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Abstract This paper proposes and compares six different methods for design-
ing an optimal set point for the dissolved oxygen concentration in a biological
wastewater treatment process. Since knowledge of the true nonlinear model of
a wastewater treatment plant is unlikely, we develop neural-network autore-
gressive exogenous models for the online prediction of the dissolved oxygen
concentration and ammonia concentration. We take advantage of the fact that
data is predicable during dry weather conditions, and use a nonlinear opti-
mization procedure that utilizes the dry-weather predictive models to decide
on a nominal setpoint, which will be an optimal one for the dry-weather condi-
tions. We also propose a simpler setpoint-finding algorithm that can move the
setpoint dynamically during weather events, responding appropriately to sig-
nificant changes in the influent. A constrained nonlinear neural-network model
predictive control then tracks the setpoint. Simulations with the Benchmark
Simulation Model #1 compare several variations of the proposed methods to
a fixed-setpoint PI control, demonstrating improvement in effluent quality or
reduction in energy use, or both (depending on the particular variation and
the weather conditions).
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1 Introduction

Typical biological wastewater treatment plants include at least one aerated
tank, in which an activated sludge process reduces organic matter and as-
sists in nitrification. Since current technology measures only dissolved oxygen
(DO), the control system attempts to track a DO setpoint by manipulating
the amount of aeration. Contemporary control systems research aims at re-
ducing pollution or reducing energy consumption, or both (while keeping the
bacteria alive and meeting environmental regulations). Note that advanced
methods also change the setpoint, so that the system can better react changes
in influent during weather events.

Due to the large number of unmeasured states and uncertainly in the
wastewater plant model, many researchers have proposed model predictive
controllers (MPCs) for tracking the setpoint. A linear prediction model with
feedforward action can react to large variations of the influent [1],[2],[3],[4],
An MPC with a nonlinear prediction model can further improve performance,
typically using either neural networks [5],[6] or fuzzy models [7]. Applying con-
trol methods for both the setpoint decision and tracking control is referred to
as two-level hierarchical control, with the setpoint decision constituting the
higher level. Proposed approaches include PI controllers for both lower level
and upper level [8], MPC as the higher level and PI as the lower level [9], PI
as the higher level and MPC as the lower level [10], and MPC for both levels
[11]. The method in [12] uses a low order adaptive control for the lower level
and an adaptive method based on one-step-ahead-predictions of the DO and
ammonium for the upper level.

Rather than use a feedback-control approach for setpoint design, some have
utilized optimization techniques. Genetic algorithms (GAs) in the higher level
have been tried in [13] and [14]. In [13], a PI controller in the lower level
follows an ammonia set-point determined by GA optimization in the higher
level. The method in [15] proposes a unique approach that divides the control
structure into three layers: the supervisory control layer, the optimizing control
layer and, and the low-level control layer. The method utilizes MPC, extended
Kalman filters, and grey-box parameter estimation.

Since humans are fairly adept at operating wastewater plants, another
strategy is to encode decision-making in fuzzy logic rules. The method in [16]
uses a fuzzy controller to control the DO setpoint and the ratio of aerobic
and anoxic zones. The method in [17] studies control of the external carbon
dosage as well as the DO setpoint control. DO and nitrate were controlled in
[18] using a supervisory and fuzzy control. Fuzzy logic in [19] controls both the
DO set-point and the air flow. The work in [20] uses MPC-plus-feedforward
control in the lower level and compares three different controllers (MPC, affine
function and fuzzy) in the upper level. A fuzzy controller adapts the DO set
points of three aerated tanks in [21]. A low order adaptive control as the lower
level and a fuzzy control with optimal membership functions as the higher
level is introduced [22].



Title Suppressed Due to Excessive Length 3

The control of biological wastewater treatment can still be considered an
open problem in the literature due to the difficulty of meeting environmental
standards during weather events when the influent changes dramatically. The
aforementioned papers use the Benchmark Simulation Number #1 (BSM1)
model of a wastewater treatment plant to develop and test control strategies.
To our knowledge no paper has yet shown acceptable effluent quality during
all three of the supplied 14-day weather data sets that come with BSM1 (dry,
rainy, and stormy weather).

This paper presents a new method for designing the DO setpoint utilizing
one-step-ahead prediction and nonlinear optimization. Three Neural Network
Autoregressive eXogenous (NNARX) models train online to provide the re-
quired predictions. Setpoint decisions for dry weather can be made using non-
linear optimization. For weather events, we propose using an algorithm that
changes the setpoint dynamically. The resulting DO setpoint then becomes
the desired reference for a neural-network MPC (NNMPC). Simulations show
reduction of pollution or energy (or both) compared to PI control during tests
on the three weather-data sets.

2 The BSM1 Model of the Activated Sludge Process

The Benchmark Simulation Model 1 (BSM1) is a standard mathematical
model of the wastewater treatment process, presented by the International
Association of Water Quality (IAWQ) and COST (European Cooperation in
the field of Scientific and Technical Research). The plant layout consists of five
bioreactors, two anoxic tanks followed by three aerated tanks, and a clarifier.
Each bioreactor uses activated sludge model number 1 (ASM1) to describe
the biochemical reactions, using thirteen states (see Table. 1). The standard
outputs for evaluating performance and energy consumption are the Effluent
Quality Index (EQI) and the Overall Cost Index (OCI), respectively. BSM1
comes with two PI control loops implemented; a DO loop in the fifth tank
(controlling DO with aeration) and a nitrate/nitrite loop (controlling nitro-
gen in the second tank using recycle flow to the first tank). Control systems
researchers often just replace the existing PIs with more advanced controls,
although in our work we also add an additional control loop (control of nitrate
in the fifth tank using a recycle flow). The control objective may be either
minimizing EQI, or OCI, or both, while avoiding violation of limits given in
Table 2.

The dry weather data set shows regular daily variations in flow rate and
chemical oxygen demand. The rainy weather file has a long rain event in the
second week, with a significant increase in flow rate and no change in chem-
ical oxygen demand load. In the stormy set, the first storm event results in
an excessive increase in the chemical oxygen demand (COD) load, while the
second, more gradual, storm event results in a less significant change in the
chemical oxygen demand.
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Table 1: State variables of BSM1 model

State in Tank (i) Variable Units
SI Soluble inert organic matter g m−3

XI Particulate inert organic matter g m−3

SS readily biodegradable substrate g m−3

XS Slowly biodegradable substrate g m−3

XB,H Active heterotrophic biomass g m−3

XB,A Active autotrophic biomass g m−3

XP Particulate products arising from biomass decay g m−3

SO Oxygen g m−3

SNO Nitrate and nitrite nitrogen g m−3

SNH nitrogen g m−3

SND Soluble biodegradable organic nitrogen g m−3

XND Particulate biodegradable organic nitrogen g m−3

SALK Alkalinity mol m−3

Table 2: Effluent quality limits

Variable Definition Value
Ntot Total nitrogen concentration < 18gNm−3

CODt Total Chemical Oxygen Demand < 100gCODm−3

SNH Ammonium concentration < 4gNm−3

TSS Suspended solid concentration < 30gSSm−3

BOD5 Biological oxygen demand over a 5-day period < 10gBODm−3

Effluent Quality Index (EQI)

In practice, the amount of time the EQI exceeds regulated limits would deter-
mine fines to be paid. The calculation performs a weighted sum of different
“pollution” compounds in Table 2:

EQI =
1

1000.T

∫ t=14days

t=7days

(BTSS.TSS(t) + BCOD.COD(t)+

BNKj .SNKj(t) + BNO .SNO(t) + BBOD5
.BOD5(t)).Qe(t)dt, (1)

where Qe is the outlet flow rate and each Bi is a weighting factor.

Overall Cost Index (OCI)

The OCI defines as the weighted sum of aeration energy (AE), the pumping
energy (PE), the sludge production to be disposed (SP), the consumption of
external carbon source (EC) and the mixing energy (ME) as follows:

OCI = AE + PE + 5.SP +ME, (2)
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with

AE =
8

T.1.8.1000

∫ t=14days

t=7days

5
∑

i=1

Vi.KLa,i(t).dt, (3)

PE =
1

T

∫ t=14days

t=7days

(0.004.Q0(t) + 0.008.Qa(t) + 0.05.Qw(t)).dt, (4)

SP =
1

T
.(TSSa(14days)− TSSa(7days) + TSSs(14days)

− TSSs(7days) +

∫ t=14days

t=7days

TSSw.Qw.dt), (5)

ME =
24

T

∫ t=14days

t=7days

5
∑

i=1

{

0.005.Vidt if KLa,i < 20day−1

0 otherwise
, (6)

where TSSa is the amount of solids in the reactor, TSSs is the amount of solids
in the settler, TSSw is the amount of solid in the wastage, and V is the volume
of the tank.

3 Proposed Methods

3.1 Overview of NNARX Models

The setpoint design and setpoint tracking control use three NNARX models.
In our method the DO setpoint changes in real time in order to respond to
changing influent disturbance, while the nitrate-nitrite setpoint remains at a
fixed value at 1(mgl−1). The setpoint traking uses NNARX1, which provides a
one step-ahead prediction of the DO offset in the fifth tank. Note that a multi-
step prediction simply calls NNARX1 multiple times. NNARX2 estimates a
static model of the process from steady state values, providing the nominal DO
level. NNARX1 and NNARX2 together generate the one-step-ahead prediction
of the DO output yref,1. NNARX3 predicts the one-step-ahead value of SNH,5

to generate yref,2. The setpoint design uses a nonlinear optimization to find a
trade-off between yref,1 and yref,2.

3.2 NNARX1:One-step-ahead prediction of SO,5

The algorithm uses a Multilayer Perceptron (MLP) with one hidden layer and
a linear output

ŜO,5,t = wT
1 σ(H

T
1 q1), (7)

where w1 ∈ Rm is a column vector of output weights, H1 ∈ Rp×m is a matrix
of hidden weights

HT
1 =







h11 . . . h1p

... . . .
...

hm1 . . . hmp






=







hT
1
...

hT
m






. (8)
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The vector q1 ∈ Rp contains the inputs: delayed dissolved oxygen concentra-
tion, oxygen transfer coefficient, and the inlet flowrate.

q1(t) = [SO,5(t− 1), . . . , SO,5(t− na),KLa,5(t− 1), . . . ,

KLa,5(t− nb), Qo(t− 1), . . . , Qo(t− nc)], (9)

where na and nb and nc are the maximum lags in the output and inputs,
respectively. The MLP contains three hidden units and training occurs with
the Levenberg-Marquardt adaptation method.

3.3 NNARX2:One-step-ahead prediction of SO,5,p

Another MLP predicts an optimal set point ŜO,5,p using a steady-state analysis
at SO,5,ss and KLa,5,ss and Qo(t− 1)

ŜO,5,p = wT
1 σ(H

T
1 qss), (10)

with inputs

qss(t) = [SO,5,ss, . . . , SO,5,ss,KLa,5,ss, . . . ,

KLa,5,ss, Qo(t− 1), . . . , Qo(t− 1)]. (11)

3.4 NNARX3:One-step-ahead prediction of SNH,5

This section tackles the issue of identifying appropriate DO setpoint changes
due to changes in ammonium concentration. The dissolved oxygen concentra-
tion in the aerobic zone should be high enough for an efficient nitrification
process during a high load of ammonium and should be low enough to prevent
an unnecessary increase in the aeration energy consumption during a low load
of ammonium. Thus, we wish to move the setpoint in the direction of ammo-
nium changes in the last tank, so that the set point will be small if SNH,O is
low and the set point will high if SNH,O is high. An additional MLP learns to

predict the future value of ŜNH,5,t

ŜNH,5,t = wT
2 σ(H

T
2 q2), (12)

where the inputs are the delayed ammonium concentration in the last tank,
the oxygen transfer coefficient in the last tank, and the inlet ammonium con-
centration

q2(t) = [SNH,5(t− 1), . . . , SNH,5(t− na),KLa,5(t− 1), . . . ,

KLa,5(t− nb), SNH,o(t− 1), . . . , SNH,o(t− nc)]. (13)
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3.5 Applied Control Strategies

We use the two standard BSM1 control loops and propose adding in a third
loop (Fig. 1). The loops are:

Loop 1) The control of the Dissolved Oxygen SO,5 concentration in the last
aerated tank by manipulating the oxygen transfer coefficient KLa,5.
constrained to a maximum of 360day−1. The set point for this loop
changes over time to react to influent changes. The control utilizes
an NNMPC (see Section. 3.6).

Loop 2) The control of nitrate (SNO) level in the second anoxic tank to a fixed
set point of 1mgL−1 by manipulating the internal recycle flow rate
Qa. This flow rate has an upper limit of 92230m3day−1. A low-order
Lyapunov-based adaptive control regulates this loop (Appendix A).

Loop 3) The control of nitrate (SNO) level in the last aerated tank to a set
point of 7mgL−1 by manipulating the waste flow rate Qw. This flow
rate has an upper limit of 18446m3day−1. A low-order Lyapunov-
based adaptive control regulates this loop (Appendix A).

3.6 Dissolved oxygen NNMPC control

The control structure for the DO loop (Fig 1) uses NNARX1 as a model to
predict

ŷ =
[

ŷ(t), ŷ(t+ 1), . . . , ŷ(t+Ny)
]T

=
[

ŜO,5,t, ŜO,5,t+1, . . . , ŜO,5,t+Ny

]T
.

(14)
The MPC minimizes the cost functional

J = ET (t)E(t) + λ1∆uT (t)∆u(t) + λ2

∑

Fcon(y), (15)

where λ1 and λ2 are weighting parameters (the larger λ1 leads to a smoother
control signal at the cost of sluggish disturbance rejection), the first term sums
the squared error E(t) = ŷ − yref over the prediction horizon Ny, and the

KLa5 Qe

Qr

Qo
SNO,2 SO5 Qf

Lyapunov-based 

adaptive controller Qa

NNMPC

SNO5

Lyapunov-based 

adaptive controller

Qw

Fig. 1: Applied control strategies
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second term is defined over the control horizon Nu. The vector ŷ shows the
future outputs and u contains future control inputs

u =
[

KLa,5(t),KLa,5(t+ 1), . . . ,KLa,5(t+Nu)
]T

. (16)

The vector yref contains present and future evaluations of the setpoint. If
the future values of the setpoint are not known, we can simply consider
yref (t) . . . yref (t + Ny) = yref , where yref gives the optimal setpoint as in
Section. 3.7.

Since MPC formulates the control as an optimization problem, the design
can easily handle constraints. We use hard constraints on the control inputs
as

umin ≤ u ≤ umax, (17)

but for limiting outputs we use penalty terms in the objective function

Fcon(ŷ) =









fcon(ŷ(t))
fcon(ŷ(t+ 1))

. . .
fcon(ŷ(t+Ny))









, (18)

where, as in [23], we use

fcon(y) =
exp(2S.(ŷ−ymid)sign(ŷ−ymid)

ymax−ymin
)

exp(S)
, (19)

with S showing the sharpness of the function f , and ymid providing the average
of ymin and ymax. This penalty term remains constant when the predicted out-
puts ŷ are between the bounds ymin and ymax, but it increases when predicted
outputs are near those bounds. Since first and second derivatives exist for this
penalty term, numerical optimization can use the Levenberg-Marquardt (L-M)
search direction

u(t+ 1) = u(t) + µt∆u(t) (20)
(

∂2J

∂u2
+ λLM (t)IN

)

∆u(t) = −

(

∂J

∂u

)

, (21)

where ∂2J
∂u2 is the Hessian, ∂J

∂u
is the gradient of the cost function, IN is the

N × N identity matrix, and λLM (t) is the Levenberg-Marquardt parameter.
Note the Hessian matrix must be positive definite in order to have a convex
optimization. The Cholesky factorization allows us to investigate the positive
definiteness of the Hessian matrix, [23] (if the Hessian is not positive definite,
λLM (t) must be increased until it is).

Taking the gradient of cost function gives

∂J

∂u
= 2

(

∂E(t)

∂u

)T

E(t) + 2λ1

(

∂∆u(t)

∂u

)T

∆u(t) + λ2
∂
∑

Fcon(ŷ)

∂u
, (22)
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For the first term, one can show that

∂E

∂u
=

∂ŷ(t)

∂u
, (23)

provided by the NNARX1 formulation in (7) and

∂∆u(t)

∂u
=















1 0 . . . 0
−1 1 . . . 0
...

...
...

...
. . . −1 1 0
. . . 0 −1 1















. (24)

For the third term, we can write

∂
∑

Fcon(ŷ)

∂u
=

(

∂ŷ(t)

∂u

)T

diag

(

2S.sign(ŷ − ymid)

ymax − ymin

)

Fcon(ŷ), (25)

with

diag(
2S.sign(ŷ− ymid)

ymax − ymin
) = 2S

×













sign(ŷ(t)−ymid)
ymax−ymin

0 . . . 0

0 sign(ŷ(t+1)−ymid)
ymax−ymin

. . . 0
...

...
...

...

0 0 . . .
sign(ŷ(t+Ny)−ymid)

ymax−ymin













. (26)

The Hessian of the cost function comes from

∂2J

∂u2
= 2(

∂E

∂u
)T (t)(

∂E

∂u
)(t) + 2λ1(

∂∆u

∂u
)T (t)(

∂∆u

∂u
)(t) + λ2

∂2
∑

Fcon(ŷ)

∂u2
,

where the second derivative of the third term is

∂2
∑

Fcon(ŷ)

∂u2
= (

∂E

∂u
)T diag(

(2S)2

(ymax − ymin)2
Fcon)(

∂E

∂u
), (27)

with

diag(
(2S)2

(ymax − ymin)2
Fcon) =

(2S)2

(ymax − ymin)2

×











fcon(ŷ(t)) 0 . . . 0
0 fcon(ŷ(t+ 1)) . . . 0
...

...
...

...
0 0 . . . fcon(ŷ(t+Ny))











. (28)
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Fig. 2: Comparison of obtained optimal set points using Method3 .

3.7 Finding the optimal set point

Our proposed algorithm considers two possible desired future output values,
yref,1 and yref,2, appropriate for following the dissolved oxygen concentration

ŜO,5 and the ammonium concentration ŜNH,5, respectively.

The output from NNARX2 essentially provides a prediction of ŜO,5,p us-

ing a local model; thus the value of ŜO,5,p generally provides a only direction
to search for the true global optimal setpoint. The search continues until the
predicted optimal setpoint is within tolerance tolsp of the current setpoint, in
which case we conclude we have likely found the setpoint. The search algo-
rithm, initialized with yref,1 = y0, becomes

if abs(ŜO,5,t − ŜO,5,p) < tolsp

yref,1 = ŜO,5,p

ẏd = 0

else

ẏd = ẏmax × sign(ŜO,5,p − ŜO,5,t)

yref,1 = ŜO,5,t + ẏd ×∆t (29)

The second (possible) setpoint calculation uses the predicted ammonium con-
centration from (12)

yref,2 = ŜNH,5,t +
˙̂
SNH,5,t∆t. (30)

We choose a compromise between these two desired values as the actual set-
point

yref = (yref,1 +Gyref,2)/(1 +G), (31)

where G is a positive constant which provides a relative weighting.
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Fig. 3: Comparison of obtained control inputs using Method3.
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Fig. 4: Comparison of obtained optimal set points using Method4 .
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Fig. 5: Comparison of obtained control inputs using Method4.

4 Results and Discussions

4.1 Simulation tests

The simulations test six different setpoint decision methods for deciding the
output setpoint yref (for DO concentration in the fifth tank SO,5). The first
method uses the standard constant setpoint from BSM1. The second uses
an optimization using a Jacobian linearized 65× 65 model and data obtained
during dry weather conditions; since dry weather conditions show a predictable
behaviour, depending on time of day and the day of the week, the variables
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Fig. 6: Comparison of obtained optimal set points using Method5.
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Fig. 7: Comparison of obtained control inputs using Method5.
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Fig. 8: Comparison of obtained optimal set points using Method6.

needed for optimization are predictable to some degree of accuracy (i.e we
have full knowledge of inlet flow rate and inlet concentrations). The resulting
solution can then still be used for weather events (although the solution is
no longer optimal). The third through sixth methods try our proposed ideas
with different combinations of algorithms and optimizations to produce yref,1,
yref,2 and G. We utilize Matlab’s Optimization Toolbox. The details of the six
methods are:

Method 1) The control regulates a fixed set point yref = 2mgL−1.
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Fig. 9: Comparison of obtained control inputs using Method6.

Method 2) A multi-objective optimization problem finds a constant yref using
dry-weather data

minimize EQI(yref),OCI(yref)

subject to Ntot ≤ 18,CODt ≤ 100, SNH ≤ 4,

TSS ≤ 30,BOD5 ≤ 10.

Method 3) The setpoint is a weighted addition of static setpoint yref,1 = 2 and
time-varying setpoint yref,2 generated with (30) during all weather
conditions. An optimization finds the relative weighting G based
on dry-weather data

minimize OCI(G)

subject to Ntot ≤ 18,CODt ≤ 100, SNH ≤ 4,

TSS ≤ 30,BOD5 ≤ 10,

0 ≤ G ≤ Gmax.

where Gmax is an arbitrary limit that prevents excessive optimiza-
tion time.

Method 4) The algorithm (30) generates yref,2 during all weather conditions
while an optimization problem finds constant G and constant yref,1
using dry weather conditions

minimize EQI(G, yref,1)

subject to Ntot ≤ 18,CODt ≤ 100, SNH ≤ 4,

TSS ≤ 30,BOD5 ≤ 10,

0 ≤ G ≤ Gmax.

Method 5) The algorithm (30) generates yref,2 during all weather conditions
while a multi-objective optimization finds constantG and constant



14 Mahsa Sadeghassadi et al.

Table 3: Comparison of Effluent Qualities in Dry Weather: Time-varying op-
timal set point can reduce EQI

Controller type Ntot,ave(mg Nl−1) CODave(mg CODl−1) SNH,ave(mg Nl−1) TSSave(mg SSl−1) BOD5,ave(mg l−1) EQI (kg poll.unitsd−1)
PI with Method1 16.9245 48.2201 2.5392 13.0038 2.7568 7552.3603

NNMPC with Method1 15.3492 50.3587 1.1230 14.6517 2.8805 7.1908e+03(-4.7874%)
NNMPC with Method2 13.9659 50.0016 1.7145 14.3520 2.8504 6.6521e+03(-11.9203%)
NNMPC with Method3 14.2173 51.2343 1.0055 15.3008 2.9249 6.8281e+03(-9.5899%)
NNMPC with Method4 13.1447 50.4217 1.7993 14.6500 2.8739 6.3721e+03(-15.63%)
NNMPC with Method5 13.6185 50.2065 1.7646 14.4942 2.8636 6.5265e+03(-13.5833%)
NNMPC with Method6 13.7934 50.3346 1.3167 14.6049 2.8730 6.6089e+03(-12.4923%)

yref,1 using dry weather conditions

minimize EQI(G, yref,1),OCI(G, yref,1)

subject to Ntot ≤ 18,CODt ≤ 100, SNH ≤ 4,

TSS ≤ 30,BOD5 ≤ 10,

0 ≤ G ≤ Gmax.

Method 6) Algorithms (29) and (30) generate yref,1 and yref,2, respectively,
during all weather conditions. A multi-objective optimization finds
a constant G using dry weather data

minimize
G

EQI(G),OCI(G)

subject to Ntot ≤ 18,CODt ≤ 100, SNH ≤ 4,

TSS ≤ 30,BOD5 ≤ 10,

0 ≤ G ≤ Gmax.

4.2 Results

Compared to standard PI control, during dry weather conditions our results
show a reduction of EQI by −4.7874% for the NNMPC with Method 1, by
−11.9203% for Method 2, by −9.5899% for Method 3, by −15.63 for Method
4, by −13.5833% for Method 5 and by −12.4923% for Method 6 (Table. 3).
Note that Method 4, Method 5 and Method 6 do especially well, also reducing
Ntot,ave. Method 2, Method 4 and Method 5 strategies result in less consumed
aeration energy, but use more pumping energy. Although Method 2, Method
4 and Method 5 strategies result in a large amount of pumping energy, a
larger reduction of AE, SP resulted in an improvement in OCI by −8.7428%,
−9.2386% and −9.6588%, respectively (Table. 4). The highest reduction of
EQI is for Method 4 because this method considers EQI as the only objective
function. Method 3 results in the smallest OCI because this method considers
OCI as the only objective function. By considering EQI and OCI simultane-
ously, Method 5 and Method 6 can improve both OCI and EQI, compared to
other methods.

Improving the effluent qualities during rain/storm events, while still pre-
venting the excessive energy consumption, defines the main goal of the control
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Table 4: Comparison of Operational Cost in Dry Weather: Time-varying op-
timal set point can reduce OCI

Controller type AE (kWhd−1) PE (kWhd−1) SP (kgSSd−1) OCI
PI with Method1 7.2414e+03 1.4954e+03 2.441e+03 2.11797e+04

NNMPC with Method1 7.2761e+03 1.6744e+03 1.6791e+03 1.7346e+04(-18.1008%)
NNMPC with Method2 6.7520e+03 2.3577e+03 2.0437e+03 1.9328e+04(-8.7428%)
NNMPC with Method3 7.0239e+03 1.8971e+03 1.5508e+03 1.6675e+04(-21.2690%)
NNMPC with Method4 6.6135e+03 2.2676e+03 2.0683e+03 1.9223e+04(-9.2386%)
NNMPC with Method5 6.7694e+03 2.1536e+03 2.0423e+03 1.9134e+04(-9.6588%)
NNMPC with Method6 6.9321e+03 1.9998e+03 1.9477e+03 1.8671e+04(-11.8448%)

Table 5: Comparison of Effluent Qualities in Rainy Weather: Time-varying
optimal set point can reduce EQI

Controller type Ntot,ave(mg Nl−1) CODave(mg CODl−1) SNH,ave(mg Nl−1) TSSave(mg SSl−1) BOD5,ave(mg l−1) EQI (kg poll.unitsd−1)
PI with Method1 14.7465 45.4337 3.226 16.1768 3.4557 9037.7895

NNMPC with Method1 14.3350 47.0480 1.6276 15.9120 3.2328 8.7344e+03(-3.3569)
NNMPC with Method2 12.8333 47.6105 1.9540 16.3089 3.2500 8.1287e+03(-10.0588%)
NNMPC with Method3 13.3258 48.0942 1.3336 16.6981 3.2778 8.3941e+03(-7.1222%)
NNMPC with Method4 13.3248 46.4214 2.7770 15.3854 3.1919 8.2512e+03(-8.7%)
NNMPC with Method5 12.6661 47.6855 1.9185 16.3591 3.2532 8.0797e+03(-10.6009%)
NNMPC with Method6 12.7733 47.7606 1.7069 16.4233 3.2586 8.1257e+03(-10.0920%)

Table 6: Comparison of Operational Cost in Rainy Weather: Time-varying
optimal set point can reduce OCI

Controller type AE (kWhd−1) PE (kWhd−1) SP (kgSSd−1) OCI
PI with Method1 7.1707e+03 1.9377e+03 2.3576e+03 21136.3723

NNMPC with Method1 7.2479e+03 1.9894e+03 2.2629e+03 2.0552e+04(-2.7648%)
NNMPC with Method2 6.6968e+03 3.0281e+03 2.3594e+03 2.1522e+04(+1.8245%)
NNMPC with Method3 7.0670e+03 2.1771e+03 2.0650e+03 1.9569e+04(-7.4155%)
NNMPC with Method4 6.5969e+03 2.5811e+03 2.6058e+03 2.2207e+04(+5.0653%)
NNMPC with Method5 6.7458e+03 2.5281e+03 2.3608e+03 2.1078e+04(-0.2762%)
NNMPC with Method6 6.8924e+03 2.4621e+03 2.3057e+03 2.0883e+04(-1.1988%)

system. In comparison to PI, during a rain event the reduction of EQI is
−3.3569% for Method 1, −10.0588% for Method 2, −7.1222% for Method 3,
−8.7% for Method 4, −10.6009% for Method 5 and −10.0920% for Method
6 (Table. 5). Method 2, Method 5 and Method 6 control strategies obtain a
controller where EQI is reduced by −10% while Method 6 is able to reduce
OCI by −1.1988% too. On the other hand, Method 2 control strategy obtains
a controller where OCI is increased by +1.8245% and OCI has not changed
remarkably for Method 5, (Table. 6.)

For stormy weather, Method 5 and Method 6 control strategies result in
reasonable reduction of EQI and OCI (Table. 7 and Table. 8).

5 Conclusions

This paper develops NNARX-based methods of nonlinear control for wastewa-
ter treatment plants. We compare six different optimal setpoint finding meth-
ods for the BSM1 benchmark model of a biological wastewater treatment plant,
and the results are compared with the default PI controller with all three sup-



16 Mahsa Sadeghassadi et al.

Table 7: Comparison of Effluent Qualities in Stormy Weather: Time-varying
optimal set point can reduce EQI

Controller type Ntot,ave(mg Nl−1) CODave(mg CODl−1) SNH,ave(mg Nl−1) TSSave(mg SSl−1) BOD5,ave(mg l−1) EQI (kg poll.unitsd−1)
PI with Method1 15.8676 47.6626 3.0622 15.2737 3.205 8.3027e+03

NNMPC with Method1 14.7446 48.6370 1.5178 15.5398 3.0661 7.9554e+03(-4.1830%)
NNMPC with Method2 13.9757 47.4103 2.7672 14.5577 2.9793 7.5220e+03(-9.4030%)
NNMPC with Method3 14.6134 47.8061 1.8644 15.7709 3.0077 7.8240e+03(-5.7656%)
NNMPC with Method4 13.5801 47.6784 2.7303 14.7533 2.9970 7.3870e+03(-11.0289%)
NNMPC with Method5 13.0721 48.9976 1.9346 14.8973 3.0844 7.3128e+03(-11.9226%)
NNMPC with Method6 13.4288 48.7576 1.6389 15.6055 3.0683 7.4460e+06(-10.3183%)

Table 8: Comparison of Operational Cost in Stormy Weather: Time-varying
optimal set point can reduce OCI as well

Controller type AE (kWhd−1) PE (kWhd−1) SP (kgSSd−1) OCI
PI with Method1 7.2892e+03 1.7371e+03 2.6055e+03 22293.6884

NNMPC with Method1 7.3342e+03 1.8763e+03 1.9775e+03 1.9098e+04(-14.3345%)
NNMPC with Method2 6.7233e+03 2.7324e+03 2.4829e+03 2.1870e+04(-1.9005%)
NNMPC with Method3 7.1414e+03 1.9479e+03 1.9479e+03 2.0312e+04(-8.8890%)
NNMPC with Method4 6.6547e+03 2.4189e+03 2.4715e+03 2.1431e+04(-3.87%)
NNMPC with Method5 6.8742e+03 2.3803e+03 2.2183e+03 2.0346e+04(-8.7365%)
NNMPC with Method6 7.0731e+03 2.1749e+03 2.1738e+03 2.0117e+04(-9.7637%)

plied weather data sets. The first method uses a fixed set point of 2mgL−1 for
the dissolved oxygen concentration, the 2nd method utilizes a fixed set point
found by using a Multi-Objective-Optimization problem. Method 3, 4, 5, 6 use
set points that are changing over time. Method 3 and Method 4 use a single
objective function while Method 5 and Method 6 employ multi-objective func-
tions. All obtained set points are used together with a NNMPC to control the
dissolved oxygen concentration. Simulation results show that all six methods
reduce pollution during all weather conditions compare to the standard BSM1
PI control. The 5th and 6th methods improve on other methods in two ways:
both reducing the amount of control effort required during dry weather, and
improving the effluent quality during rain/storm events without increasing
control effort. Thus, the proposed strategies have the potential for environ-
mental benefits in terms of both reducing energy usage during dry-weather
operations and reducing pollution due to rain/storm events.

Appendix A

This stability analysis for each SISO control loop uses the same assumptions re-
quired for an analysis of a PI control: namely that nonlinearities, higher-order
dynamics, cross-coupled dynamic terms, and disturbances are all bounded.

In our model-reference adaptive control approach the reference model is

ẏm(t) = −amym(t) + bmuc(t) (A.1)

where uc is the desired value of the manipulated variable.
Consider a first-order approximation of the system

ẏ(t) = −ay(t) + bu(t) + d(t), (A.2)
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where we assume terms in d(t) are bounded i.e. |d(t)| ≤ dmax where dmax is a
finite positive constant.

Consider a control design

u(t) = θ1(t)uc(t)− θ2(t)y(t)−Ke(t), (A.3)

where positive constant K is the control gain and θ1, θ2 are adaptive pa-
rameters. For simplicity, we drop the argument (t) in further equations. The
parameter errors are

z1 = bθ1 − bm, z2 = bθ2 + a− am,

and their derivatives are

ż1 = bθ̇1, ż2 = bθ̇2.

The error dynamics become

ė =ẏ − ẏm = −ay + bu+ d+ amym − bmuc, (A.4)

=− ay + bθ1uc(t)− bθ2y(t)− bKe− ame

+ amy − bmuc + d, (A.5)

=− ame− bKe+ y(t)(am − bθ2 − a)

+ uc(t)(bθ1 − bm) + d,

=− ame− bKe− y(t)z2 + uc(t)z1 + d. (A.6)

Consider the adaptive control Lyapunov function

V (e, θ1, θ2) =
1

2

(

e2 ++
1

bγ
z21 +

1

bγ
z22

)

, (A.7)

where γ is a positive constant determining the rate of adaptation. The time
derivative of V is

V̇ = eė+
1

γ
z1θ̇1 +

1

γ
z2θ̇2, (A.8)

= −ame2 − bKe2 + de− eyz2 + eucz1 +
1

γ
z1θ̇1 +

1

γ
z2θ̇2,

= −ame2 − bKe2 + de+
z1

γ
(γuce+ θ̇1) +

z2

γ
(−γye + θ̇2).

Applying the adaptive-parameter update laws with e-modification:

θ̇1 = −γ(uce+ ν|e|θ1), (A.9)

θ̇2 = γ(ye− ν|e|θ2), (A.10)

results in

V̇ = −ame2 − bKe2 + de +
z2
γ
(−γν|e|θ2) +

z1
γ
(−γν|e|θ1),
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which can be bounded

V̇ ≤|e|

(

[

|z1|
|z2|

]T [
−ν/b 0
0 −ν/b

] [

|z1|
|z2|

]

− |e|(am + bK) +

[

−νbm/b
−ν(am − a)/b

]T [
|z1|
|z2|

]

+ dmax

)

,

≤|e|(−zTK1z− (am + bK)|e| −K2z+ dmax), (A.11)

≤|e|(−K1‖z‖
2 − (am + bK)|e|+ k2,max‖z‖ + dmax), (A.12)

where we have positive constants K1 = ν/b and k2,max > ‖K2‖. Assuming we

have chosen K such that am + bK > 0, then V̇ < 0 when |e| > δe or ‖z‖ > δz
where

δe =
1

am + bK

(

k22,max

4K1
+ dmax

)

, (A.13)

δz =
k2,max

2K1
+

√

k22,max

4K2
1

+
dmax

K1
, (A.14)

and thus all signals are uniformly ultimately bounded on the (|e|, ‖z‖) plane
with an ultimate bound given by Lyapunov surface V () = V (δe, δz).
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