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Abstract: Lithium-ion batteries are ubiquitous in modern society. Their high power and energy
density compared to other forms of electrochemical energy storage make them very popular in
a wide range of applications [1]. To ensure safe, prolonged, and reliable operations, significant
research effort has been put into understanding, modelling, and predicting the key limiting
phenomena, which has led to various battery models with different levels of complexity and
prediction capabilities [2]. This work focuses on implementing the pseudo-two-dimensional
(P2D) model, the most widely accepted electrochemical model on lithium-ion batteries. The
unparalleled prediction abilities of the P2D model, however, are over shadowed by its high
complexity. Thus, much of this work focuses on model reduction to shorten effective simulation
time. In the end, four model reductions have been identified and successfully implemented.
Comparisons to the full model at 1C, 2C and 5C discharge rates are reported.
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1. INTRODUCTION

Mathematical models for lithium-ion battery dynamics fall
within two main categories: Equivalent Circuit Models
(ECMs) and Electrochemical Models (EMs). ECMs use
only electrical components, e.g. inductors, resistors, and
capacitors, to represent battery dynamics [3]. While this
type of model is structurally simple and computationally
efficient, cumulative measurement errors, capacity degra-
dation through usage life, environmental parameter vari-
ation, and device sensitivity to initial conditions heavily
affect performance [10]. In contrast, EMs are more ac-
curate due to their ability to describe detailed physical
phenomena, including lithium-ion intercalation and diffu-
sion in electrodes and electrolyte, various side-reactions,
double-layer effects, and lithium concentration variations
[8]. The most widely used EM today is the pseudo-two-
dimensional (P2D) model, which is described by a set of
tightly coupled and highly nonlinear partial differential-
algebraic equations (PDAEs).

In this work, we (i) provide a robust implementation of the
P2D model, (ii) identify model reductions, and (iii) assess
the accuracy losses and computational efficiency gains of
the reductions.

2. THE P2D MODEL

The pseudo-two-dimensional (P2D) model consists of cou-
pled nonlinear PDAEs for the conservation of mass and

charge in the three sections of the battery - cathode, sepa-
rator, and anode - denoted respectively by the indices p, s,
and n [10]. The positive and negative current collectors are
denoted by a and z. The index i ∈ S is used to refer to a
particular section of the battery, where S := {a, p, s, n, z}.
Fig. 1 depicts the five domains inside of the battery cell as
well as the virtualization of solid particles inside the two
electrodes.

2.1 Solid-particle concentration

Lithium-ion diffusion inside solid spherical particles with
radius Rp is described by Fick’s law,
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where r is the radial direction, or the pseudo-second-
dimension, along which the ions intercalate within the
active particles. Here j represents the ionic flux across the
solid particles and the electrolyte.

2.2 Solid-particle potential

Solid-particle potential in the two electrodes, Φs(x, t) ∈ R,
is described by the equation,



Fig. 1. Visualizing the P2D model
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Due to physical constraints, it is necessary to impose zero-
flux boundary conditions for Φs at the interface between
electrodes and the separator, as well as the enforcement of
Ohm’s law at the cathode and anode ends,
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Here Iapp(t) is the applied current density given as an
operating condition.

2.3 Electrolyte concentration

In the positive and negative electrodes, the electrolyte
concentration ce(x, t) ∈ R+ is described by the equation,
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where t ∈ R+ is the time and x ∈ R is the spatial
direction through electrodes and separator along which
the ions are transported. The first term on the right
represents diffusion of the electrolyte while the second
term represents ionic flux from the solid particles.

At the cathode and anode ends, we impose zero-flux
boundary conditions,

∂ce
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= 0 (7)

Meanwhile at the two electrode-separator interfaces, we
enforced the continuity of electrolyte concentration,
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Similarly, continuity of fluxes is also enforced. Due to
changes in material properties along the length of the
battery, the values of different coefficients (e.g., Deff,i,

κeff,i, λi) need to be evaluated at the interface between
two different materials. For the flux of electrolyte at the
two electrode-separator interfaces, we have
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2.4 Electrolyte potential

Electrolyte potential in the two electrodes, Φe(x, t), is
described by the equation,
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Given that only potential differences are measurable, with-
out loss of generality, Φe can be set to zero at the end of
the anode. On the cathode side, zero-flux conditions are
imposed,
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At the two electrode-separator interfaces, similar to the
electrolyte concentration, continuity of potential,
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as well as continuity of fluxes,
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are enforced.

2.5 Temperature

Temperature variations are also included with the set of
equations describing the system. The thermal equations
include different source terms, which are the ohmic, re-
versible, and reaction generation rates Qohm, Qrev, and
Qrxn, respectively [3],
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The ohmic generation rate takes into account heat gener-
ated as a consequence of the motion of lithium-ions in the
solid/liquid phase. The reaction generation rate accounts
for heat generated due to ionic flux and over-potentials,
and the reversible generation rate takes into account the
heat rise due to the entropy change in the electrodes’
structure [3].

At all section interfaces, boundary conditions include both
continuity of solution and continuity of flux. For example,
at the cathode-separator interface,
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Boundary conditions at other interfaces are of similar
form.

2.6 Ionic flux

Intertwining temperature, electrolyte concentration, elec-
trolyte potential, solid-particle concentration, and solid-
particle potential is j(x, t). j(x, t) is the flux of lithium ions
across the surface of the solid-particles into the electrolyte
at position x and time t, and is given by Butler-Volmer
kinetics,
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where

ηi(x, t) =Φs(x, t)− Φe(x, t)−Ui (22)

represents the overpotential. Note that i ∈ {p, n}, indi-
cating the ionic flux is present in only the positive and
negative electrodes but not the separator.

2.7 Separator

Since the separator is absent of any solid particles, the
dynamics in the separator are simplified as equations
of solid-particle concentration and potential, cs(r, t) and
Φs(x, t), as well as the ionic flux, j(x, t), are eliminated.

For example, the ce equation of the separator, in contrast
to that of the electrodes, consists of purely diffusion and
no ionic flux,
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Similarly, the electrolyte potential is also independent of
the ionic flux,
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2.8 Current Collectors

The two current collectors span the two ends of the
battery. Absent of both electrolyte and solid particles,
temperature rise in the current collectors is caused solely
by the applied current density,
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and Newton’s law of cooling with the outside,
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The heat exchange coefficient h is proportional to the
reciprocal of temperature insulation: a low h indicates high
insulation and faster increase of battery temperature, and
the opposite for high h.

3. CONSTANTS AND ADDITIONAL EQUATIONS

All experimentally measured parameters and additional
equations used in the implementation are taken from [10]
and reported in Table I and II. The open circuit voltage
(OCV) is denoted by U while the entropic variation of the
OCV is denoted by ∂U

∂T . Since the cathode, anode, and the
separator are composed of different materials, for a given
section i, different electrolyte diffusion coefficients Di,
solid-phase diffusion coefficients Ds

i , electrolyte conduc-
tivities κi, porosities εi, thermal capacities Cp,i, thermal
conductivities λi, densities ρi, solid-phase conductivities
σi, particle surface area to volumes ai, maximum solid
phase concentrations cmax

s,i , overpotentials ηi, and particle
radiuses Rp,i, can be defined. The terms R and F are the
universal gas constant and the Faraday constant, repsec-
tively, with t+ representing the transference number and
Tref the environment temperature.

Within the battery, continuous interface conditions are
imposed across the different materials. In order to get a
more detailed description of the conductivity (κeff,i) and
diffusion phenomena (Deff,i) inside the electrolyte, all the
related coefficients are determined as a function of ce and
T [10]. In order to take into account the properties of
different materials used in the battery, effective diffusion
and conductivity coefficients are evaluated according to
the Bruggeman’s theory, with “eff” suffixes representing
effective values of each coefficients.

4. FINITE DIFFERENCE FORMULATION

4.1 Discretization of Governing Equations

Recall that the battery is composed of five sections: posi-
tive current collector (a), cathode (p), separator (s), anode
(n), and negative current collector (z). The cathode and
the anode each further contains solid spherical particles
with radius Rp, resulting in the pseudo-second dimension
r. The overall picture of the model is depicted in Fig. 2.

Fig. 2. Model discretization using the finite difference
method

Dimension x and pseudo-second-dimension r are both
discretized on a staggered grid using the finite difference
method. The grid structure in the x-direction is defined
by subdividing the spatial domain x ∈ R into Na + Np +
Ns+Nn+Nz non-overlapping segments with geometrically
centered nodes (as depicted in Fig. 3). Every segment
is associated with a centre xn and spans the interval
[xn− 1

2
, xn+ 1

2
]. The unknown variable at xn is denoted by

Ωn.



Fig. 3. One-dimensional finite difference grid structure

Table I. Additional equations

Open circuit potential (thermal dependence)

Up = Up,ref + (T (x, t)− Tref)
∂Up

∂T |Tref

Un = Un,ref + (T (x, t)− Tref)
∂Un

∂T |Tref

Entropy change
∂Up

∂T

∣∣∣
Tref

= −0.001
(

0.199521039−0.928373822θp
1−5.661479886999997θp

+1.364550689000003θ2p−0.6115448939999998θ3p
+3.048755063θ4p+11.47636191θ3p

)
∂Un

∂T

∣∣∣
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=
(

0.001(0.005269056+3.299265709θn−91.79325798θ2n
1−48.09287227θn+1017.234804θ2n

+1004.911009θ3n−5812.278127θ4n+19329.7549θ5n
−10481.80419θ3n+59431.3θ4n−195881.6488θ5n

−37147.8947θ6n+38379.18127θ7n−16515.05308θ8n)
+374577.3152θ6n−385821.1607θ7n+165705.8597θ8n

)
Open circuit potential (reference value)

Up,ref =
−4.656+88.669θ2p−401.119θ4p+342.909θ6p−462.471θ8p

−1+18.933θ2p−79.532θ4p+37.311θ6p−73.083θ8p
+433.434θ10p
+95.96θ10p

Un,ref =
(

0.7222 + 0.1387θn + 0.029θ0.5
n

− 0.0172
θn

+ 0.0019
θ1.5n

+ 0.2808e0.9−15θn

−0.7984e0.4465θn−0.4108
)

θp =
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c∗s,n(x,t)

cmax
s,n
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+0.668 · 10−3ce(x, t) + 0.494 · 10−6c2e(x, t)
+(0.074− 1.78 · 10−5ce(x, t)
−8.86 · 10−10c2e(x, t))T (x, t)+

(−6.96 · 10−52.8 · 10−8ce(x, t))T
2(x, t)
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Ds
eff,i = Ds

i e
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F

Table II. List of parameters used in simulation

Parameter Al CC Cathode Separator
cinit
e - 1000 1000

cavg,init
s - 25751 -
cmax
s - 51554 -
Di - 7.5× 10−10 7.5× 10−10

Ds
i - 10−14 -
ki - 2.334× 10−11 -
li 10−5 8× 10−5 2.5× 10−5

Rp,i - 2× 10−6 -
ρi 2700 2500 1100
Cp,i 897 700 700
λi 237 2.1 0.16
σi 3.55× 107 100 -
εi - 0.385 0.724
ai - 885,000 -

E
Ds

i
a - 5000 -

Ek
i

a - 5000 -
brugg - 4 4

F 96485 96485 96485
R 8.314472 8.314472 8.314472
t+ 0.364 0.364 0.364
εf,i - 0.025 -

Parameter Anode Carbon CC
cinit
e 1000 -

cavg,init
s 26128 -
cmax
s 30555 -
Di 7.5× 10−10 -
Ds
i 3.9× 10−14 -
ki 5.031× 10−11 -
li 8.8× 10−5 10−5

Rp,i 2× 10−6 -
ρi 2500 8940
Cp,i 700 385
λi 1.7 401
σi 100 5.96× 107

εi 0.485 -
ai 723,600 -

E
Ds

i
a 5000 -

Ek
i

a 5000 -
brugg 4 -

F 96485 96485
R 8.314472 8.314472
t+ 0.364 0.364
εf,i 0.0326 -

To facilitate the treatment of boundary and interface
conditions, the ends of each segment are aligned with the
domain boundaries and internal interfaces. The number of
segments in each section, Ni for i ∈ {a, p, s, n, z}, is chosen
so that the width of every segment is uniform across all
five sections and is defined as

∆x =

∑
i li∑
iNi

(28)

where li represents the length of a particular section of the
battery and is listed in Table II.

At each xn, the pseudo-second-dimension r is discretized
using the same approach except it is only present in the
cathode and anode and has a different segment width ∆r.



5. DISCRETIZATION OF THE GOVERNING
EQUATIONS

Once the discretization grid is structured, the governing
equations are discretized with finite difference. The cen-
tral difference scheme is used for both first and second
derivatives. A few key discretizations are shown in this
section.

5.1 Solid-particle concentration

The solid-particle concentration equation is discretized as
follows

∂cs,n(r, t)

∂t
=

Ds
p

r2
m∆r2

(
r2
m+1/2(cs,n,m+1 − cs,n,m)

− r2
m−1/2(cs,n,m − cs,n,m−1)

)
(29)

where rm is the coordinate of dimension r measured from
the center of the particle. The solid-particle surface con-
centration, c∗s, which is needed in the ionic flux equation,
can be obtained using the ghost point technique,

c∗s,n =
cs,n,M + cs,n,M+1

2
(30)

where suffixes s,n,M and s,n,M+1 represent the last and the
ghost point of the solid particle at a particular x.

5.2 Temperature

For the temperature equation in the electrodes, the re-
versible and reactive heat sources can be discretized as

Qrxn,n =Faijnηi,n (31)

Qrev,n =FaijnTn
∂Ui,n
∂T

(32)

whereas the derivatives present in the ohmic source are
numerically approximated as

∂Φs(x, t)

∂x
|xn
≈Φs,n+1(t)− Φs,n−1(t)

2∆x
(33)

∂Φe(x, t)

∂x
|xn ≈

Φe,n+1(t)− Φe,n−1(t)

2∆x
(34)

∂ ln ce(x, t)

∂x
|xn
≈ ln ce,n+1(t)− ln ce,n−1(t)

2∆x
(35)

using a central differencing scheme. Together, the temper-
ature equation in the electrodes can be discretized as,

ρiCp,i
∂T (x, t)

∂t
=λi

Tn−1 − 2Tn + Tn + 1

∆x
+Qohm,n +Qrxn,n +Qrev,n (36)

6. IMPLEMENTATION OF BOUNDARY AND
INTERFACE CONDITIONS

Boundary conditions require certain variables being eval-
uated at the ends of segments. For example, consider the
electrolyte potential Φe at the interface between the anode
and the negative current collector,

Φe(x, t)
∣∣∣
x=xn

= 0 (37)

In order to recover such value, the ghost point technique
[9] is used, as shown in Fig. 4.

Fig. 4. Interpolation technique to recover interface values

The discretized equation is thus,
Φe,N + Φe,N+1

2
= 0 (38)

We can apply the same approach to continuity and inter-
face conditions. Consider the electrolyte concentration ce.
Since electrolyte is present in all of cathode, separator, and
anode, continuity of the solution for both the concentra-
tion ce and the potential Φe have to be enforced at the
cathode-separator and the separator-anode junctions. The
easiest way would be to use the ghost point technique. For
example, at the cathode-separator junction, the continuity
condition for the electrolyte concentration is,

ce(x, t)
∣∣∣
x=x̂−

p

= ce(x, t)
∣∣∣
x=x̂+

p

(39)

which can be discretized as,
ce,pN + ce,pN+1

2
=
ce,s0 + ce,s1

2
(40)

where suffixes pN and pN+1
represent the last and the ghost

point of the cathode, and s1 and s0 represent the first
and the ghost point of the separator. Fig. 5 is a pictorial
description of this interface.

Fig. 5. Electrolyte continuity across the cathode and the
separator

Similarly, continuity of fluxes across interfaces is also
enforced. Consider the equation of diffusion coefficient Deff

at the same cathode-separator junction,

−Deff,p
∂ce(x, t)

∂x

∣∣∣
x=x̂−

p

= −Deff,s
∂ce(x, t)

∂x

∣∣∣
x=x̂+

p

(41)

which can be discretized as,

−
Deff,pN + Deff,pN+1

2

ce,pN+1
− ce,pN

∆x
=

− Deff,s0 + Deff,s1

2

ce,s1 − ce,s0
∆x

(42)

Again, suffixes pN and pN+1
represent the last and the

ghost point of the cathode, and s1 and s0 represent the
first and the ghost point of the separator. Notice that
all boundary conditions discretized using the ghost point
technique retain second-order accuracy.

7. TIME-STEPPING AND NEWTON’S METHOD

With spatial discretization completed, we now proceed
to discretize time. Backward Euler (BE) time-stepping is



chosen in order to maintain stability at each time-step
while keeping an approriate size of ∆t.

With every of the P2D equations discretized in space and
time, we can arrange all the variables into a vector uk+1,

uk+1 =
[
ck+1
e,p ck+1

e,s ck+1
e,n ck+1

s,p ck+1
s,n jk+1

p jk+1
n Φk+1

s,p Φk+1
s,n

Φk+1
e,p Φk+1

e,s Φk+1
e,n T k+1

a T k+1
p T k+1

s T k+1
n T k+1

z

]T
where k represents the current time-step. The goal is that,
with known initial condition u0, we want to find uk+1

for k = 0, 1, 2, ...,K, which is described by the matrix
equation,

A · uk+1 + v − ucur = 0 (43)

where A is a constant coefficient matrix that takes into
account all linear parts of every P2D equation, v is a
vector consisting all nonlinear part, and ucur is a vector
containing information about the current time-step,

ucur =
[
cke,p c

k
e,s c

k
e,n c

k
s,p c

k
s,n 0 0 0 0 0 0 0

T ka T
k
p T

k
s T

k
n T

k
z

]T
Since the majority of the P2D equations are nonlinear,
matrix Newton’s method is used to find the root. To use
Newton’s method, let

F = A · uk+1 + v − ucur (44)

We compute matrix J , the derivative of F with respect to
uk+1,

J = A+Dv (45)

Note that Newton iteration can fail to converge or find
a different root to the one sought after if the function
has many inflection points or if the initial guess is not
close enough. We did not observe these situations as the
iterations were started using the solution at the previous
time step.

8. IMPLEMENTATION RESULTS

Simulation results were obtained using MATLAB R2018a
on a Windows 10@1.8GHz PC with 16GB of RAM for
the experimental battery parameters in Table II with a
cutoff voltage of 2.5V and environmental temperature of
298.15K. For the proposed chemistry, the 1C value is ≈ 30
A/m2. The default discretization sets ∆x = 1× 10−6 and
∆r = 0.5 × 10−6 unless specified otherwise. The battery
voltage is calculated by taking the difference between the
solid particle potential of the first segment of the cathode
and that of the last segment of the anode,

V = Φs,p1 − Φs,nN

In the first scenario shown in Fig. 6, a 1C discharge
simulation with a fixed value of h = 1W/(m2K) is
performed and the average temperature for each section
is plotted. Since the thermal conductivity coefficients are
extremely high (λa = 237,λp = 2.1, λs = 0.16, λn =
1.7, and λz = 401) with respect to the length scale of
each section (O(10−5)), heat diffusion is sufficiently fast
through the entire battery so that the temperature is
virtually the same across all five sections. Therefore, in
subsequent discussions, the battery temperature simply
refers to the average temperature across all five sections.

In the second scenario shown in Fig. 7, 1C discharge sim-
ulations are compared for a wide range of heat exchange

Fig. 6. Average temperature of each battery section in 1C
discharge with h = 1W/(m2K)

coefficient h. As expected, decreasing the value of the heat
exchange coefficient h leads to a more insulated battery
and thus a faster increase of the cell temperature. More-
over, due to the coupling of all of the governing equations,
it is possible to note the influence of different temperatures
on the cell voltage.

Fig. 7. 1C discharge cycle run under different heat ex-
change coefficients: h = 0.01, h = 1, and h = 100

In the third scenario shown in Fig. 8, for a fixed value of
h = 1W/(m2K), different discharge cycles are compared
at 1C, 2C, and 5C. According to the different applied
currents, the temperature rises in different ways. It is
interesting to note the high slope of the temperature
during the 5C discharge, mainly due to the electrolyte
concentration ce being driven to zero in the positive
electrolyte by the high discharge rate.



Fig. 8. Discharge cycle run under 1C, 2C, and 5C

9. MODEL REDUCTION

The ultimate goal of P2D model simulation is to im-
plement it on advanced battery management systems
(ABMS). ABMS anticipate problems through online fault
diagnosis which can prevent damage, ensure safety, mini-
mize charging time, and slow down battery aging. These
are possible only if model simulations are extremely fast.
To achieve a better trade-off between accuracy and com-
putational time, four different model reductions are pro-
posed. The accuracy of each approximate model is assessed
by comparing its cell potential vs. time profiles under
different applied current rates Iapp(t) with that of the
full P2D model, as shown in Fig. 9. We define the model
reduction error as the integral in the absolute value of the
difference in the curves shown in this figure to the full
model.

The improved efficiency of the four reduced models is
demonstrated in the table below by comparing their indi-
vidual effective simulation time for 1C discharge with that
of the full model, with 0: full model, 1: two-parameters
approximation model, 2: reduced-temperature model, 3:
reduced-Φs model, and 4: mixed reduction model

Simulation Duration Effective Simulation Time

0 3590s 341.016s
1 3540s 203.716s
2 3580s 161.194s
3 3600s 261.079s
4 3600s 123.921s

9.1 Two-Parameters Approximation Model

Recall from Eq. 1 and 2 that diffusion inside solid spherical
particles is described by Fick’s law. In this model, a major
source of computational burden comes from the pseudo-
second-dimension (r).

Fig. 9. Comparison of the four reduced models with the full
model. a) 1C rate comparison. b) 2C rate comparison.
c) 5C rate comparison.

In the two-parameters approximation model, concentra-
tion profiles inside the particle are assumed to be quadratic
in r and is approximated by means of average and surface
concentration of the solid particles,

∂cavg
s (x, t)

∂t
=− 3

j(x, t)

Rp
(46)

c∗s(x, t)− cavg
s (x, t) =− Rp

Ds
p

j(x, t)

5
(47)

This reduction leads to a one-dimensional problem in x
by removing the pseudo-second-dimension r. From Fig. 9
we observe that for medium (2C) and high (5C) discharge
rates, the model simulation ends prematurely, primarily
because the electrolyte concentration ce being driven to
zero in the positive electrode by the high discharge rate.

In terms of accuracy, the two-parameters approximation
model meets our criterion of less than 1% error only
for discharge rate < 1C. In terms of effective simulation
time, this model improves computational efficiency by
40% (Table 1) via eliminating 47.63% of variables for any
specified ∆x and ∆r.

9.2 Reduced-Temperature Model

From Fig. 6, the temperature is shown to be constant
in all sections, in other words T is constant in x. Thus,
we can reduce computation time by simply having one
single global temperature variable T instead of a different
T variable on each grid point. This model reduction
eliminates 8.99% of variables for any specified ∆x and ∆r.

Similar to the two-parameters approximation, the temper-
ature reduction model ends prematurely at 2C and 5C, as
seen in Fig. 9. However at 5C, its potential vs. time profile
is clearly closer to the full model.



In terms of accuracy, the temperature-reduction model
meets our criterion of less than 1% error only for discharge
rate < 1C. In terms of effective simulation time, although
this model eliminates less variables than the previous re-
duced model, it achieves the highest computational effi-
ciency. This is because temperature is embedded in every
one of the P2D equations. Reducing all temperatures into
one single variable converts many vector and matrix oper-
ations into scalar calculations, and thus greatly shortens
simulation time.

9.3 Φs-Reduction Model

The effective diffusivity of electrolyte and solid particles,
Deff and Ds

eff, are of the same magnitude. However, because
the length of electrolyte (8 · 10−5m for cathode and 8.8 ·
10−5m for anode) is ∼ 20 times of that of the solid
particles (4 · 10−6m in diameter), actual diffusion is much
faster in the latter. Consequently, the solid concentration
cs is nearly uniform in both cathode and anode, and thus
there is little solid potential (Φs) variation in each section.
Therefore, instead of having Np and Nn identical values of
Φs in the cathode and anode, respectively, we can reduce
the model to have only two Φs, one for each section. This
eliminates 6.75% of variables for any specified ∆x and ∆r.

From Fig. 9, we observe that the Φs-reduction model
overlaps the full model almost completely for all three
discharge rates.

In terms of accuracy, the Φs-reduction model exceeds
our criterion of less than 1% error for all of low (1C),
medium (2C), and high (5C) discharge rates. In terms of
effective simulation time (Table 1), this model improves
computational efficiency by 23%.

9.4 Mixed-Reduction Model

Lastly we try to combine all model reductions into a single
model. That is, the mixed-reduction model incorporates
the above three model reductions: the two parameter
approximation model, the temperature-reduction model,
and the Φs-reduction model. In terms of computation, 63%
of variables are eliminated for any specified ∆x and ∆r.

From Fig. 9 we observe that the mixed-reduction model
simulation ends much prematurely and produces results
with the largest offset when compared to the full model.
The performance deteriorates quickly at higher current
rates.

In terms of accuracy, the mixed-reduction model meets
our criterion of less than 1% error only for discharge rate
< 1C. At 2C and 5C, this model yields errors of 10% and
39%. This large error is expected as this model eliminates
a high percentage of fundamental variables. In terms of
effective simulation time (Table 3.4), this model improves
computational efficency by 64%, the largest efficiency
increase of all. Applications that require only low current
rates but fast response time on battery monitoring may
incorporate this model into their BMS.

10. CONCLUSION

In this work, we provided a robust implementation of the
pseudo-two-dimensional (P2D) model and discussed four

potential model reductions that shorten simulation time.
Taking the solid potential to be a uniform value in each
electrode is accurate at every C rate. Other reductions
lose accuracy at C rates higher than 1. An interesting
future direction that may further improve computational
efficiency is the development of a specialized split-step
solver, in which different sets of unknowns are updated
sequentially in a time step.
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