1)dxt−1, (15a)

=

∫
p(xt|xt−1)pN (dxt−1), (15b)

where p(xt|xt−1) is the state transition density in Model 2 and pN (dxt−1) , pN (xt−1)dxt−1 is a distribution

function for {Xt}t∈N under the normal process operations. Now for a given pN (xt−1), equation (15b)

provides a recursive approach to compute pN (xt) for all t ∈ N using Model 2 directly. Similarly, using the

Law of Total Probability, pF can be recursively written as follows

pF (xt) =

∫
p(xt, xt−1)dxt−1, (16a)

=

∫
p(xt|xt−1)pF (dxt−1), (16b)

where pF (dxt−1) , pF (xt−1)dxt−1 is the distribution function for {Xt}t∈N under abnormal process opera-

tions. Note that while Model 2 provides a recursive approach to calculate pN and pF , the densities in (15b)

and (16b) do not lend themselves to any closed-form solutions for the representation for the choice of model

in Model 2. This is because (15b) and (16b) involve integration with respect to complex non-Gaussian

density functions (recall that the densities in Model 2 are both nonlinear and non-Gaussian).

To address this problem, we propose the use of a sequential Monte-Carlo or particle method37,28 to

approximate pN and pF in (15b) and (16b), respectively, to arbitrary accuracy. A particle method is a

recursive approach that approximates the density functions in (15b) and (16b) by propagating a set of

‘particles’ generated from the previous sampling time. For the sake of brevity, we assume that the readers
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are familiar with the theory of particle methods. For a detailed exposition on particle methods the reader

is referred to a recently published tutorial on this subject38 or Section 6 in.39

The particle approximation of pN in (15b) is given as follows. Assume we have M -i.i.d. random particles,

denoted by {Xi
t−1}Mi=1 ∼ pN (xt−1), and distributed according to pN (xt−1) then the distribution function of

Xt−1 can be approximately defined as follows

p̃N (dxt−1) =
1

M

M∑
i=1

δXit−1
(dxt−1), (17)

where p̃N (dxt−1) is an M -particle approximation of the distribution function pN (dxt−1), and δX(dx) is a

Dirac delta measure centered at particle X. In (17), the particle method approximates the distribution func-

tion of Xt−1 using a sum of M Dirac delta measures, each centered around M random samples distributed

according to p(xt−1). Now, substituting (17) into (15b) yields

p̃N (xt) =

∫
pN (xt|xt−1)

1

M

M∑
i=1

δXit−1
(dxt−1), (18a)

=
1

M

M∑
i=1

∫
p(xt|xt−1)δXit−1

(dxt−1), (18b)

=
1

M

M∑
i=1

p(xt|Xi
t−1), (18c)

where the last equality results from the integral property of the Dirac delta measure. Observe that in (18c),

the density function pN (xt) is approximated using a sum of M state transition functions, pN (xt|Xi
t−1),

where i = 1, . . . ,M . Now since the M transition functions in (18c) are equally weighted (each has a weight

M−1), we can generate M random particles {Xi
t}Mi=1 ∼ pN (xt), distributed according to pN (xt) by simply

passing each particle in the set {Xi
t−1}Mi=1 through the state transition function. Now if {Xi

t}Mi=1 ∼ pN (xt)

denotes a particle set generated using (17) and distributed according to the density function pN (xt) then

the distribution function pN (dxt) can be approximately represented as follows

p̃N (dxt) =
1

M

M∑
i=1

δXit (dxt), (19)

where p̃N (dxt) is an M -particle approximation of pN (dxt). Similarly if {X̄i
t−1}Mi=1 ∼ pF (xt−1) represents a

set of M -i.i.d. particles distributed according to pF (xt−1), then random particles from the density function
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pF (xt) can be generated using the relation in (16b) such that

p̃F (xt) =
1

M

M∑
i=1

p(xt|X̄i
t−1), (20)

where p̃F (dxt) is an M -particle approximation of pF (dxt). Finally, if {X̄i
t}Mi=1 ∼ pF (xt) represents a particle

set generated using (20) and distributed according to pF (xt) then the distribution function pF (dxt) can be

approximated as

p̃F (dxt) =
1

M

M∑
i=1

δX̄it (dxt), (21)

where p̃F (dxt) is an M -particle approximation of pF (dxt). Now having computed a particle approximation

of the density functions pN and pF in (19) and (21), respectively, next we discuss the particle approximation

of the FAR and MAR in (9) and (10), respectively.

Particle Approximations of FAR and MAR

As discussed earlier, for the choice of model in Model 2, no closed form solutions exist to the FAR and

MAR in (9) and (10), and therefore need to be approximated. In this section, we extend the use of particle

method, discussed earlier to approximate the FAR and MAR using the particle approximations of pN and

pF computed in (19) and (21), respectively. First note that the FAR in (9) for all t ∈ {nx, . . . , tβ − 1} is

given by

Ft(nx, Sx) =

∫ +∞

Sx

· · ·
∫ +∞

Sx︸ ︷︷ ︸
nx+1 terms

pN (dxt−nx:t). (22)

It is clear that the FAR in (22) involves a complex multidimensional integral with respect to the joint

distribution pN (dxt−nx:t). Now computing a particle approximation of (22) first requires a particle approx-

imation of the joint distribution function. This is achieved as follows – first by appealing to the conditional

probability and using the Markov structure of Model 2, the joint distribution pN (dxt−nx:t) in (22) can be

rewritten as follows

pN (dxt−nx:t) = p(dxt|xt−1)pN (dxt−nx:t−1). (23)
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Similarly, by repeatedly appealing to the conditional probability, (23) can further be decomposed and

rewritten as follows

pN (dxt−nx:t) = pN (dxt−nx)

t∏
i=t−nx+1

p(dxi|xi−1). (24)

Equation (24) decomposes an nx-dimensional joint distribution function as a product of nx one-dimensional

distribution functions. Now as discussed in (19), if the particle approximation of the distribution pN (dxt−nx)

is given by

p̃N (dxt−nx) =
1

M

M∑
j=1

δXjt−nx
(dxt−nx), (25)

where {Xj
t−nx}

M
j=1 ∼ pN (xt−nx) is distributed according to pN (xt−nx) then substituting (25) into (24) yields

p̃N (dxt−nx:t)

=
1

M

M∑
j=1

δXjt−nx
(dxt−nx)

[
t∏

i=t−nx+1

pN (dxi|xi−1)

]
, (26a)

=
1

M

M∑
j=1

[
t∏

i=t−nx+1

pN (dxi|Xj
i−1)

]
δXjt−nx

(dxt−nx), (26b)

where p̃N (dxt−nx:t) is an M -particle approximation of the joint distribution function pN (dxt−nx:t). Now

given (26b), random particles from pN (dxt−nx:t) can be generated by passing each particle in the set

{Xj
t−nx}

M
j=1 consecutively nx times though the state equation. Now if {Xj

t−nx:t}Mj=1 ∼ pN (xt−nx:t) denotes

a particle set generated from (26b) and distributed according to pN (xt−nx:t) then we can write

p̃N (dxt−nx:t) =
1

M

M∑
j=1

δXjt−nx:t
(dxt−nx:t). (27)

Finally, substituting (27) into (22) yields

F̃t(nx, Sx)

=

∫ +∞

Sx

· · ·
∫ +∞

Sx︸ ︷︷ ︸
nx+1 terms

1

M

M∑
j=1

δXjt−nx:t
(dxt−nx:t), (28a)

=
1

M

M∑
j=1

∫ +∞

Sx

· · ·
∫ +∞

Sx︸ ︷︷ ︸
nx+1 terms

δXjt−nx:t
(dxt−nx:t), (28b)

=
1

M

M∑
j=1

1Ω(Xj
t−nx:t), (28c)
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where F̃t is an M -particle approximation of Ft and 1Ω : Rnx+1 → {0, 1} is an indicator function defined

over a set Ω ⊂ Rnx+1 such that

1Ω(Xj
t−nx:t) =


1 if Xj

t−nx:t ∈ Ω

0 otherwise

, (29)

and Ω , [Sx,+∞)nx+1. Thus as shown in (28c), the proposed method approximates the FAR in (9) as

the average of M indicator functions defined over the set Ω. Further, as one would expect, the maximum

probability of false alarms, as computed in (28c) is one, which corresponds to the condition Xj
t−nx:t ∈ Ω for

all j = 1, . . . ,M .

Similarly, computing a particle approximation of the MAR in (10) entails computing an approximation

to

Mt(nx, Sx) =

∫ Sx

−∞
· · ·

∫ Sx

−∞︸ ︷︷ ︸
nx+1 terms

pF (dxt−nx:t), (30)

for all t ∈ {tβ+nx, . . . , tN}. If {X̄j
t−nx:t}Mj=1 ∼ pF (xt−nx:t) represents a set of particles distributed according

to pF (xt−nx:t) then for all t ∈ {tβ + nx, . . . , tN} we have

p̃F (dxt−nx:t) =
1

M

M∑
j=1

δX̄jt−nx:t
(dxt−nx:t), (31)

where p̃F (dxt−nx:t) is an M -particle approximation of pF (dxt−nx:t). Now substituting (31) into (30) yields

M̃t(nx, Sx)

=

∫ Sx

−∞
· · ·

∫ Sx

−∞︸ ︷︷ ︸
nx+1 terms

1

M

M∑
j=1

δX̄jt−nx:t
(dxt−nx:t), (32a)

=
1

M

M∑
j=1

1R\Ω(X̄j
t−nx:t), (32b)

where M̃t is an M -particle approximation of Mt and

1R\Ω(X̄j
t−nx:t) =


1 if X̄j

t−nx:t ∈ R \ Ω

0 otherwise

, (33)
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and R \ Ω = (−∞, Sx)nx+1. As in (28c), the MAR in (32b) is also derived as the average of M indicator

functions defined over the set R \ Ω. Now with the FAR and MAR approximations in (28c) and (32b),

respectively, the expected-case and worst-case FAR and MAR are obtained by substituting (28c) and (32b)

into (13a) – (13b) and (14a) – (14b), respectively.

In summary, given a parameter set (nx, Sx) ∈ N×R, Algorithm 1 outlines the proposed particle method

to approximate the FAR and MAR, as discussed in this section.

Simulation Example

In this section, we consider a on-delay timer alarm design for a non-isothermal continuous stirred tank

reactor (CSTR) using the ROC-based method. Assume a CSTR reaction system of volume γ ∈ R+, and

with the following three parallel, irreversible, exothermic reactions

A
k1−−→ B, A

k2−−→ U, A
k3−−→ R, (34)

where A is the reactant, B is the desired product, and U and R are the undesired byproducts. The

concentrations of A, B, U , and R are denoted by CA, CB , CU , and CR, respectively. The reactor is assembled

with a jacket system to remove heat from the reactor. Given (34), the concentrations of species and the

reactor temperature are modeled as follows

Ṫ (t) =
1

γ
F (t)(TA0 − T (t)) +

3∑
i=1

(−∆Hi)

ρcp
Ri(CA(t), T (t))

+
Q(t)

ρcpγ
, (35a)

ĊA(t) =
1

γ
F (t)(CA0 − CA(t))−

3∑
i=1

Ri(CA(t), T (t)), (35b)

ĊB(t) =− γ−1F (t)CB(t) +R1(CA(t), T (t)), (35c)

ĊU (t) =− γ−1F (t)CU (t) +R2(CA(t), T (t)), (35d)

ĊR(t) =− γ−1F (t)CR(t) +R3(CA(t), T (t)), (35e)
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where: Ri for i = 1, 2, 3 are rate functions given by

Ri(CA(t), T (t)) = ki0 · exp(−Ei/RT (t))CA(t); (36)

∆Hi, ki0, and Ei for i = 1, 2, 3 denote the enthalpy, pre-exponential rate constant, and the activation energy

for the three reactions in (34); T is the reactor temperature; cp, ρ and R denote the heat capacity, fluid

density, and the gas constant, respectively; and Q denote the rate of heat removal. The feed flow rate,

denoted by F , is pure A of molar concentration CA0 and at temperature TA0. The initial conditions in the

CSTR are T (0) = 300 K, CA(0) = 4 kmol·m−3, and CB(0) = CU (0) = CR(0) = 0 kmol·m−3. Finally, Table

2 gives the nominal values for the parameters used in this simulation.

Discrete-time nonlinear time-series model

The network model in (35) is first discretized and represented in terms of Model 2 using the Euler’s discretiza-

tion method with a time-step 0.01 hr. For the sake of brevity, the discrete time-series model representation

of the network in (35) is not shown here, but is straightforward to derive. For the remainder of this section,

we assume that the network (35) is represented by Model 2 with Xt ≡ [T (t) CA(t) CB(t) CU (t) CR(t)]T

denoting the process states and Ut ≡ [F (t) Q(t)]T representing the manipulated inputs. To account for

discretization error or uncertainties in the parameter values in Table 2, we assume that the state noise in

Model 2, denoted by Vt ∼ N (mt, Qt) is an additive multivariate Gaussian noise with

mt =


[0 0 0 0 0]T for t = 0, . . . , tβ − 1

[0.2 0.1 0.1 0.1 0.1]T for t = tβ , . . . , tN

, (37a)

Qt =



0.1 0 0 0 0

0 0.1 0 0 0

0 0 0.1 0 0

0 0 0 0.1 0

0 0 0 0 0.1


. (37b)
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The mean of the state noise in (37a) is assumed to be different in the normal and abnormal operating

conditions. It is further assumed that the initial state, X0 ∈ R5 is imprecisely known, such that X0 ∼

N (mx0
, Qx0

), where

mx0
=



300

4

0

0

0


, Qx0

=



0.01 0 0 0 0

0 0.01 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


. (38)

Observe that the initial state distribution is defined independent of the state noise distribution (see As-

sumption 1). Further, note that even if X0 and {Vt}t∈N are Gaussian random variables, the distribution for

{X}t∈N is non-Gaussian. The non-stationary behavior of {X}t∈N is best elucidated by the reactor temper-

ature profile. Assuming tβ = 75 hrs and tN = 100 hrs, let Figure 1(a) represent a feed flow rate profile. It

is clear from Figure 1(a) that the input signal is proper, as required in Problem 1. For an input profile in

Figure 1(a), the reactor temperature profile is given in Figure 1(b). As shown in Figure 1(b), the mean and

standard deviation profiles are not only different under the normal and abnormal operations, the profiles are

also time-varying within the normal and abnormal operations. This highlights the non-stationary process

behavior of of the CSTR reaction system. Note that Figure 1(b) is only shown for illustrative purposes.

The ROC-based alarm design for the CSTR reaction system is discussed next.

An ROC-based Alarm Design

In this section, an expected-case and worst-case univariate on-delay timer alarm designs are considered to

monitor the concentration of A. Recall that the design parameters for an on-delay timer alarm configuration

are the alarm trip point and the delay timer, denoted as (nx, Sx) ∈ N× R. As discussed earlier, the ROC-

based alarm design method chooses an optimal (nx, Sx) ∈ N×R by constructing an ROC curve – a trade-off

curve between the FAR and MAR for a given nx ∈ N as Sx ∈ R is varied. Note that the FAR and MAR

for the CSTR reaction network represented by Model 2 are time-varying. For example, Figure 2(a) and (b)
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Figure 1: (a) The feed flow rate profile under normal and abnormal operations with fault occurring at tβ = 75 hrs. The flow

rate in the normal and abnormal operations is a random binary signal of specified magnitude and frequency. The change in

the flow-rate profile at tβ represent an actuator fault condition. (b) The black curve represents the rector temperature in the

normal and abnormal operations. The mean temperature profile is given by the blue curve, and the mean ± standard deviation

profiles are represented in red.

show the FAR and MAR for nx = 1 and Sx = 5, respectively, computed using Algorithm 1. From Figure

2(a) and (b) it is clear that the expected-case FAR and MAR (denoted by FE(nx, Sx) and ME(nx, Sx)) are

different from their worst-case FAR and MAR (denoted by FW (nx, Sx) and MW (nx, Sx)).

For the ROC-based expected-case alarm design, we construct the ROC curves using FE(nx, Sx) and

ME(nx, Sx). Figure 9 gives the ROC curves for different values of nx ∈ N as Sx ∈ R is varied. From

Figure 9, it is clear that FE(nx, Sx) and ME(nx, Sx) decreases as nx increases. As discussed, seeking an

alarm design that yields the smallest FE(nx, Sx) and ME(nx, Sx) may not be desirable in practice for it also

increases the time to detect the fault. Therefore, to ensure practicality of the design, we impose a design

requirement which only requires FE(nx, Sx) ≤ 7% and ME(nx, Sx) ≤ 7%.

Table 3 gives a list of alarm trip points for different delay timers and their corresponding FE(nx, Sx)

and ME(nx, Sx) values from the ROC curves in Figure 9. From Table 3 it is clear that the requirements

FE(nx, Sx) ≤ 7% and ME(nx, Sx) ≤ 7% are satisfied for all nx ≥ 15. To ensure there is no additional delay
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Figure 2: (a) A time-varying profile of Ft(nx, Sx) is given by the black curve. The average-case FAR, FE(nx, Sx) is represented

by the broken red curve and the worst-cast FAR, FW (nx, Sx) is encircled in blue. (b) (a) A time-varying profile of Mt(nx, Sx)

is given by the black curve. The average-case MAR, ME(nx, Sx) is represented by the broken red curve and the worst-cast

MAR, MW (nx, Sx) is encircled in blue. The profiles are generated using Algorithm 1 for the choice of alarm parameters nx = 1

and Sx = 5.

in detecting a fault, we choose the smallest nx that satisfies FE(nx, Sx) ≤ 7% and ME(nx, Sx) ≤ 7%. From

Table 3, the expected-case ROC-based alarm design method selects (nR1
x = 15, SR1

x = 4.73) as the optimal

choice of the alarm design parameters.

Next we discuss the ROC-based worst-case alarm design procedure to select an optimal (nx, Sx) ∈ N×R.

As previously, Figure 10 give the ROC curves that show the trade-off between FW (nx, Sx) and MW (nx, Sx)

for different values of nx ∈ N as Sx ∈ R is varied. As for the expected-case alarm design, observe that

FW (nx, Sx) and MW (nx, Sx) also drop for a higher nx values; however, notice that the ROC curves in

Figure 10 are not as smooth as those in Figure 9. This discrepancy is expected since the worst-case FAR and

MAR change considerably for a non-stationary process. Further, observe that for a given (nx, Sx) ∈ N×R,

the worst-case FW (nx, Sx) and MW (nx, Sx) in Figure 9 are much higher than FE(nx, Sx) and ME(nx, Sx)

in Figure 9.

Finally, Table 4 gives a list of alarm trip points for different delay timers and their corresponding
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FW (nx, Sx) and MW (nx, Sx) values calculated from Figure 10. Now assuming the design constraints

FW (nx, Sx) ≤ 7% and MW (nx, Sx) ≤ 7%, from Table 4, the worst-case ROC-based alarm design method

selects (nR1
x = 25, SR2

x = 4.72) as the optimal choice of the alarm design parameters.

Finally, we perform a Monte-Carlo simulation to check the consistency of the expected-case and worst-

case alarm system designs. For the expected-case alarm design, we set SR1
x = 4.73 and nR1

x = 15 samples.

We then simulate 5000 new trajectories for CA by simulating the CSTR reaction system in (35). Figure 11

gives the time-varying FAR and MAR for the simulated trajectories. In Figure 11, the expected FAR and the

expected MAR are calculated to be FE(nR1
x , SR1

x ) = 5.61% and ME(nR1
x , SR1

x ) = 5.79%, respectively, which

are consistent with the values calculated in the design step in Table 3. Similarly, to test the consistency of

the worst-case alarm design, we set SR2
x = 4.72 and nR2

x = 25 samples. Using the Monte Carlo samples, the

calculated worst-case FAR and MAR are found to be FW (nR2
x , SR2

x ) = 6.46% and MW (nR2
x , SR2

x ) = 6.49%,

respectively, which are again in agreement with the design values in Table 4.

Conclusions

An efficient alarm system is critical for setting up an efficient fault detection and diagnosis system. While an

alarm installation and operations involve a number of key steps, the alarm design has received least attention.

This paper considered the problem of industrial alarm design for processes described by stochastic nonlinear

time-series models. The proposed alarm design is general and can deal with nonlinear, non-Gaussian,

non-stationary, and correlated process dynamics. Mathematical expressions for the false and missed alarm

rates – two most common measures of performance for alarm systems – are derived for a delay timer

alarm configuration. Due to the lack of a closed-form solution, we use particle methods to compute an

approximation of the false and missed alarm rates. Finally, the efficacy of the proposed alarm design was

illustrated on a non-stationary reactor system.

27



Acknowledgment

The first author would like to thank Prof. Swanand R. Khare (Department of Mathematics, Indian Institute

of Technology, Kharagpur India) for all the helpful discussions.

Literature Cited

[1] Tulsyan A, Gopaluni RB. Robust model-based delay timer alarm for non-linear processes. In: Proceedings of the American

Control Conference (ACC). Boston, USA. 2016; pp. 2989–2994.

[2] Cochran E, Miller C, Bullemer P. Abnormal situation management in petrochemical plants: can a pilot’s associate crack

crude? In: Proceedings of the National Aerospace and Electronics Conference. Dayton, USA. 1996; pp. 806–813.

[3] Adnan NA, Izadi I, Chen T. On expected detection delays for alarm systems with deadbands and delay-timers. Journal

of Process Control. 2011;21(9):1318–1331.

[4] Du M, Mhaskar P. Isolation and handling of sensor faults in nonlinear systems. Automatica. 2014;50(4):1066–1074.

[5] Du M, Scott J, Mhaskar P. Actuator and sensor fault isolation of nonlinear process systems. Chemical Engineering

Science. 2013;104:294–303.

[6] Tulsyan A, Barton PI. Reachability-based fault detection method for uncertain chemical flow reactors. In: Proceedings of

the 11th IFAC Symposium on Dynamics and Control of Process Systems, vol. 49. Trondheim, Norway. 2016; pp. 1–6.

[7] Ahnlund J, Bergquist T, Spaanenburg L. Rule-based reduction of alarm signals in industrial control. Journal of Intelligent

and Fuzzy Systems. 2003;14(9):73–84.

[8] Brooks R, Thorpe R, Wilson J. A new method for defining and managing process alarms and for correcting process

operation when an alarm occurs. Journal of Hazardous Materials. 2004;115(1):169–174.

[9] Rothenberg D. Alarm Management for Process Control: A Best-practice Guide for Design, Implementation, and Use of

Industrial Alarm Systems. Momentum Press, Highland Park, NJ. 2009.

[10] Summerhayes C. Deep Water–The Gulf Oil Disaster and the Future of Offshore Drilling. Underwater Technology. 2011;

30(2):113–115.

[11] The Buncefield Incident 11 December 2005: The Final Report of the Major Incident Investigation Board. Tech. rep.,

Buncefield Major Incident Investigation Board. 2008.

[12] Investigation Report: Refinery Explosion and Fre. Tech. rep., US Chemical Safety and Hazard Investigation Board. 2007.

[13] Bingyong Y, Zuohua T, Songjiao S. A novel distributed approach to robust fault detection and identification. International

Journal of Electrical Power and Energy Systems. 2008;30(5):343–360.

[14] Isermann R. Fault-diagnosis Systems: An Introduction From Fault Detection to Fault Tolerance. Springer-Verlag, Hei-

delberg, Berlin. 2006.

28



[15] Ding S. Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools. Springer Science & Business

Media, Heidelberg, Berlin. 2008.

[16] Engineering Equipment and Materials Users Association (EEMUA), Alarm Systems – A Guide to Design, Management

and Procurement. EEMUS Publication 191. 2007;.

[17] Management of Alarm Systems For The Process Industries. Tech. rep., International Society of Automation. 2009.

[18] Noyes J. Alarm systems: a guide to design, management and procurement. Computing & Control Engineering Journal.

2000;11(2):52–52.

[19] Hugo A. Estimation of alarm deadbands. In: Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision

and Safety of Technical Processes. Barcelona, Spain. 2009; pp. 663–667.

[20] Adnan NA, Cheng Y, Izadi I, Chen T. Study of generalized delay-timers in alarm configuration. Journal of Process

Control. 2013;23(3):382–395.

[21] Izadi I, Shah S, Kondaveeti S, Chen T. A framework for optimal design of alarm systems. In: Proceedings of the 7th IFAC

Symposium on Fault Detection, Supervision and Safety of Technical Processes. Barcelona, Spain. 2009; pp. 651–656.

[22] Izadi I, Shah S, David S, Chen T. An introduction to alarm analysis and design. In: Proceedings of the 7th IFAC

Symposium on Fault Detection, Supervision and Safety of Technical Processes. Barcelona, Spain. 2009; pp. 645–650.

[23] Xu J, Wang J, Izadi I, Chen T. Performance assessment and design for univariate alarm systems based on FAR, MAR,

and AAD. IEEE Transactions on Automation Science and Engineering. 2012;9(2):296–307.

[24] Kondaveeti SR, Izadi I, Shah SL, Shook DS, Kadali R, Chen T. Quantification of alarm chatter based on run length

distributions. Chemical Engineering Research and Design. 2013;91(12):2550–2558.

[25] Naghoosi E, Izadi I, Chen T. A study on the relation between alarm deadbands and optimal alarm limits. In: Proceedings

of the American Control Conference (ACC). San Francisco, USA. 2011; pp. 3627–3632.

[26] Adnan N. Performance Assessment and Systematic Design of Industrial Alarm Systems. Ph.D. thesis, Department of

Electrical and Computer Engineering, University of Alberta, Canada. 2013.

[27] Adnan N, Izadi I, Chen T. Computing detection delays in industrial alarm systems. In: Proceedings of the American

Control Conference. San Francisco, USA. 2011; pp. 786–791.

[28] Tulsyan A, Huang B, Gopaluni RB, Forbes JF. On simultaneous on-line state and parameter estimation in non-linear

state-space models. Journal of Process Control. 2013;23(4):516–526.

[29] Tulsyan A, Huang B, Gopaluni RB, Forbes JF. Performance assessment, diagnosis, and optimal selection of non-linear

state filters. Journal of Process Control. 2014;24(2):460–478.

[30] Tulsyan A, Huang B, Gopaluni RB, Forbes JF. Bayesian identification of non-linear state-space models: Part II-Error

Analysis. In: Proceedings of the 10th IFAC International Symposium on Dynamics and Control of Process Systems,

vol. 46. Mumbai, India. 2013; pp. 631–636.

[31] Tulsyan A, Khare S, Huang B, Gopaluni B, Forbes F. A switching strategy for adaptive state estimation. Signal Processing.

29



2017;.

[32] Tulsyan A, Barton PI. Interval enclosures for reachable sets of chemical kinetic flow systems. Part 2: Direct-bounding

method. Chemical Engineering Science. 2017;166:345–357.

[33] Tulsyan A, Barton PI. Interval enclosures for reachable sets of chemical kinetic flow systems. Part 3: Indirect-bounding

method. Chemical Engineering Science. 2017;166:358–372.

[34] Kondaveeti S, Izadi I, Shah S, Chen T. On the use of delay timers and latches for efficient alarm design. In: Proceedings

of the 19th Mediterranean Conference on Control Automation. Corfu, Greece. 2011; .

[35] Chen J, Gupta AK. Parametric Statistical Change Point Analysis: with Applications to Genetics, Medicine, and Finance.

Springer Science & Business Media, Heidelberg, Berlin. 2011.

[36] Basseville M, Nikiforov IV. Detection of Abrupt Changes: Theory and Application, vol. 104. Prentice Hall, Englewood

Cliffs, NJ. 1993.

[37] Tulsyan A, Huang B, Gopaluni RB, Forbes JF. A particle filter approach to approximate posterior Cramer-Rao lower

bound: The case of hidden states. IEEE Transactions on Aerospace and Electronic Systems. 2013;49(4):2478–2495.

[38] Tulsyan A, Gopaluni RB, Khare SR. Particle filtering without tears: A primer for beginners. Computers & Chemical

Engineering. 2016;95:130–145.

[39] Tulsyan A, Tsai Y, Gopaluni B, Braatz R. State-of-charge estimation in lithium-ion batteries: A particle filter approach.

Journal of Power Sources. 2016;331:208–223.

[40] Bullemer P, Nimmo I. A training perspective on abnormal situation management: establishing an enhanced learning

environment. In: Proceedings of the AICHE Conference on Process Plant Safety. Houston, USA. 1996; .

30



Algorithm 1 Approximating FAR and MAR

1: Input: Model 2, a proper input signal {Ut}t∈N, time of fault tβ , final time tN , number of particles M ,

and alarm parameters (nx, Sx)

2: for t=0 to tN do

3: if 0 ≤ t ≤ nx − 1 then

4: Set Ft(nx, Sx) = 0

5: end if

6: if nx ≤ t ≤ tβ − 1 then

7: Compute an M particle approximation of the joint distribution function pN (dxt−nx:t) using (27)

p̃N (dxt−nx:t) =
1

M

M∑
j=1

δXjt−nx:t
(dxt−nx:t).

8: Compute an M particle approximation of FAR using

F̃t(nx, Sx) =
1

M

M∑
j=1

1Ω(Xj
t−nx:t),

where Ω , [Sx,+∞)nx+1.

9: end if

10: if tβ ≤ t ≤ tβ + nx − 1 then

11: Set Mt(nx, Sx) = 1

12: end if

13: if tβ + nx ≤ t ≤ tN then

14: Compute an M particle approximation of the joint distribution function pF (dxt−nx:t) using (31)

p̃F (dxt−nx:t) =
1

M

M∑
j=1

δX̄jt−nx:t
(dxt−nx:t).

15: Compute an M particle approximation of MAR using

M̃t(nx, Sx) =
1

M

M∑
j=1

1R\Ω(X̄j
t−nx:t),

where R \ Ω = (−∞, Sx)nx+1.

16: end if

17: end for

31



Figure 3: Initiating causes from 1992 plant incident reports. This figure is reproduced from40 for illustration purposes.
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Figure 4: (a) Process data (black-curve) in normal and abnormal operating regions. The normal and abnormal regions are

distinguished based on the mean, i.e., the mean value of the variable changes as the process moves from normal to abnormal

operating region. The data in the normal region is a Gaussian random variable with mean 7 and variance 1, and the data in

the abnormal region is a Gaussian random variable with mean 9 and variance 1. The shaded grey area represents the abnormal

operating region. The broken red line represents the alarm threshold. (b) The state of the alarm (represented by the red binary

function) in the normal and abnormal regions with zero alarm delay. (c) The state of the alarm (represented by the red binary

function) in the normal and abnormal regions with one sample alarm delay. The states 0 and 1 correspond to the alarm “off”

and “on” states, respectively.
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Figure 5: A schematic of ROC curves obtained for an nx-sample delay timer alarm is shown as Sx is varied in R. The ROC

curves corresponding to nx = 1, 3, 5 and 7 are shown here.
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Figure 6: The probability density functions (PDFs) for the variable in Figure 4(a) under normal and abnormal operations. The

PDFs in the normal and abnormal regions are represented by the dashed red and blue curves, respectively. The underlying

histograms from which these PDFs are estimated are represented by the red and blue staircase functions.
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Figure 7: A schematic of the PDFs for {Xt}t∈N in Model 2. The PDF under the normal operation is denoted by pN (·) (density

function in red); and the PDF under the abnormal operations is denoted by pF (·) (density function in blue). The solid black

vertical line denotes the alarm threshold Sx.
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Figure 8: An illustration showing the time-varying density functions for a non-stationary process under normal and abnormal

operating conditions. The red density functions correspond to pN (·) and the blue density functions correspond to pF (·).
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Figure 9: The ROC curves showing the expected-case FAR and MAR calculated for different (nx, Sx) ∈ N × R parameter

values. The ROC curves are calculated using Algorithm 1 and are shown for nx = 5, 10, 15, 20, 25.
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Figure 10: The ROC curves showing the worst-case FAR and MAR calculated for different (nx, Sx) ∈ N×R parameter values.

The ROC curves are calculated using Algorithm 1 and are shown for nx = 5, 10, 15, 20, 25.
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Figure 11: Time-varying FAR and MAR on the cross-validation set generated using Monte-Carlo simulation (denoted here by

the blue curves). The expected-case FAR and the expected-case MAR are FE(nR1
x , SR1

x ) = 5.61% and ME(nR1
x , SR1

x ) = 5.79%,

respectively, where SR1
x = 4.73 and nR1

x = 15 (denoted by broken red lines).
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Table 1: (On/Off)-delay time recommendations based on the signal type (EEMUA18 and ISA17).

Signal Type (On/Off) Delay Timers

Flow rate 15 seconds

Level 60 seconds

Pressure 15 seconds

Temperature 60 seconds
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Table 2: Nominal parameter values for the non-isothermal CSTR reaction system considered in (35).

Parameter Value Unit

V 1 m3

R 8.314 kJ · kmol−1 · K−1

∆H1 −5.0 × 104 kJ · kmol

∆H2 −5.2 × 104 kJ · kmol

∆H3 −5.4 × 104 kJkmol

k10 3.0 × 106 h−1

k20 3.0 × 105 h−1

k30 3.0 × 105 h−1

E1 5.0 × 104 kJ · kmol−1

E2 7.53 × 104 kJ · kmol−1

E3 7.53 × 104 kJ · kmol−1

ρ 1000 kg · m−3

cp 0.231 kJ · kg−1 · K−1
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Table 3: Parameter selection chart for the ROC-based expected-case on-delay timer alarm design. The values given here are

calculated from Figure 9.

Delay Samples Alarm Trip (Sx) FAR=MAR (in %)

5 4.64 15.75

10 4.69 9.28

15 4.73 5.74

20 4.76 3.70

25 4.78 2.43
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Table 4: Parameter selection chart for the ROC-based worst-case on-delay timer alarm design. The values given here are

calculated from Figure 10.

Delay Samples Alarm Trip (Sx) FAR=MAR (in %)

5 4.27 33.69

10 4.45 20.38

15 4.54 14.01

20 4.63 9.93

25 4.72 6.52
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