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Abstract 

Canonical variate analysis (CVA) has shown its superior performance in statistical process 

monitoring due to its effectiveness in handling high-dimensional, serially, and cross-correlated dynamic 

data. A restrictive condition for CVA is that the covariance matrices of dependent and independent 

variables must be invertible, which may not hold when collinearity between process variables exists or the 

sample size is small relative to the number of variables. Moreover, CVA often yields dense canonical 

vectors that impedes the interpretation of underlying relationships between the process variables. This 

article employs a sparse CVA (SCVA) technique to resolve these issues and applies the method to process 

monitoring. A detailed algorithm for implementing SCVA and its formulation in fault detection and 

identification is provided. SCVA is shown to facilitate the discovery of major structures (or relationships) 

among the process variables, and assist in fault identification by aggregating the contributions from faulty 

variables and suppressing the contributions from normal variables. The effectiveness of the proposed 

approach is demonstrated on the Tennessee Eastman process. 
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1. Introduction 

Process faults refer to abnormal operations of the process such as process parameter drifts, sensor 

malfunctions, and sticky valves. If undetected and uncompensated, faults can result in loss of equipment, 

process efficiency, product quality, or life, and/or can harm the environment [1]. Rapid detection of 

occurrence of process faults (known as fault detection) and associated identification of faulty variables 

(termed as fault identification) have become imperative tasks for industrial processes, especially for large-

scale processes that are increasingly integrated and involves a large number of strongly correlated process 

variables [2] [3]. Widespread implementation of information-based technologies in manufacturing 

industries has generated large quantities of process data which have boosted the development and 

application of data-based fault detection and identification techniques. Data-based process monitoring 

techniques have been developed from multivariable control charts and dimensionality reduction 

techniques to multivariable time-series model and state-space model approaches. 

Classical multivariable control charts include multivariable versions of Shewhart charts [4], 

cumulative sum (CUSUM) charts [5], and exponentially weighted moving average (EWMA) charts [6]. 

The full dimensional versions of these methods are only suitable when the process has a small number of 

variables with moderate extent of cross-correlation among variables. The presence of large-scale 

processes whose data may contain redundant information has motivated the utilization of dimensionality 

reduction techniques such as principal component analysis (PCA) [4] and partial least squares (PLS) [7]. 

A prerequisite for these methods to yielding satisfactory process monitoring performance is the lack of 

temporal (aka serial) correlation of variables, which is rarely met in modern chemical processes that are 

featured by slow dynamics and are increasingly of high sampling frequency. To address such process 

systems, multivariate time-series modeling [8] and dynamic PCA/PLS [9] have been proposed to handle 

the serially and jointly correlated process data. In the former approach, multivariate time-series models 

such as vector autoregressive model (VAR) and vector autoregressive moving average (VARMA) models 

have been developed with process monitoring often based on residuals (is considered as iid) retained from 

one-step-ahead prediction with these acquired models. Obtaining such multivariate models is an 



expensive task, especially when the dimension is high, and such models typically have identifiability 

problems [10]. For the latter approach, lagged values of process variables are stacked together with the 

current values and conventional PCA/PLS is applied to the augmented variable vector. Such dynamic 

PCA/PLS methods are effective in recovering dynamic models when the noise level is low. For moderate 

or high noise levels, dynamic dimensionality reduction methods cannot guarantee to give an accurate and 

minimal dynamic model for the process [9]. To circumvent this problem, in recent decades, state-space 

models, particularly based on canonical variate analysis (CVA), have become the mainstream in time-

series modeling for statistical process monitoring [11]. The CVA state-space realization technique 

estimates the states by maximizing the cross-correlation between past process input-output data and a 

window of future outputs. An advantage of using CVA is its computational efficiency that admits a 

solution by solving a generalized singular value decomposition (SVD). CVA can be applied to actual 

large-scale processes that involve many variables that are both strongly autocorrelated and cross-

correlated. 

CVA-based fault detection, identification, and diagnosis have attracted extensive attention from the 

research community [12] [13] [14]. A drawback of CVA is the lack of sparsity in the canonical vectors, 

which hinders the intuitive interpretation of canonical loadings. That is, canonical variates are linear 

combinations of all variables. Moreover, to implement CVA, the inverse of the sample covariances of 

past inputs and outputs as well as that of the future outputs must exist [1] [15]. When the sample size is 

small relative to (or less than) the number of variables, or collinearity between some subset of variables 

occurs, these sample covariance matrices become highly ill-conditioned or even singular. Traditional 

CVA is no longer suitable for process monitoring in such scenarios. A remedy is using the canonical 

ridge [16] to replace those covariance matrices, i.e., by adding penalty terms to the diagonal of those 

covariance matrices to make them invertible. Although this approach mitigates the invertibility issue, the 

resultant canonical vectors are still dense. In addition to the interpretation problem associated with dense 

canonical vectors, in the fault identification stage, dense canonical vectors sum contributions to faulty 

status from all variables, thus rendering the faulty variables less distinguishable from the others. All these 



considerations motivate the development of a sparse CVA (SCVA) method that can address poor 

conditioning in sample covariances, facilitate better interpretations of canonical vectors, and promote the 

identification of faulty variables after a fault is detected.  

Sparse models for dimensionality reduction has emerged in recent years. Zou [17] proposed an 

algorithm for sparse PCA by formulating PCA as a regression and adding a Lasso penalty to achieve 

sparsity in the principal component loadings. Other sparse PCA algorithms have been reported [18] [19]. 

Chun [20] studied the sparse PLS method that is suitable for the circumstance with a large number of 

variables and small number of samples. In the context of sparse canonical correlation analysis (CCA), 

Parkhomenko [21] considered a sparse SVD method to derive sparse canonical vectors. Witten [22] 

proposed a penalized matrix decomposition approach that unifies sparse PCA and SCVA into an 

optimization with sparsity constraints on parameters. Waaijenborg [23] and Wilms [15] extend the 

alternating least squares approach for CCA to sparse CCA by incorporating the elastic net or Lasso 

penalties. Sparse dimensionality reduction methods have not been extensively investigated in the area of 

process monitoring. Gjjar [24] and Gao [25] consider the use of sparse PCA from [17] for fault detection 

and diagnosis, in which it is shown that determining the sparsity of principal component loadings 

involves a tradeoff between attaining sparsity and maximizing the explained variance. A sparse global-

local preserving projections method is reported in [26] that can maintain both global and local structures 

of the dataset. Such structure-preserving approach aids the discovery of meaningful correlation between 

variables and greatly improves the interpretability of transformation vectors. These reported sparse 

models inherit the disadvantages of their associated dense methods in dealing with dynamic data from 

large-scale continuous processes. The success of CVA in process monitoring has not been combined with 

the advantages of using sparse models. This article proposes a SCVA method that aims at keeping the 

merits of CVA in handling high-dimensional, serially, and jointly correlated data, while absorbing the 

advantages of sparse canonical vectors in interpreting the process and promoting the identification of 

faulty variables. 



The rest of this article is organized as follows. Section 2 briefly revisits canonical variate analysis. 

The proposed sparse CVA monitoring approach is developed in Section 3, where a guideline on selecting 

proper sparsity parameters is described, and the statistics for fault detection as well as contribution charts 

for fault identification based on sparse CVA is provided. The effectiveness of the proposed approach is 

demonstrated in the Tennessee Eastman process in Section 4, followed by conclusions in Section 5. 

2. Canonical Variate Analysis Revisited  

Given two sets of random variables, canonical variate analysis is a dimensional reduction method that 

seeks the maximum correlation between linear combinations of each of these two sets of variables. These 

linear combinations are known as the canonical variates and the corresponding correlations are denoted 

as canonical correlations. Considering process input and output vectors 𝒙 ∈ 𝑅𝑚 and 𝒚 ∈ 𝑅𝑛, covariance 

matrices 𝚺𝑥𝑥, 𝚺𝑦𝑦 and cross-covariance matrix 𝚺𝑥𝑦, the canonical vectors 𝑱 ∈ 𝑅𝑚×𝑚 and 𝑳 ∈ 𝑅𝑛×𝑛, that 

maximize canonical correlations satisfy the conditions [27] 

 𝑱𝚺𝑥𝑥𝑱T = 𝑰𝑚̅,          𝑳𝚺𝑦𝑦𝑳T = 𝑰𝑛̅,          𝑱𝚺𝑥𝑦𝑳T = 𝑫 = diag(𝛾1, … , 𝛾𝑟 , 0, … ,0),  (1) 

where 𝛾1 ≥ ⋯ ≥ 𝛾𝑟 are the canonical correlations, 𝑟 is the rank of 𝚺𝑥𝑦, 𝑚̅ and 𝑛̅ are the rank of 𝚺𝑥𝑥 and 

𝚺𝑦𝑦 respectively, and 𝑰𝑚̅ ∈ 𝑅𝑚×𝑚 denotes a diagonal matrix with the first 𝑚̅ diagonal elements as one 

and the other diagonal elements as zero. Variables in the vector of canonical variates 𝒄 = 𝑱𝒙 are mutually 

uncorrelated with a covariance matrix 𝚺𝑐𝑐 =  𝑰𝑚̅. The same holds for the vector of canonical variates 𝒅 =

𝑳𝒙 . Moreover, variables in 𝒄  and 𝒅  are pairwise correlated. A standard algorithm to compute the 

projection matrices 𝑱 and 𝑳 involves a singular value decomposition (SVD) of the form 

 𝚺𝑥𝑥
−1/2

𝚺𝑥𝑦𝚺𝑦𝑦
−1/2

= 𝑼𝚺𝑽T,  (2) 

where 𝑱 = 𝑼T𝚺𝑥𝑥
−1/2

, 𝑳 = 𝑽T𝚺𝑦𝑦
−1/2

, 𝑫 = 𝚺, the unitary matrices 𝑼 and 𝑽 can be interpreted as rotation 

operations such that variables in 𝒄 and 𝒅 are only pairwise correlated, and 𝚺𝑥𝑥
−1/2

 and 𝚺𝑦𝑦
−1/2

 are scaling 

matrices to ensure that elements in 𝒄  and 𝒅  have unit variance. An implicit assumption is that the 

covariance matrices 𝚺𝑥𝑥  and 𝚺𝑦𝑦  are invertible, which is invalid when certain variables in 𝒙 or 𝒚 are 

collinear. Moreover, in practice, 𝚺𝑥𝑥 and 𝚺𝑦𝑦 are replaced by their respective sample covariance matrices. 



Numerical issues may arise if variables in 𝒙 (or 𝒚) are close to collinear, or the sample number 𝑁 is small 

relative to the number of variables 𝑚 + 𝑛. These issues invoke modifications of canonical variate analysis, 

such as penalized CVA [16] and SCVA as presented in the next subsection. 

Canonical variate analysis can be viewed as an implementation of canonical correlation analysis [28] 

typical in multivariate statistics to time series modeling. Akaike first proposed to unitize CVA in the 

context of stochastic realization theory and system identification on ARMA models. CVA was further 

extended to the state-space modeling of time series data by Larimore [27]. The classical form of state-

space model is given as 

 𝒙(𝑡 + 1) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡) + 𝒗(𝑡),  (3) 

 𝒚(𝑡) = 𝑪𝒙(𝑡) + 𝑫𝒖(𝑡) + 𝑬𝒗(𝑡) + 𝒘(𝑡),  (4) 

where 𝑨, 𝑩, 𝑪, 𝑫, 𝑬 are system matrices of appropriate dimensions, 𝒙(𝑡) ∈ 𝑅𝑑 is a 𝑑-order state vector, 

𝒗(𝑡) and 𝒘(𝑡) are sequences of white noise with zero mean and constant covariances, and 𝒖(𝑡) ∈ 𝑅𝑛𝑢 

and 𝒚(𝑡) ∈ 𝑅𝑛𝑦 are input and output signals that are typically measured by sensors in industrial processes. 

Repeated iterations of (3) and (4) imply that the values of the state up to any point in time is linearly 

related to past inputs {𝒖(𝑡 − 1), 𝒖(𝑡 − 2), … } and past outputs {𝒚(𝑡 − 1), 𝒚(𝑡 − 2), … }. With CVA, the 

state vector is estimated by correlating the past information vector 𝒑(𝑡) with a window of future outputs 

𝒇(𝑡), where 

 𝒑(𝑡) = [𝒚T(𝑡 − 1), 𝒚T(𝑡 − 2), … , 𝒖T(𝑡 − 1), 𝒖T(𝑡 − 2), … ]T, 

and 

 𝒇(𝑡) =  [𝒚T(𝑡 + 1), 𝒚T(𝑡 + 2), … ]T. 

Corresponding 𝒑(𝑡)  and 𝒇(𝑡)  to 𝒙  and 𝒚  in (1), respectively, the projection matrices 𝑱  and 𝑳  can be 

obtained by solving the SVD as in (2). Suppose that the data are generated from a state-space model with 

a finite number of states. The number 𝑑 of canonical variates can be chosen to be greater than the state 

order in the minimal realization of the true system. In such a case, the first 𝑑 canonical variates (also 

known as canonical states) are acquired from 



 𝒙𝑑(𝑡) = 𝑱𝑑  𝒑(𝑡),  (5) 

where 𝑱𝑑 = 𝑼𝑑
T𝚺𝑝𝑝

−1/2
 and 𝑼𝑑 consists of the first 𝑑 columns of the unitary matrix 𝑼. The canonical state 

vector 𝒙𝑑(𝑡) is an estimate of a linear combination of the states in the true state vector. It has been proved 

in [27] that the states estimated with CVA are optimal in the sense of minimizing the expected predicted 

error between future outputs 𝒇(𝑡) and past information. Moreover, an optimal estimate of the state vector 

involves an infinite number of terms in 𝒑(𝑡) and 𝒇(𝑡). In practice, 𝒑(𝑡) and 𝒇(𝑡) are replaced by their 

respective finitely truncated forms, which gives rise to 

 𝒑(𝑡) = [𝒚T(𝑡 − 1), … , 𝒚T(𝑡 − 𝑙), 𝒖T(𝑡 − 1), … , 𝒖T(𝑡 − 𝑙)]T  (6) 

 𝒇(𝑡) = [𝒚T(𝑡 + 1), … , 𝒚T(𝑡 + ℎ)]T.  (7) 

The lags 𝑙 and ℎ and state order 𝑑 constitute the tuning parameters that are crucial in determining the 

performance of the canonical state estimation. A practical approach for selecting these tuning parameters 

fits ARX model structures with different orders to the process data and chooses the order that yields the 

minimal Akaike information criterion [27] as the candidate. The lags 𝑙 and ℎ can be determined according 

to the orders of the optimal ARX model, and 𝑑 is determined based on the state order of its minimal 

realization. 

3. The Proposed Sparse Canonical Variate Analysis Based Approach for Fault Monitoring 

3.1. Sparse canonical variate analysis (SCVA) method 

As discussed above, when the sample covariance matrices of 𝚺𝑥𝑥, 𝚺𝑦𝑦 are singular or ill-conditioned, 

the conventional CVA method may deteriorate or fail due to the induced numerical issues. Moreover, 

CVA produces dense canonical vectors that combine all variables into a canonical variate. This fact 

impedes obtaining an intuitive interpretation about the structure of relations among underlying variables. 

SCVA arises in this context to ensure the feasibility of CVA and discover the major relationships between 

variables with sparse canonical vectors. To formulate SCVA, the first pair of canonical vectors 𝜶, 𝜷 from 

traditional CVA can be obtained by solving the optimization [22]: 

 max𝜶,𝜷   𝜶T𝑿T𝒀𝜷     s. t.  𝜶T𝑿T𝑿𝜶 ≤ 1, 𝜷T𝑿T𝑿𝜷 ≤ 1,  (8) 



where 𝑿 ∈ 𝑅𝑁×𝑚  and 𝒀 ∈ 𝑅𝑁×𝑛  are standardized data matrices containing 𝑁  samples of 𝒙  and 𝒚 , 

respectively. It is easy to verify that the optimal 𝜶 and 𝜷 always activate the inequality constraints and 

thus the unit variance constraint on canonical variates is satisfied. With SCVA, our objective is to 

maximize the correlation between linear combinations of 𝒙 and 𝒚 while restricting the canonical vectors 

to contain only a few nonzero elements. One approach is to add additional constraints to (8) that enforces 

the sparsity of 𝜶 and 𝜷. A well-known option is the 𝑙1 constraint that poses an upper bound on the sum of 

absolute values of entries in 𝜶 and 𝜷. With this idea, (8) is re-formulated into its sparse form as 

 max𝜶,𝜷 𝜶T𝑿T𝒀𝜷     s. t.  ‖𝜶‖2
2 ≤ 1, ‖𝜷‖2

2 ≤ 1, ‖𝜶‖1 ≤ 𝑐1, ‖𝜷‖1 ≤ 𝑐2,  (9) 

where 𝑐1 and 𝑐2 are two tuning parameters specifying the sparsity in 𝜶 and 𝜷. The covariances of 𝑿 and 𝒀 

have been approximated by diagonal matrices, which has been shown to produce satisfactory results 

especially when the data is high dimensional [29] and is assumed to hold throughout this article. The 

optimization can be efficiently addressed via penalized matrix decomposition as proposed in [22]. 

Subsequent pairs of canonical vectors follow in the well-known deflation form in which 𝑿T𝒀 is replaced 

by residuals from previous canonical vectors (refer to Algorithm 1 below). In the context of process input 

and output data, the above SCVA can be directly applied by substituting 𝒙 and 𝒚 with 𝒑(𝑡) and 𝒇(𝑡), 

respectively. The first pair of canonical vectors is acquired by solving  

 max𝜶,𝜷 𝜶T𝑷T𝑭𝜷     s. t.  ‖𝜶‖2
2 ≤ 1, ‖𝜷‖2

2 ≤ 1, ‖𝜶‖1 ≤ 𝑐1, ‖𝜷‖1 ≤ 𝑐2,    (10) 

where 𝑷 ∈ 𝑅(𝑁−ℎ−𝑙)×(𝑛𝑦𝑙+𝑛𝑢𝑙) stacks past information 𝒑(𝑡), 𝑡 = 𝑙 + 1, … , 𝑁 − ℎ,  into a matrix and 𝑭 ∈

𝑅(𝑁−ℎ−𝑙)×(𝑛𝑦ℎ) contains the future information. After the first pair of canonical vector arrives, the second 

pair of canonical vectors is derived simply by applying (10) to the residuals of 𝑷T𝑭. Algorithm 1 is 

modified from [22] to be suitable for computing the projection matrices for 𝒑(𝑡)  and 𝒇(𝑡) . Before 

demonstrating the main algorithm, first define the soft-thresholding function to be 𝑺(𝒂, 𝒄) =

sign(𝒂)(|𝒂| − 𝒄)+, where 𝒂 and 𝒄 can be either vectors or scalars, sign(𝒂) and |𝒂| respectively take the 

sign and absolute value of 𝒂, and 𝑥+ equals 𝑥 if 𝑥 > 0 and 0 otherwise. The main algorithm is shown 

below (for more details, refer to [22]). 



3.2 Selection of sparsity penalty parameters 𝒄𝟏 and 𝒄𝟐 

The selection of sparsity penalty parameters 𝑐1 and 𝑐2 plays a fundamental role in trading off between 

enforcing the sparsity of CVA vectors 𝜶, 𝜷, and maximizing the correlations corr(𝑿𝜶, 𝒀𝜷). Such types 

of tradeoff have been extensively reported in the literature for a variety of sparse models, such as sparse 

PCA [17] [24], sparse CCA [15], and sparse PLS [20]. Classical methods include the BIC and AIC 

criteria and cross-validation. This work employs the cross-validation strategy where the sparse canonical 

vectors are obtained from the training data and examined via the validation data. The averaged (or 

accumulated) cross-correlations in the validation data are used as the selection criterion and can be 

computed by applying obtained pairs of canonical vectors from training data to the validation set. The 

space of 𝑐1 and 𝑐2 are gridded according to their respective intervals and those values are chosen that 

yield maximum averaged correlations in the validation data. The value of 𝑐1 is bounded below by 1 and 

above by √𝑛𝑦𝑙 + 𝑛𝑢𝑙 (see Appendix for proof). Similarly, the value of 𝑐2 has a lower bound of 1 and 

upper bound below √𝑛𝑦ℎ. For simplicity, this article chooses a unique sparsity tuning parameter 𝑐 such 

that 𝑐1 = 𝑐2 = 𝑐√𝑛𝑦𝑙 + 𝑛𝑢𝑙 for both 𝜶 and β. 

Algorithm 1: SCVA with penalized matrix decomposition 

1: 𝒁1 ← 𝑷T𝑭 

Outer Loop: For 𝑘 ∈ 1, … , 𝑑, where 𝑑 is the number of canonical vectors 

2: Initialize 𝒗 to have unit 𝑙2 norm. Repeat the following until convergence: 

Inner Loop: • 𝒖 ← 𝑺(𝒁𝑘𝒗, Δ1) where Δ1 = 0 if it results in ‖𝒖‖1 ≤ 𝑐1; otherwise, Δ1 is 

chosen by a binary search such that ‖𝒖‖1 = 𝑐1 

 • 𝒗 ← 𝑺((𝒁𝑘)T𝒖, Δ2) where Δ2 = 0 if it results in ‖𝒗‖1 ≤ 𝑐2; otherwise, Δ2 is 

chosen by a binary search such that ‖𝒗‖1 = 𝑐2 

End Inner Loop  

3: 𝛾𝑘 ← 𝒖T𝒁𝒗, 𝜶𝑘 ← 𝒖, 𝜷𝑘 ← 𝒗. Update the residual 𝒁𝑘+1 ← 𝒁𝑘 − 𝛾𝑘𝒖𝒗T. 

End Outer Loop  

Output: 𝑱𝑑 ← [𝜶1, … , 𝜶𝑑]T, 𝑳𝑑 ← [𝜷1, … , 𝜷𝑑]T, 𝑫 ← diag(𝛾1, … , 𝛾𝑑) 

3.3 SCVA-based statistics for fault detection 

Two types of statistics are commonly used for process monitoring [14]. Hotelling’s 𝑇2 measures the 

variations in the sparse canonical state space and is defined as 



 𝑇𝑑
2 = 𝒙𝑑

T(𝑡)𝚲−1𝒙𝑑(𝑡),  (11) 

where 𝒙𝑑(𝑡) = 𝑱𝑑𝒑(𝑡), 𝚲 is the covariance matrix of canonical variates from training data, and 𝑱𝑑 is the 

sparse canonical vectors obtained from Algorithm 1. For conventional CVA, 𝚲 is an identity matrix since 

the attained canonical variates are mutually uncorrelated. For SCVA, 𝚲 may not be equal to an identity 

matrix due to the 𝑙1 penalty in (10); i.e., the obtained canonical variates from SCVA are usually correlated. 

Given a level of significance α, the corresponding control limit of Hotelling’s 𝑇2  statistic is 𝑇𝑑,𝛼
2 =

𝑑(𝑁2−1)

𝑁(𝑁−𝑑)
𝐹𝛼(𝑑, 𝑁 − 𝑑), where 𝐹𝛼(𝑑, 𝑁 − 𝑑) is the upper α percentile of the 𝐹 distribution with degree of 

freedom 𝑑 and 𝑁 − 𝑑  [14]. The 𝑄 statistic measures the variations in the residual space. The residual 

vector from the canonical state-space model can be calculated as 

 𝒓(𝑡) = (𝑰 − 𝑱𝑑
T𝑱𝑑)𝒑(𝑡),  (12) 

and the 𝑄 statistic is defined as 

 𝑄 = 𝒓T(𝑡)𝒓(𝑡).  (13) 

A typical threshold for the 𝑄 statistic is given in Eq. (4.22) in [14] but such a threshold builds upon an 

assumption that the noise distribution is normal. In this work, a threshold for the 𝑄 statistic is determined 

based on the training data set. Specifically, given a level of significance 𝛼, the threshold 𝑄𝛼 is set in such 

way that a (1 − 𝛼)  portion of training samples are below the threshold. To evaluate the overall 

performance for a provided data example, the overall statistic 𝑆overall is defined to be the logical ‘or’ 

operation between 𝑇𝑑
2 and 𝑄: 

 𝑆overall = {
1,    if  𝑇𝑑

2 > 𝑇𝑑,𝛼
2  or 𝑄 > 𝑄𝛼    

0,    otherwise                           
  (14) 

A test example is considered as faulty if either 𝑇𝑑
2 or 𝑄 violates their respective thresholds, i.e., if 𝑆overall 

returns one. In general, the 𝑇𝑑
2 statistic measures the status of states and a violation of the 𝑇𝑑

2 threshold 

indicates that the states are out of control. Exceeding 𝑄𝛼 normally implies changes in the characteristics 

of noise or new states have been created. The value of 𝑆overall assesses the overall health of process loops 

and is used to compare the performance of different monitoring techniques in this article. 



3.4 SCVA-based contributions for fault identification 

Once a fault is discovered, contribution plots are employed to identify the individual contribution 

from each variable to this faulty status. Although the canonical state 𝒙𝑑(𝑡) itself cannot directly indicate 

contribution from each variable, such information can be acquired from the projection matrix 𝑱𝑑. For the 

state space in a CVA model at time 𝑡, the 𝑘th element 𝒑𝑘(𝑡) of new data 𝒑(𝑡) has a contribution 𝑐𝒑𝑘
𝑑 (𝑡) 

computed as [1] 

 𝑐𝒑𝑘
𝑑 (𝑡) = 𝒙𝑑

T(𝑡)𝚲−1𝒑𝑘(𝑡)𝑱𝑑,𝑘,  (15) 

where 𝑱𝑑,𝑘  is the 𝑘 th column of the matrix 𝑱𝑑 . The contribution from each controlled variable and 

manipulated variable is more valuable, which involves, for a specific process variable, adding up all its 

past contributions as a signature of the variable’s contribution. For example, the contribution of controlled 

variable 𝒚𝑚(𝑡), 𝑚 = 1, … , 𝑛𝑦, has a contribution expressed as 

 𝑐𝒚𝑚
𝑑 (𝑡) = ∑ 𝒙𝑑

T(𝑡)𝚲−1𝒚𝑚(𝑡 − 𝑗)𝑱𝑑,𝑚𝑗

𝑙
𝑗=1 ,  (16) 

where 𝑚𝑗 is the index of column of 𝑱𝑑 that corresponds to variable 𝒚𝑚(𝑡 − 𝑗). The contribution for each 

manipulated variable is computed in an analogous way. 

In terms of the contribution for the residual space of a SCVA model, first define 𝑱𝑒 = 𝑰 − 𝑱𝑑
T𝑱𝑑. The 

matrix 𝑱𝑒  is likely to be sparse, under the condition that the number of variables is large while the 

canonical state order is relatively small and sparse. The expression of contributions for each variable (e.g., 

𝒚𝑚(𝑡)) in the residual space can be similarly deduced as 

 𝑐𝒚𝑚
𝑟 (𝑡) = ∑ 𝒓T(𝑡)𝒚𝑚(𝑡 − 𝑗)𝑱𝑒,𝑚𝑗

𝑙
𝑗=1 .  (17) 

As commented in [1], a higher contribution of a process variable indicates a more severe abnormal status 

of the underlying variable. A significant contribution of a variable based on state space usually signifies a 

larger deviation of relevant states with respect to those states in the normal operation stage. Faulty 

variables identified through residual space generally occur with the creation of new states in the system 

due to changes in the process or noise, and the original CVA model is no longer valid. Due to the possible 

numerical inaccuracies, a joint contribution plot based on state space and residual space contributions can 



reduce the incorrect identification of faulty variables. These three types of contribution plots are 

demonstrated in the next section. 

4. Application to the Tennessee Eastman Process 

The Tennessee Eastman Process (TEP) is a well-known benchmark process that is widely used to 

compare various fault detection and identification techniques. The TEP simulator was designed to provide 

sufficient simulation data that reflects the operation of actual process with high-fidelity. A diagram of the 

TEP is shown in Figure 1. This process consists of five major operation units: a two-phase reactor, a 

condenser, a compressor, a vapor/liquid separator, and a stripper. A detailed description of the process 

model employed in the simulator as well as the plant-wide control structure is referred to [14] and the 

references therein. The process has 22 continuous process measurements, 12 manipulated variables, and 

19 composition measurements. These process variables (52 variables in total) are used except for the MV 

agitator speed to validate our performance monitoring technique. Table 1 lists the process variables. 

 
Figure 1. Flow chart of Tennessee Eastman Process 



Table 1. Monitored variables in the Tennessee Eastman process [20]. 

ID Variable description ID Variable description 

x1 A feed (Stream 1) x27 Component E (Stream 6) 

x2 D feed (Stream 2) x28 Component F (Stream 6) 

x3 E feed (Stream 3) x29 Component A (Stream 9) 

x4 A and C feed (Stream 4) x30 Component B (Stream 9) 

x5 Recycle flow (Stream 8) x31 Component C (Stream 9) 

x6 Reactor feed rate (Stream 6) x32 Component D (Stream 9) 

x7 Reactor pressure x33 Component E (Stream 9) 

x8 Reactor level x34 Component F (Stream 9) 

x9 Reactor temperature x35 Component G (Stream 9) 

x10 Purge rate (Stream 9) x36 Component H (Stream 9) 

x11 Product separator temperature x37 Component D (Stream 11) 

x12 Product separator level x38 Component E (Stream 11) 

x13 Product separator pressure x39 Component F (Stream 11) 

x14 Product separator underflow (Stream 10) x40 Component G (Stream 11) 

x15 Stripper level x41 Component H (Stream 11) 

x16 Stripper pressure x42 MV to D feed flow (Stream 2) 

x17 Stripper underflow (Stream 11) x43 MV to E feed flow (Stream 3) 

x18 Stripper temperature x44 MV to A feed flow (Stream 1) 

x19 Stripper stream flow x45 MV to total feed flow (Stream 4) 

x20 Compressor work x46 Compressor recycle valve 

x21 Reactor cooling water outlet temperature x47 Purge value (Stream 9) 

x22 Separator cooling water outlet temperature x48 Separator pot liquid flow (Stream 10) 

x23 Component A (Stream 6) x49 Stripper liquid product flow (Stream 11) 

x24 Component B (Stream 6) x50 Stripper steam valve 

x25 Component C (Stream 6) x51 Reactor cooling water flow 

x26 Component D (Stream 6) x52 Condenser cooling water flow 

The training dataset contains 500 observations and is fault free. A sampling interval of 3 minutes is 

used to record these data. For the testing data, a pre-programmed 21 faults are simulated to generate 21 

faulty datasets corresponding to different faults encountered in practice. Moreover, an additional fault 0 

(with no fault) testing data is available as the validation dataset. Each testing dataset has 960 samples, 

starting with no fault and then a fault is introduced after 160 samples (8 hours). The process variables 

have a variety of units and scales. A normalization step is necessary for training, validation, and testing 

datasets before implementing any performance monitoring technique. After normalization, the 

observations of each variable have zero mean and unit variance. 

4.1 Determining the sparsity parameter values 

As discussed in Section 3.2, a common sparsity parameter 𝑐 was selected for both 𝜶 and 𝜷. A lower 

bound of 𝑐 is max (1/√𝑛𝑦𝑙 + 𝑛𝑢𝑙, 1/√𝑛𝑦ℎ) and an upper bound is one. This case study chooses lags 𝑙 =



ℎ = 2, which are from an earlier study [14] that contains a detailed explanation on their optimal choice. 

The interval [0.12 0.8] on 𝑐 was gridded with step size of 0.02. SCVA Algorithm 1 was applied for each 

𝑐 to obtain a set of canonical vectors 𝑱𝑑 and 𝑳𝑑. For the state order of 𝑑 = 23, the value of 𝑐 = 0.18 gave 

the best averaged correlation of 𝑑 pairs of canonical variates on the validation data (see Figure 2). With 

this selected sparsity parameter, the set of canonical vectors 𝑱𝑑 and 𝑳𝑑 was stored and implemented for 

fault detection and identification. This case study compares SCVA to the traditional CVA. For the 

selected parameters, the condition numbers of the sample covariance matrices of both 𝒑(𝑡) and 𝒇(𝑡) were 

very high. Poor conditioning implies that either the sample size is low relative to the number of variables 

(104), which is not true in this case study, or some of these variables are nearly collinear, which must hold. 

Although the covariance matrices can be inverted within the accuracy (10−16) of Matlab, such poor 

conditioning discourages the usage of traditional CVA. An observation that supports this statement is that 

some of the elements in the vectors 𝑱𝑑 and 𝑳𝑑 obtained from CVA were extremely large. The resultant 

inaccuracies in 𝑱𝑑 and 𝑳𝑑, due to the inaccuracies in the estimates of 𝚺𝑝𝑝
−1/2

 and 𝚺𝑓𝑓
−1/2

, results in poorer 

performance of traditional CVA compared to SCVA, as discussed in the next sections. 

 
Figure 2. Averaged cross-correlation under the validation data for different values of 𝑐. 



4.2 Fault detection 

This section compares the fault detection performance of SCVA with that of conventional CVA. A 

key metric in evaluating fault detection performance is the missed detection rate. The missed detection 

rate is defined as the ratio of undetected faulty samples, by the 𝑇𝑑
2, 𝑄, or 𝑆overall criteria, relative to the 

total number of faulty samples under a specific fault. With the selected sparsity parameter c, the specific 

missed detection rates for the three statistics under SCVA and CVA are shown in Table 2. For the overall 

statistic 𝑆overall, SCVA had 42.5% (100(27.8−19.5)/19.5) lower missed fault detection rate than CVA. 

The missed fault detection rate of SCVA is at the same level to substantially lower than CVA for all of 

the faults except for Faults 5 and 21. 

SCVA based only on the 𝑇𝑑
2 statistic would yield a higher missed detection rate compared with CVA, 

which can be explained by the fact that the canonical state space of a CVA model mainly captures the 

significant predictive relationships among variables. Pursuit of sparsity in such models is generally at the 

price of sacrificing the prediction accuracy and, as a result, SCVA is less sensitive than CVA in detecting 

faults in the state space. In other words, only relatively large changes in the state space can be detected by 

SCVA. Fortunately, extensive published results (e.g., [14]) have shown that most faults are better 

detected variations in the residual space by the 𝑄  statistic, in which SCVA showed 44% 

(100(0.483−0.335/0.335) better fault detection performance compared to CVA. The residual space stores 

variations not captured by the state-space model, such as noise or other weak relationships between 

variables. The higher sensitivity of SCVA in the residual space is pronounced by the fact that SCVA 

model only shows fundamental relationships and leaves all other information to the residual space. If a 

fault brings minor changes to the process or only affects the noise characteristics, the fault can be easily 

detected by the 𝑄 statistic of SCVA. 

In summary, SCVA loses some fault detection sensitivity in the state space which is compensated by 

increased sensitivity of its 𝑄 statistic. The high missed detection rate of CVA is largely due to the large 

condition numbers of 𝚺𝑝𝑝, 𝚺𝑓𝑓. To verify this sensitivity, CVA was repeated with a small ridge penalty 



term λ = 0.01  added to these covariance matrices. The use of such regularized covariance matrices 

reduced the overall missed detection rate to 24.2%, which is an improvement although not as good as 

SCVA (cf. Table 2). This case study thus shows the suitability of applying SCVA when 𝚺𝑝𝑝 and 𝚺𝑓𝑓 are 

nearly singular. 

Table 2. Missed fault detection rates for 21 faults under the condition that (𝑙 = 2, 𝑐1 = 0.20, 𝑐2 = 0.20, λ = 0.01). 

Fault SCVA CVA CVA with ridge penalty 

 𝑇2 𝑄 𝑆overall 𝑇2 𝑄 𝑆overall 𝑇2 𝑄 𝑆overall 

1 0.001 0.005 0.001 0 0.058 0 0.001 0.004 0.001 

2 0.010 0.014 0.010 0.009 0.033 0.009 0.010 0.014 0.010 

3 0.865 0.939 0.823 0.856 0.980 0.850 0.878 0.788 0.729 

4 0.910 0.004 0.004 0.655 0.918 0.634 0.723 0.028 0.028 

5 0.659 0.699 0.617 0 0 0 0.683 0.606 0.571 

6 0.001 0 0 0 0 0 0 0 0 

7 0.457 0 0 0.379 0.750 0.378 0.285 0 0 

8 0.013 0.020 0.013 0.016 0.190 0.016 0.018 0.009 0.009 

9 0.908 0.935 0.865 0.883 0.988 0.882 0.901 0.809 0.758 

10 0.082 0.489 0.077 0.173 0.802 0.172 0.289 0.289 0.222 

11 0.812 0.233 0.212 0.555 0.836 0.527 0.614 0.231 0.222 

12 0 0.008 0 0 0.033 0 0.006 0.001 0.001 

13 0.043 0.048 0.041 0.040 0.113 0.038 0.043 0.040 0.040 

14 0.852 0 0 0 0.018 0 0 0 0 

15 0.774 0.900 0.737 0.755 0.982 0.752 0.809 0.747 0.693 

16 0.034 0.669 0.030 0.152 0.641 0.152 0.375 0.360 0.262 

17 0.302 0.062 0.051 0.074 0.166 0.055 0.115 0.067 0.058 

18 0.080 0.099 0.078 0.093 0.112 0.093 0.095 0.077 0.072 

19 0.028 0.857 0.024 0.709 0.940 0.686 0.887 0.791 0.730 

20 0.124 0.433 0.114 0.220 0.865 0.220 0.398 0.299 0.267 

21 0.393 0.625 0.393 0.369 0.723 0.366 0.404 0.535 0.399 

Overall: 0.350 0.335 0.195 0.283 0.483 0.278 0.359 0.271 0.242 

Std: 0.370 0.372 0.298 0.319 0.413 0.315 0.342 0.311 0.285 

Now consider the detection of Fault 4, which is known to be very challenging to detect [12] and for 

which SCVA was especially effective. Fault 4 introduces a step change at the 160th sample to the reactor 

cooling water inlet temperature which causes a step change directly in the manipulated variable 𝑥51, 

which is the reactor cooling water flow (Figure 3a). Consequently, a sudden increase in the reactor 

temperature (𝑥9) appears after the 160th sample but then is quickly compensated by a control loop (Figure 

3b). Fault 4 is known to be challenging to detect both in the state space by the 𝑇𝑑
2 statistic and in the 

residual space by the 𝑄 statistics, as seen by Table 4 in [12] which could only detect Fault 4 by using a 𝑇𝑟
2 



statistic in the residual space. The residual spaces for 𝑇𝑟
2 and 𝑄 are constructed in a different manner with 

the residual space for 𝑇𝑟
2  requiring the last few canonical vectors of 𝑱𝑑 , which can be sensitive to 

perturbations in the testing data for some faults [12]. From Table 4 in [12], the missed fault detection rates 

for CVA under both the 𝑇𝑑
2 and 𝑄 statistics are high for Fault 4, which agrees with the results in Table 2. 

In contrast, although the missed fault detection rate for the SCVA-based 𝑇𝑑
2 statistic is high, its 𝑄 statistic 

provides a persistent indication of faulty status with nearly zero missed fault detection rate (see bottom 

left plot of Figure 4). The SCVA-based 𝑄 statistic showed a much higher sensitivity than for CVA, which 

is consistent with the above analyses. 

      
Figure 3. Effects of Fault 4 on (a) reactor cooling water flow 𝑥51 and (b) reactor temperature 𝑥9. 

 
Figure 4. Fault detection results for Fault 4 with SCVA (left) and traditional CVA (right). The thresholds are shown 

as horizontal dashed lines. 



In summary, the 𝑇𝑑
2 state-space statistic for SCVA has lower sensitivity than for CVA for Fault 4, 

whereas the 𝑄 statistic for SCVA has much higher sensitivity in detecting this fault (see Figure 4). The 

next subsection shows that such features of SCVA dramatically facilitate the interpretation of 

fundamental relationships among process variables, which forms the main advantage of implementing 

SCVA for fault detection and identification. 

4.3 Interpretation of canonical vectors 

CVA is unsuitable for scenarios with a limited number of samples or the presence of collinear 

variables. An alternative is to add penalty terms to the covariance matrices, aka canonical ridge 

regression, so that the matrices become well-conditioned and the CVA technique can be applied. A 

drawback of this approach is that dense canonical vectors are still obtained that combine all variables, 

which is not beneficial for interpretation of the canonical vectors. SCVA can not only directly handle 

poorly conditioned covariance matrices, but also produces sparse loadings such that the discovery of 

process knowledge becomes straightforward. More importantly, sparse loadings can strengthen the 

contributions of major variables relevant for the faults, so that the resultant fault identification becomes 

more accurate compared with using dense canonical vectors. The latter will be discussed in the next 

subsection. This subsection focuses on unveiling the structure (or relationships between variables) of a 

process, particularly the TEP, by using SCVA. 

For an illustrative purposes, a case study is considered in which process variables are selected to 

contain only the first 22 measurement variables (𝑥1 to 𝑥22) and the first 11 manipulated variables (𝑥42 to 

𝑥52). The composition measurements are excluded to simplify the analysis. The past and future lags are 

set to one, with 𝒑(𝑡) and 𝒇(𝑡) stacking related variables in the same fashion as   (6)–(7). As a rule of 

thumb, a sparser CVA model tends to preserve more fundamental variables in 𝒑(𝑡) that can predict 𝒇(𝑡) 

with larger prediction errors. For the sparsity parameter 𝑐 = 0.28 and state order 𝑑 = 16, the structure of 

the set of canonical vectors is shown in Figure 5. 



 
Figure 5. Sparsity structure of the set of canonical vectors. The size and color of each point represent the absolute 

value of a nonzero element in a canonical vector. 

The horizontal axis shows the process variables with the first 22 variables being measurements and 

the rest being manipulated variables. The vertical axis displays each canonical vector of SCVA. Each 

loading vector is sparse and dominated by a small number of nonzero elements. These nonzero and large 

elements typically represent physical or control links between corresponding process variables. The major 

connections between variables discovered from Figure 5 are summarized in Table 3. 

Table 3. Physical [∙] and control (∙) links between variables. 

Loading # Nonzero elements Loading # Nonzero elements 

1 (𝑥7, 𝑥13, 𝑥16) 9 (𝑥20, 𝑥27) 

2 (𝑥31, 𝑥19, 𝑥18) 10 (𝑥27, 𝑥20, 𝑥11) 

3 (𝑥1, 𝑥25) 11 (𝑥18, 𝑥31) 

4 (𝑥23, 𝑥2) 12 (𝑥16, 𝑥28, 𝑥31) 

5 (𝑥16, 𝑥7, 𝑥13) 13 (𝑥22, 𝑥7) 

6 (𝑥28, 𝑥10) 14 (𝑥16, 𝑥32) 

7 (𝑥32, 𝑥9) 15 (𝑥7, 𝑥13) 

8 (𝑥18, 𝑥19) 16 (𝑥18, 𝑥31) 

 



Most of the relationships uncovered by SCVA in Table 3 represent actual connections between these 

variables, except loading 12 that singles out 𝑥16 , 𝑥28 , 𝑥31  as major variables. Some variables appear 

multiple times in different loadings. Recall that the loadings produced by SCVA are not orthogonal and 

the canonical variates are not uncorrelated. As a result, variables are left out that are not significant in 

minimizing the prediction error. Process knowledge discovery thorough sparse models have been reported 

in [25] [26], mainly by sparse PCA. Their work obtains similar results as here, but with some minor 

differences that are caused by two reasons. First, the objective in their work [25] [26] is to obtain sparse 

principal components to explain as much variance in the data as possible, whereas this article is 

concentrated on attaining pairs of sparse vectors to achieve maximum canonical correlations (or minimal 

prediction error) between two sets of data. Second, to acquire main relationships between variables, [25] 

[26] specified initial conditions carefully based on prior knowledge of the process. In contrast, here the 

initial sparse canonical vectors are chosen randomly, as initial conditions are typically not arbitrarily 

specifiable in a large-scale industrial process. 

These discovered relationships can be used to gain better insights into the process by observing the 

most crucial variables for fault detection and identification. This information is useful in fault 

identification through contribution plots. SCVA can reinforce the contributions of faulty variables and 

weaken the contributions from other variables, as compared with dense CVA. This point is demonstrated 

in the next subsection. 

4.4 Contribution plots based on SCVA 

Contribution plots are a popular technique to identify faulty variables that are most relevant to causes 

of a fault. Large contributions from certain variables under a faulty scenario indicate that those variables 

are most likely to be the causes for the fault. An intuitive demonstration of faulty variables varying with 

time is the 2D color plot of contributions of all variables [30]. In such plots, the horizontal axis shows the 

time and the vertical axis represents all process variables, whereas the color in each grid indicates the 

value of contribution. This section demonstrates that SCVA can be better than CVA in singling out faulty 

variables. 



Fault 1 is a step-type fault that causes a change after the 160th sample in the 𝐴/𝐶 feed ratio in Stream 

4. This fault brings an increase in the 𝐶 composition and a decrease in the 𝐴 composition. As a result, the 

𝐴 composition decreases in Stream 5, which causes an increase in the 𝐴 composition in Stream 1 due to 

the corrective action of control loops. A subsequent impact is variations in flowrate and compositions in 

Stream 6, which changes the reactor level and in turn perturbs the flowrate in Stream 4 which results from 

the control connections between level sensor ( 𝑥8 ) and feed flow valve (𝑥45 ). Variations in the 𝐶 

composition in Stream 4 due to Fault 1 also cause changes in the 𝐸 composition due to material balance 

in reactions. As a result, Fault 1 affects the compositions of 𝐴, 𝐶, 𝐸 and eventually propagates to many 

other variables and products. Thus, Fault 1 is expected to be relatively easy to detect, which agrees with 

the low missed detection rate shown in Table 2Error! Reference source not found.. 

SCVA-based contribution plots based on 𝑇2, 𝑄, and combined statistics are shown in Figure 6. Many 

variables show large contributions right after Fault 1 is introduced. As the control loop makes efforts to 

compensate for Fault 1, the contributions of most variables settle to steady-state values (see Figure 6c) by 

the 400th sample. The variables that tend to give large contributions even after the 400th sample are 𝑥1, 

𝑥4, 𝑥18, and 𝑥44. These identified faulty variables are similar as reported in [31]. Most faulty variables 

(except 𝑥18) are identified through Figure 6b, which is due to the reason explained in Section 4.2 that the 

𝑄 statistic tends to have higher sensitivity. The faulty variables should not be identified based solely on 

the contribution plot from the 𝑄 statistic since that statistic includes noise that can be averaged out in the 

combined contribution plot. 

The faulty variables 𝑥1, 𝑥4, 𝑥18, and 𝑥44 correspond to the 𝐴 feed in Stream 1, total feed in Stream 4, 

stripper temperature, and 𝐴 feed flow valve in Stream 1. Since the stripper has a direct connection with 

Stream 4, it is reasonable that some of its properties are heavily associated with Fault 1. Moreover, the 

compensation from control loops drastically impacts Stream 1, causing 𝑥1 and 𝑥44 to be the most evident 

reflections of Fault 1. 



    

 
Figure 6. Contribution plots based on 𝑇2, 𝑄, and combined SCVA statistics (the fault occurs at the 160th sample). 

Figure 6 verifies the effectiveness of using SCVA to extract faulty variables. In order to show the 

advantage of sparsity in highlighting faulty variables, the percentages of contributions of faulty variables 

(𝑥1, 𝑥4, 𝑥18, 𝑥44) are compared for SCVA and CVA in Figure 7. The accumulated contribution from 

faulty variables under SCVA takes a higher percentage of total contributions for most samples and is 

much less noisy over time. This observation highlights the advantage of SCVA in identifying faulty 

variables compared with traditional CVA. 



 

Figure 7. Accumulated contributions from the faulty variables for Fault 1 identified by SCVA. 

The advantage of SCVA in fault identification is further illustrated by Fault 12 which is a random 

variation in the condenser cooling water inlet temperature. The condenser cooling water inlet temperature 

is not a directly measurable quantity, and the influence of Fault 12 is expected to be revealed by 

connected variables such as the condenser cooling water outlet temperature ( 𝑥22 ) and the product 

separator temperature (𝑥11). Similar to [24], the percentage of the contribution to 𝑇2 of each variable is 

shown for sample 165 (5 samples after the fault takes place) and sample 200 in Figure 8. At sample 165, 

the process variables 𝑥11 and 𝑥22 account for about 75% of the overall contributions for SCVA while 

accounting for less than 30% for CVA. Similarly, at sample 200 after which the control loop has deployed 

corrective actions, the process variables 𝑥11 and 𝑥22 explain about 85% of all contributions under SCVA 

and only 70% for CVA. Based on Figure 7 and Figure 8, SCVA intensifies the contributions from the 

faulty variables to be more distinct than the normal variables. 



 

Figure 8. Percentage of contributions of each variable for Fault 12 at samples 165 and 200. 

5. Conclusions 

This article presents a sparse canonical variate analysis approach for fault detection and identification. 

SCVA is preferred when the sample covariance matrices are close to singular in the case of collinear 

variables or small sample size. The sparsity parameter in SCVA trades off between sparsity and loss of 

information, which affects the fault detection performance. An advised way of selecting the sparsity 

parameter is through cross-validation. Simulation results show that, with such a sparsity parameter, 

SCVA can achieve better fault detection performance than CVA for the Tennessee Eastman Process 

(TEP). Moreover, SCVA preserves important variables in the canonical vectors, which improves the 

interpretability of sparse canonical vectors and uncovers important relationships among process variables. 

SCVA’s sparse canonical vectors enable the determination of accumulated contributions on faulty 

variables so that they are more easily distinguished from normal variables. The results are verified in 

several TEP case studies. 



6. Appendix 

The value of 𝑐1 is bounded below by 1 and above by √𝑛𝑦𝑙 + 𝑛𝑢𝑙. This conclusive statement is drawn 

from the fact that ‖𝜶‖2 ≤ ‖𝜶‖1 ≤ √𝑛𝑦𝑙 + 𝑛𝑢𝑙‖𝜶‖2. A simple derivation is that, when fixing 𝜷, if 𝑐1 <

1, then ‖𝜶‖1 ≤ 𝑐1 in (7) is a tighter constraint than ‖𝜶‖2
2 ≤ 1 (since ‖𝜶‖2 ≤ ‖𝜶‖1, ∀𝜶) and the solution 

to (7) will not trigger the 𝑙2 bound constraint. The corresponding optimal 𝜶 obviously cannot satisfy the 

definition of CVA. On the other hand, if 𝑐1 > √𝑛𝑦𝑙 + 𝑛𝑢𝑙, then any 𝒂 that meets ‖𝜶‖2
2 ≤ 1 will not 

trigger the 𝑙1  bound constraint since such 𝜶 implies that ‖𝜶‖1 ≤ √𝑛𝑦𝑙 + 𝑛𝑢𝑙‖𝜶‖2 < 𝑐1  for any 𝜶. In 

other words, the 𝑙1 bound is immaterial and thus the conventional CVA is obtained and thus sparsity is 

not achieved. 
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