
A Deep Learning Architecture for
Predictive Control

Steven Spielberg Pon Kumar ∗ Aditya Tulsyan ∗

Bhushan Gopaluni ∗ Philip Loewen ∗

∗University of British Columbia, Vancouver, Canada (e-mail:
spiel@mail.ubc.ca; tulsyan@ualberta.ca; bhushan.gopaluni@ubc.ca;

loew@math.ubc.ca).

Abstract: Model predictive control (MPC) is a popular control strategy that computes
control actions by solving an optimization problem in real-time. Uncertainty and nonlinearity
of a process, and the non-convexity of the resulting optimization problem can make online
implementation of MPC nontrivial. Consequently, MPC is most often used in processes where
the time constants are large and/or high-performance computing support is available. We
propose a deep neural network (DNN) controller architecture to reduce the computational cost
of implementing an MPC. This is done by training a DNN controller on simulated input-output
data from a well-designed MPC. The online implementation of a DNN controller does not require
solving an optimization problem. Once the DNN is trained, the MPC is fully replaced with the
DNN controller. The benefits of this approach are illustrated through a simulated example.

Keywords: artificial intelligence, model predictive control, deep neural networks, optimization

1. INTRODUCTION

Developing a reliable control strategy for complex indus-
trial processes in presence of process uncertainties is a
daunting task. This problem is further exacerbated in pres-
ence of non-linear and non-stationary dynamics, known or
unknown process disturbances, and multivariate process
interactions. Model predictive control (MPC) is an ad-
vanced control strategy that addresses these challenges.
For a detailed survey of the MPC and its applications, see
(Qin and Badgwell, 2003; Yu-Geng et al., 2013).

The central idea behind the standard MPC is straight-
forward – it computes a control action by minimizing a
cost function, e.g., tracking error, over the space of feasible
actions. In a standard MPC formulation, the optimization
is solved repeatedly, taking into account the latest obser-
vations, the system dynamics (as represented by a process
model), and other input-output constraints. See Mayne
(2014) for details.

Even though MPC has been successfully applied in indus-
trial processes worldwide, its implementation for complex
processes is still lagging. This is primarily due to the
challenges in effectively solving the optimization problem
in real-time with nonlinear dynamic models and other
non-convex constraints. Solving the optimization problem
becomes even more challenging in the presence of hidden
nonlinear Markov models, as in nonlinear MPC (NMPC)
(Findeisen et al., 2007) or with economic objectives, as in
economic MPC (EMPC) (Ellis et al., 2014). Several global
methods exist to solve complex non-convex constrained op-
timization problems with dynamic models (Biegler, 2000,
2007); however, these methods are not practical for online
implementation due to their high computational cost.

The lack of an effective approach to solve constrained
optimization problems in real-time has made MPC algo-
rithms suitable for processes either with large time con-
stants or for environments with high-performance com-
puting (HPC) capabilities. For a number of fast dynamic
systems in areas without the HPC capabilities, such as
manufacturing, electrical, and aerospace, available opti-
mization algorithms do not yet meet the requirements of
real-time computing. Thus, despite recent theoretical ad-
vances, MPC is not widely used in large-scale applications
in these fields (Yu-Geng et al., 2013).

To make the MPC implementaiton practical for complex
systems, researchers have proposed many techniques to
facilitate real time computing. For example Wan and
Kothare (2003) use off-line design and online synthesis
strategy to design a constrained robust MPC controller
from Kothare et al. (1996). This strategy moves a signif-
icant portion of computation offline. While it has a solid
theoretical basis, the algorithm needs to off-line solve an
NP-Hard multi-parametric programming problem. Wal-
lace et al. (2016) propose a two-tiered optimization ap-
proach to speed up the optimization step, where the first
tier computes the best response of certain desired form
like fast first order response with minimum overshoot ratio
and the second tier computes the control action to achieve
this fast response. However, they suffer from the curse
of dimensionality. Various function approximation tech-
niques are also developed for use with MPC. Kittisupakorn
et al. (2009) use Neural Networks (NN) to approximate
the MPC prediction step and optimization cost function.
NN are also used to approximate the nonlinear system dy-
namics, as in Piche et al. (2000), and then MPC is applied
on the neural network model. However, these approaches
involve estimation of hidden states at each instant. In ad-

Preprints, 10th IFAC International Symposium on
Advanced Control of Chemical Processes
Shenyang, Liaoning, China, July 25-27, 2018

Copyright © 2018 IFAC 506

dition, model free methods such as reinforcement learning
techniques Pon Kumar et al. (2017) were also developed
to speed up the optimization step. Our approach differs
from the fact that our newly proposed deep learning ar-
chitecture takes past control actions and current system
output to compute the control action at each step. Also
in our approach we have directly mapped from process
output, target output to control actions. Once the deep
learning model is trained, it does not require performing
optimization step to return control action. Moreover, our
approach does not involve estimation of hidden states that
characterize system dynamics.

In this paper, we propose a novel approach to reduce the
computational cost of implementing an MPC. The central
idea is as follows. First, for a given process and process
constraints, we design the best-in-class MPC architecture
that achieves optimal controller performance by way of se-
lecting the best process model, the best state estimator and
the best optimization method. Clearly, such an deal MPC
would have an optimal performance, but limited practical
use. Next, under simulations or controlled implementation,
pairs of control actions and system outputs are generated
using the MPC. The generated data include information
about the policy implemented by the MPC by solving
the complex constrained optimization to global optimality.
Next, using the generated data, a neural-network (NN)
model is trained to emulate the control policy implemented
by the ideal MPC. Once a NN is trained, the MPC is
discarded, and the NN is deployed for real-time control.

The proposed method offers several advantages. First,
unlike a traditional MPC, the NN controller does not
solve any expensive constrained optimization problems,
state estimation algorithms or model simulations in real-
time. This makes it extremely fast, and suitable for real-
time control. Second, since the NN controller emulates
the control policy implemented by an ideal MPC, its
performance is also expected to closely follow that of an
ideal MPC. Our simulations demonstrate the efficacy of
the proposed deep NN controller in controlling a simulated
process.

To ensure that the NN generalizes to complex processes
with large number of continuous states, we develop a
deep NN architecture for the controller using Long Short-
Term Memory Supported NN (LSTMSNN) models. The
LSTMSNN is a weighted combination of the standard
LSTM with NN. The LSTM part of the architecture uses
past control actions to capture the temporal relationships
between the control actions, while the NN part uses
current system output and target output to predict the
control actions. This ensures that the current control
action depends on the past control actions, the current
system output and the target output. To accelerate the
online implementation of the deep NN controller, it is
implemented in a Graphical Processing Unit (GPU) by
parallelizing the computations.

Finally, we highlight that in this paper, we are not propos-
ing any novel designs for MPC. Instead, the user designs
and selects the MPC they wish to use to control their
processes. The proposed method simply takes the user-
designed MPC, and makes its implementation computa-
tionally less demanding through a NN controller.

2. NEURAL NETWORKS

The process modeling problem can be formulated as a
regression problem. The objective is to find a mapping
function f : U → Y that best describes the process dy-
namics, where U ⊆ Rnu and Y ⊆ Rny are the input and
output spaces, respectively.

The underlying principle behind the use of NNs to model
complex process dynamics is the adaptation of a natural
network of neurons, where each single neuron predicts
an output, yt ∈ Y, by forming a linear combination of
truths constructed from the inputs, ut ∈ U , and applying a
nonlinear transformation to produce an output prediction,
ŷt ∈ Rny . In a single-layer neural network, the relation
between yt and ut can be expressed as

yt = fy(Wuyut), (1)

where Wuy ∈ Rny×nu is a weight matrix from ut to yt,
and fy(·) is an element-wise nonlinear activation function.
Common activation functions include the sigmoid, hyper-
bolic tangent, and rectified linear unit:

fy(x) ≡ σ(x) =
1

1 + e−x
, (2)

fy(x) ≡ tanh(x) =
e2x − 1

e2x + 1
, (3)

fy(x) ≡ ReLU(x) = max(0, x). (4)

Networks are formed by composition. For example, a 3-
layer NN model with sigmoid activation has the functional
form

yt = W3,uyσ(W2,uy(σ(W1,uyut))), (5)

where W1,uy,W2,uy and W3,uy are matrices of network
weights. Combining a large sum of these simple neurons
across the input space, and forwarding them through
multiple layers in a network, provides a versatile class of
functions from which one with the desired properties is
to be selected. The selection process, called “learning”,
consists of choosing the network weight matrices to mini-
mize a suitably defined loss function. Typically one mini-
mizes the difference between the measured/desired input-
output data and the NN predictions, using a gradient
descent algorithm. Repeated application of the chain rule
for differentiation leads to an efficient method for gradient
calculation known as backpropagation.

2.1 Recurrent Neural Networks

Recurrent neural networks (RNN) extend conventional
Feed Forward Neural Networks (FFNNs) by adding time-
dependence. RNNs have been widely studied and used
for various machine-learning tasks involving temporal (or
spatial) correlations between the inputs and outputs. For
example, the input and output sequences of a controlled
dynamic system are time-series with temporal correlations,
satisfying the Markov property. An RNN model captures
the behavior of such systems using a hidden state, ht ∈
H ⊂ Rnh , whose dynamics are described as follows

ht = fh(ht−1, xt), yt = fy(ht), (6)

where fh : H × X → H is a transition function (possibly
nonlinear) describing the dynamics of ht ∈ H and fy :
H → Y describes the functional mapping from the hidden
state to the output variable. The hidden state, ht ∈ H, can

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

507

Fig. 1. The architecture of an (a) RNN and (b) LSTM. The figure is adapted from (Jithesh et al., 2017).

be interpreted as a running summary of ut ∈ U until time
t ∈ N; the recurrence formula in (6) updates this summary
based on its previous value, ht−1 ∈ H. It is common to
assume h0 = 0.

The transition function fh is typically defined as the
composition of an element-wise nonlinearity with an affine
transformation of both ut and ht−1, such that

ht = fh(Wuhut +Whhht−1), (7)

where Wuh ∈ Rnh×nu and Whh ∈ Rnh×nh are the input-to-
hidden weight matrix and hidden-to-hidden weight matrix,
respectively. Similarly, fy is typically defined as a compo-
sition of an affine transformation of ht, such that

yt = fy(Whyht), (8)

where Why ∈ Rny×nh is the hidden-to-output weight ma-
trix. It is common to define fh as a sigmoid or hyperbolic
tangent function, and fy as the identity function, so

ht = tanh(Wuhut +Whhht−1), yt = Whyht. (9)

In (9), W ≡ {Wuh,Whh,Why} is a set of network parame-
ters that can be estimated using backpropagation method
through time (BPTT [21], [22]), whereby parameters are
updated after a complete sequence of forward and back-
ward passes are completed. RNNs have memory ability,
but long-term memory is limited. It makes the gradient
explode or vanish while training with BPTT algorithm,
which is addressed in the approach of (Bengio et al., 1994).

2.2 Long Short-Term Memory

The challenges of training an RNN to capture long-
term input-output dependencies are well-known to the
research community. Several attempts have been made to
address this fundamental problem, including modifying fh
to encourage some hidden units to adaptively maintain
long-term memory and creating paths in RNN, such that
gradients can flow over many time-steps.

The LSTM architecture was first proposed by Hochreiter
and Schmidhuber (1997). Since then, it has been revised
and refined by many other researchers. An illustration of
an LSTM architecture is given in Figure 1(b). An LSTM
unit consists of a memory cell, ct, an input gate, it, a forget
gate, ft, and an output gate, ot. The memory cell carries
the memory content of an LSTM unit, while the three
gates control the amount of changes to and exposure of
the memory content. In Figure 1(b), ut is the input to
the memory cell layer and σ is the element-wise logistic

sigmoid function. Mathematically, for np LSTM units, the
forget, input and output gates are described as follows

ft = σ(Wufut +Whfht−1), (10a)

it = σ(Wuiut +Whiht−1), (10b)

ot = σ(Wuout +Whoht−1), (10c)

where Wuf ∈ Rnp×nu , Wui ∈ Rnp×nu , and Wuo ∈ Rnp×nu

are the LSTM weights from the input, ut to ft, it and ot,
respectively. Similarly, Whf ∈ Rnp×nh , Whi ∈ Rnp×nh and
Who ∈ Rnp×nh are the weights from the hidden state, ht−1
(at the previous time-step) to ft, it and ot, respectively.
The gates in (10a)–(10c) control the information flow
through the LSTM. The forget gate, ft, determines how
much of the hidden state, ht−1 is allowed to pass through;
the input gate, it determines the past values of the hidden
state, ht−1, that will be updated; and the output gate, ot,
determines the how much of ht−1 will be made available
to the next layer. Finally, the candidate value, gt, and the
memory cell, ct, are updated via

gt = tanh(Wugut +Whght−1), (11a)

ct = ftct−1 + itgt, (11b)

where Wug ∈ Rnp×nu , and Whg ∈ Rnp×nh are the weights
for ut and ht to gt, respectively. Once ct is updated in
(11b), the hidden state ht can be computed:

ht = ot tanh(ct). (12)

Finally, an RNN with LSTM architecture is implemented
by replacing the recurrent hidden layer with an LSTM cell.
In an LSTM cell, the input gate, forget gate, and output
gate solve the vanishing and exploding gradient problems
observed in RNN.

2.3 Model Predictive Control

MPC is a multivariable control algorithm that uses an
internal dynamic model of the process and the history of
past control moves to compute optimal control actions. In
simple terms, it involves solving the following optimiza-
tion problem, at each sample time, over a predetermined
prediction horizon N ,

min
{u1,··· ,uN}

N∑
t=1

wyt
(ysp − yt)2 +

N∑
t=1

wut
∆u2t (13)

subject to process and model constraints. In the objective
function above, yt is the process output at time step t, ysp
is the output setpoint, ut is the control action at time step
t, wyt

is the weighting coefficient on controller error, and

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

508

Fig. 2. (a) Training setup for an NN controller. (b) Implementation of an NN controller. (c–e) Architectures of an LSTM-
only controller, NN-only controller, and LSTM supported NN (LSTMSNN) controller, respectively. Controllers are
represented using standard NN block diagrams: the red blocks indicate the input layer, the green blocks represent
the hidden layer, and the blue blocks represent the output layer.

wut
is weighting coefficient on ut. In a receding horizon

implementation, only u1 is applied on the system and the
full N -step optimization problem is re-solved in at every
time step. In the following section, a novel combination
of LSTM and NN is shown to replicate the dynamic
behaviour of the MPC.

3. NN CONTROLLER

As discussed in Section 1, to address the computational
issues of implementing an MPC for complex systems, we
propose a novel NN controller architecture. The idea is
straightforward: we first design the best-in-class MPC for
our process, and then simulate it to generate pairs of
process outputs and control actions. Next, the generated
input-output data is used to train an NN controller.
Once the NN controller is trained, it is deployed for
real-time process control. A schematic of training and
deploying an NN controller is shown in Figures 2(a) and
(b), respectively.

We consider three separate architectures for training
the NN controller: LSTM-only, NN-only, and LSTM-
supported-NN (LSTMSNN). All the three models are
trained using the data generated from an MPC.

The proposed LSTM-only controller is a 2-layer RNN of
length 5, with each hidden layer containing several hidden
units, and each hidden unit represented by an LSTM
unit. For simulation, we use LSTM with 2 hidden layers
with 20 hidden units in the first layer and 50 units in
the second layer. The feed forward neural network has
two layers with 20 and 40 units in the first and second
layer respectively. An illustration of the proposed LSTM-
only model is given in Figure 2(c). As shown in Figure
2(c), the inputs to the LSTM-only controller at each time
step are the MPC control actions, plant outputs and set-
points, denoted generically by u ≡ [uk, yk, ysp,k]T, where
u ∈ Rnu+2ny and k = t − 5, . . . , t. The network output
is the control action taken at the next time step, denoted
by ut+1 in Figure 2(c). Observe that the output is defined
only at the terminal time, as opposed to at each time. The
LSTM-only controller captures the dependency of ut+1 on
the past inputs, outputs and set-points. Physically, the
LSTM-only controller learns how the MPC control actions

are generated based on the past control actions and the
process outputs. Note that although the current inputs,
outputs and set-points are included in the LSTM-only
controller their influence may be limited due to the forget,
input and output gates in the LSTM unit that control the
amount of information that passes through the network.

To assign higher weights to the current inputs, outputs
and set-points, we consider a NN-only control architecture
shown in Figure 2(d). The proposed NN-only model is a 3
layer NN, with each layer containing several hidden units.
The input to the NN-only model is u ≡ [ut, yt, ysp,t]

T, and
the output is ut+1. A NN-only model captures the MPC
response based on current control actions and current
outputs by discarding the past. In other words, a NN-only
controller is a memory-less controller.

The third NN controller – LSTMSNN combines the bene-
fits of an LSTM-only controller (which takes past control
actions and outputs into consideration) and an NN-only
controller (which takes current control actions and outputs
into consideration) in a unified architecture. An LSTM-
SNN controller output is a weighted combination of an
LSTM-only controller output and the NN-only controller
output. This allows an LSTMSNN controller to effectively
learn an optimal control action given past and current in-
puts, outputs and set-points. A schematic of the proposed
LSTMSNN controller is shown in Figure 2(e).

4. PROCESS SETUP AND DATA COLLECTION

In this section, we demonstrate the efficacy of the proposed
NN controller to control the moisture content of the sheets
produced by a paper-making machine. The variable to be
controlled is the moisture content and the manipulated
variable is the steam flow rate. The following transfer
function describes the relation between the steam flow and
the moisture content:

G(z) =
0.05z−4

1− 0.6z−1
. (14)

A standard MPC architecture to control the drying pro-
cess represented in (14) is designed in MATLAB. The NN
controller is trained using Tensorflow (Abadi et al., 2016),
a deep-learning framework. In Tensorflow, a NN is typ-
ically represented as graph, and the network gradients

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

509

are computed using automatic differentiation. To speed
up the implementation of the NN controller, we use a
GPU (NVIDIA Geforce 960M) with CUDA. The LSTMSNN
model takes around 0.2 seconds to return a control action
on this GPU. Finally, both the MPC and the process model
are simulated in MATLAB to generate artificial training
data for different initial process conditions and different
reference trajectories.

All the three versions of the proposed NN controller
– LSTM-only, NN-only and LSTMSNN – require three
variables for training: the reference trajectory, process
output and MPC control actions.

time
0 100 200 300 400 500

ou
tp

ut

-5

-4

-3

-2

-1

0

1

2

3

4

5
Sinusoidal + Pseudo Random Binary Signal

Reference
Action
State

Fig. 3. 500 time steps of a mixture of binary, sinusoidal and
combined sequences used for training. The reference
signal is represented by the blue trajectory, the pro-
cess output by the red trajectory and the LSTMSNN
control action by the green trajectory.

The process is simulated for 1000 time steps. A small
Gaussian noise is added to the process output to account
for measurement noise and other uncertainties. To control
the process, we also need to define a reference signal.
We choose a pseudo-random binary reference signal in
the intervals [−3.0, −0.2] and [0.2, 3.0]. We also select
a sine reference signal with period ranging in the inter-
val [10, 1000]. Note that these intervals are defined for
deviation process variables. Finally, note that a pseudo-
random and sine reference signals ensure that the process
is sufficiently excited in all frequencies. This also ensures
that the data generated from the simulation is sufficiently
informative for training a NN controller. A subset of data
used for training is shown in Fig. 3.

5. RESULTS AND DISCUSSION

Table 1 compares the designed LSTM-only, NN-only, and
LSTMSNN controllers using the mean square error (MSE)
and offset error (OE). Observe that the LSTMSNN con-
troller outperforms the LSTM-only and the NN-only con-
troller, both in terms of MSE and OE, for all the chosen
set-points. This is because unlike the LSTM-only or the
NN-only controller, the LSTMSNN controller learns the
optimization and prediction steps of an MPC within the
weights of the network by studying the past and current
control actions, plant outputs and set-points. Also, the
LSTM only model does not converge because the problem
formulation of LSTM is posed in a way to predict future
control action given the past, whereas the LSMSNN model
converged because the LSTM part does the time series

prediction and the neural network part does the regression
step given the current output and required target output.

Figures 4(a) and (b) compare the performance of the
LSTMSNN and NN-only controllers for a (constant) set-
point ysp,t = 5. It is clear that the NN-only controller
results in a significant target offset. Figures (4(c) and (d)
compares the LSTMSNN and NN-only controllers for a
set-point ysp,t = 10, which is outside of the training data
set. Again, the LSTMSNN controller is able to track the
target set-point, demonstrating the better generalization
of the controller over the larger process state space.

Figures 4(e)–(h) show the performance of the LSTMSNN-
controller in tracking time-varying reference signals. Ev-
idently the LSTMSNN controller can effectively track
complex set-points. Finally, Figure 5 shows the tracking
performance of the LSTMSNN controller under different
process initial conditions.

These findings clearly establish the robustness and gener-
alization capabilities of the designed LSTMSNN controller
in effectively controlling the process under different initial
conditions and for different reference signals. Also for sim-
ulation purpose we use pseudo random signals to collect
data from MPC, practically any other signals like smooth
step signals can be used to collect data from MPC.

Table 1: Performance comparison between methods

Model Setpoint MSE OE

LSTMSNN 2 0.06 0.01

NN-only 2 0.07 0.23

LSTM-only 2 5.56 Did not converge

LSTMSNN 5 0.078 0.01

NN-only 5 0.53 0.7

LSTM-only 5 62.42 Did not converge

LSTMSNN 10 0.01 0.01

NN-only 10 2.21 1.3

LSTM-only 10 167.78 Did not converge

6. CONCLUSIONS

We have developed a novel deep NN controller that learns
the optimal policy implemented by an MPC. The proposed
NN controller eliminates the need to solve in real-time a
complex optimization problem, state estimation problem
and a prediction problem. This makes the NN controller
(with GPU implementation) exceptionally fast and easy
to implement compared to the traditional MPC. The
performance of the designed NN controller was illustrated
on an example problem from the paper industry.

ACKNOWLEDGEMENTS

We would like to thank Tingke Shen, Zilun Peng of
University of British Columbia for helpful discussions.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,
Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

510

Fig. 4. (a–b) Performance of a NN-only controller for ysp,t = 5 and ysp,t = 10, respectively. (c–d) Performance of an
LSTMSNN controller for ysp,t = 5 and ysp,t = 10, respectively. (e–h) Performance of an LSTMSNN controller for
linear, quadratic, cubic and polynomial tracking targets, respectively. Set-points are shown in green and process
outputs in blue.

0 10 20 30 40 50 60 70

2

4

6

8

 10

Output

Time

Fig. 5. Tracking performance of the LSTMSNN-controller
for different initial process conditions. The set-point
is shown in green.

M., et al. (2016). Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, 265–283.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning
long-term dependencies with gradient descent is diffi-
cult. IEEE transactions on neural networks, 5(2), 157–
166.

Biegler, L.T. (2000). Efficient solution of dynamic op-
timization and nmpc problems. In Nonlinear model
predictive control, 219–243. Springer.

Biegler, L.T. (2007). An overview of simultaneous strate-
gies for dynamic optimization. Chemical Engineering
and Processing: Process Intensification, 46(11), 1043–
1053.

Ellis, M., Durand, H., and Christofides, P.D. (2014). A
tutorial review of economic model predictive control
methods. Journal of Process Control, 24(8), 1156–1178.

Findeisen, R., Allgöwer, F., and Biegler, L.T. (2007).
Assessment and future directions of nonlinear model
predictive control, volume 358. Springer.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural computation, 9(8), 1735–1780.

Jithesh, V., Sagayaraj, M.J., and Srinivasa, K. (2017).
LSTM recurrent neural networks for high resolution

range profile based radar target classification. In Com-
putational Intelligence & Communication Technology
(CICT), 2017 3rd International Conference on, 1–6.
IEEE.

Kittisupakorn, P., Thitiyasook, P., Hussain, M., and Dao-
sud, W. (2009). Neural network based model predictive
control for a steel pickling process. Journal of Process
Control, 19(4), 579–590.

Kothare, M.V., Balakrishnan, V., and Morari, M. (1996).
Robust constrained model predictive control using linear
matrix inequalities. Automatica, 32(10), 1361–1379.

Mayne, D.Q. (2014). Model predictive control: Recent
developments and future promise. Automatica, 50(12),
2967–2986.

Piche, S., Keeler, J.D., Martin, G., Boe, G., Johnson, D.,
and Gerules, M. (2000). Neural network based model
predictive control. In Advances in Neural Information
Processing Systems, 1029–1035. NIPS.

Pon Kumar, S.S., Gopaluni, B., and Loewen, P. (2017).
Deep reinforcement learning approaches for process con-
trol. In Advanced Control of Industrial Processes (Ad-
CONIP), 2017 6th International Symposium on, 201–
206. IEEE.

Qin, S.J. and Badgwell, T.A. (2003). A survey of industrial
model predictive control technology. Control engineer-
ing practice, 11(7), 733–764.

Wallace, M., Pon Kumar, S.S., and Mhaskar, P. (2016).
Offset-free model predictive control with explicit perfor-
mance specification. Industrial and Engineering Chem-
istry Research, 55(4), 995–1003.

Wan, Z. and Kothare, M.V. (2003). An efficient off-line
formulation of robust model predictive control using
linear matrix inequalities. Automatica, 39(5), 837–846.

Yu-Geng, X., De-Wei, L., and Shu, L. (2013). Model pre-
dictive control? Status and challenges. Acta Automatica
Sinica, 39(3), 222–236.

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

511

