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Abstract

This study deals with an updating algorithm for a database-driven proportional-

integral-derivative (DD-PID) controller that uses a database for tuning control pa-

rameters. PID controllers are still used in many process systems including chemical

processes. However, if systems exhibit nonlinearity, PID controllers with �xed PID pa-

rameters cannot achieve the desired control performance when the systems' equilibrium

points are changed by setpoint changes. The DD-PID controller has been proposed to

solve this problem. This controller can realize good control performance for nonlinear

systems because it updates the PID parameters in its database so that the control per-

formance around each equilibrium point has a desired characteristic. However, many

experiments have to be performed for this controller to obtain a suitable database. This

paper proposes a new o�ine database updating method called data-driven extended �c-

titious reference iterative tuning (DD-E-FRIT) method. In this method, the E-FRIT

method, which is a direct control parameter tuning method for the linear system, is
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applied to the updating rule of the DD-PID controller. The DD-E-FRIT method can

update a database o�ine and obtain the database for realizing the desired tracking

property of a closed-loop system by storing one-shot operating data into the database.

Introduction

In industrial �elds, competitive manufacturing has become more serious, and the demand

for products has been diversifying gradually. Moreover, production states have numerous

requirements such as energy saving and improvement of quality and production e�ciency.

Feedback controllers are embedded in most industrial instruments, and in many scenarios,

the adjustment of control parameters in�uences the quality of products. More than 80%

of process systems use proportional-integral-derivative (PID) controllers1�3 because of its

simple structure, and because the physical meanings of the PID parameters are clear. The

performance of the controllers changes dramatically depending on the combination of the

set parameters. However, if the controlled objects exhibit nonlinearity, the desired control

performance may not be achieved by a PID controller with �xed PID parameters when the

systems' equilibrium points are changed by setpoint changes. Meanwhile, the performance

of computer hardware, such as CPUs and storage functions, has drastically improved, and

miniaturization and reduction of cost and power consumption of sensors have enabled the

construction of mass databases. In particular, the amount of data stored is increasing rapidly

today. Moreover, recently, new technologies such as big data that use large-scale databases

have emerged. Currently, database technology is an essential technology in many research

�elds. In the �eld of control engineering, in order to treat nonlinear systems, databases have

been applied to many control design schemes such as the just in time (JIT) method4�6 and

lazy learning.7,8 A database-driven PID (DD-PID) controller9 is an example of JIT con-

troller. In the DD-PID control, the PID parameters at each equilibrium point of the system

output are adaptively tuned using updated control parameters stored in a database. In the

conventional DD-PID controller, an online updating algorithm was adopted for updating
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the control parameters in a database. However, many experiments had to be performed to

obtain suitable PID parameters using this updating algorithm; hence, the controller cannot

be implemented in most real process systems even if the method is e�ective for nonlinear sys-

tems. In order to implement the DD-PID controller, a method that can update the database

in an o�ine manner is necessary. If detailed models or emulators are given, the conventional

DD-PID controller can update the database by executing its update algorithm to a system

model. However, creating a detailed nonlinear model is time consuming and involves high

design cost and numerous experiments. Moreover, the obtained model may not express the

characteristics of the controlled object completely. Therefore, it is important to establish an

o�ine updating algorithm without system models. In other words, it is important to develop

a direct control parameter tuning method for the DD-PID controller without a system model

(data-driven tuning).

On the other hand, data-driven tuning methods for linear systems have gained much

attention because they can tune control parameters in a simple manner. Typical examples

of these methods are virtual reference feedback tuning (VRFT)10�13 and �ctitious reference

iterative tuning (FRIT).14�18 A data-driven self-tuning controller is also proposed.19 One of

the advantages of data-driven tuning methods is that only one-shot closed-loop data can

be used to calculate control parameters. However, the main targets are linear systems, and

hence, the control performance deteriorates if these methods are applied to nonlinear systems.

Therefore, an o�ine updating algorithm for the DD-PID controller based on FRIT that is

termed the data-driven �ctitious reference iterative (DD-FRIT) method20�22 has proposed.

The DD-FRIT method can learn the control parameters in a database in an o�ine manner

based on the minimization of a criterion of the FRIT method. In this method, a database

can obtain suitable PID parameters only by storing one-shot experimental data given by a

PID controller with �xed PID parameters. The e�ectiveness of the proposed method was

evaluated using simulation results and experiment results. However, FRIT is a method

that only based on minimization of the output response of a controlled object, thus, the
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method was pointed out that the criterion of FRIT is insu�cient for the chemical systems

which require stable operation in the closed loop.23 To solve the above problem, an extended

FRIT (E-FRIT) has been proposed by Masuda et al.23 E-FRIT can tune control parameters

considering the variance of control input by introducing a penalty term for the control input

to the conventional FRIT's criterion.

Many industrial systems including chemical plants require a stable operation for a long

time. Therefore, control parameter tuning considering a load of actuators is important.

However, the conventional DD-FRIT method does not consider the load because the database

updating was executed based on FRIT method. From the above reason, this paper proposes

a more practical database updating algorithm based on E-FRIT. This paper newly derives

the updating rule from the E-FRIT's criterion. The simulation demonstrated the advantage

of the DD-E-FRIT method over the conventional self-tuning controller, and the conventional

DD-PID controller updated by DD-FRIT method. The proposed controller was applied to a

temperature control system, and the experimental results show that the proposed DD-PID

controller can realize the desired control performance by using one-shot closed-loop data.

The rest of this paper is organized as follows. Section 2 presents the basic algorithm

of the conventional DD-PID controller, and discusses the problem statement. Section 3

explains the E-FRIT method and the proposed DD-E-FRIT method. Section 4 elucidates

the evaluation of the e�ectiveness of the proposed method through simulations. Section

5 presents the experimental results for the above-mentioned temperature control system

obtained by applying the proposed controller. Finally, Section 6 summarizes the research

�ndings.

Data Driven PID Controller Design9

This section explains the basic algorithm of the DD-PID method. Moreover, it discusses the

problem of the online updating algorithm of the conventional DD-PID controller.
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System Description

It is assumed that the nonlinear system is described by the following equation.

y(t) = f(ϕ(t− 1)), (1)

where t and y(t) denote the step time and the system output. f(·) is a nonlinear function

whose output is determined by a historical data vector ϕ(t−1). The historical data ϕ(t−1)

are denoted as follows.

ϕ(t− 1) := [y(t− 1), . . . , y(t− ny), u(t− 1), . . . , u(t− nu)]. (2)

In (2), u(t) is the system input, and ny and nu are the orders of y(t) and u(t), respectively.

PID Control Law

When a PID controller is applied to process systems, sometimes the derivative kick depending

on the reference signals change a�ects the performance of the closed-loop system. This paper

introduces the following velocity-type PID control law in order to avoid the derivative kick.

This control law is known as the I-PD control law.

∆u(t) = KI(t)e(t)−KP (t)∆y(t)−KD(t)∆
2y(t) (3)

where e(t) is the control error which is de�ned as follows:

e(t) := r(t)− y(t). (4)

In (3), KP (t), KI(t) and KD(t) indicate the proportional gain, the integral gain and the

derivative gain, respectively. Moreover, ∆ denotes the di�erencing operator given by ∆ :=

1− z−1, and z−1 is the backward operator, which implies z−1y(t) = y(t− 1). r(t) indicates
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the reference signal. In the DD-PID method, these PID gains at each step are determined

by utilizing a database.

Data-driven PID controller

This section explains the working principle of the DD-PID controller. In the DD-PID con-

troller, an initial database has to be created because the controller requires a database for its

function. Thus, if a database does not exist, an initial database is created by the following

procedure, namely, [STEP 1].

[STEP 1] Generate Initial Database

Initial operating data r0, u0 and y0, that is, the reference signal, the control input and the

system output, are obtained by using an I-PD controller with �xed PID gains. Datasets at

each step are generated by using the obtained operating data and are sequentially stored in

the database. Dataset Φ is de�ned by the following equation.

Φ(j) = [ϕ̄
T
(tj),θ

T
PID(tj)], j = 1, 2, . . . , N., (5)

where tj indicates the step time when the data were obtained and stored in the database, and

j and N denote the index of the dataset and the total number of datasets, respectively. The

dataset has two sections: ϕ̄(tj) is called the information vector, and it expresses the state of

the controlled object at tj. θPID(tj) expresses PID gains vector applied to the controller at

tj. These vectors are given as follows:

ϕ̄(tj) := [r0(tj + 1), r0(tj), y0(tj), . . . , y0(tj − ny + 1),

u0(tj − 1), . . . , u0(tj − nu + 1)]T (6)

θPID(tj) = [KP (tj), KI(tj), KD(tj)]
T . (7)
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After generating the initial database, PID gains at each step t while control is in process are

calculated by [STEP 2] and [STEP 3].

[STEP 2] Calculate Distance and Select Neighbor Data

The distance between the query ϕ̄(t), which is the information vector that indicates the

current system state, and an information vector ϕ̄(tj) in the database is calculated by L 1

norm with some weights.

dj(ϕ̄(t), ϕ̄(tj)) =

ny+nu+1∑
l=1

∣∣∣∣∣∣ ϕ̄l(t)− ϕ̄l(tj)

max
m

ϕ̄l(m)−max
m

ϕ̄l(m)

∣∣∣∣∣∣ , (8)

j = 1, . . . , N.

In (8), ϕ̄l(tj) expresses the l-th element in the j-th dataset, and ϕ̄l(t) expresses the l-

th element in the query. Moreover, max
m

ϕ̄l(m) and min
m

ϕ̄l(m) indicate the maximum and

minimum values of the l-th element of all the datasets in the database. In this method, the

datasets in the database are sorted in the ascending order of their distance, and k-pieces of

datasets with the smallest distances between them are chosen as neighbor datasets. Here k

is set as per the user's discretion.

[STEP 3] Compute PID Gains

From the selected k-pieces of neighbor datasets, a suitable set of PID gains at t are computed

by using the following equation.

θPID(t) =
k∑

i=1

wiθPID(ti),
k∑

i=1

wi = 1, (9)
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where

wi =
exp(−di)
k∑

i=1

exp(−di)
. (10)

The block diagram of the DD-PID controller is shown in Fig. 1. By executing [STEP

．

PID Controller System

Database

[Step2] & [Step3]
Local Controller
Design Method

Figure 1: Block diagram of data-driven proportional-integral-derivative (DD-PID) control
system.

2] and [STEP 3] in each sampling time interval, the PID gains are adaptively tuned if the

PID gains in the database are suitably tuned in advance. However, if the result obtained by

using a �xed PID controller is applied to create a database, then all PID gains included in

the initial datasets may be equal. This can be expressed numerically as follows:

θPID(1) = θPID(2) = · · · = θPID(N). (11)

In this case, the PID gains in the initial database have to be tuned in an o�ine or online

manner. The conventional scheme updated the database in an online manner. However, the

online updating method requires many experiments to get optimal PID gains. Therefore, it

is unsuitable from the viewpoint of practical use. Hence, in this research, the o�ine updating

algorithm considers for designing an initial database by using one-shot experimental closed-

loop data based on the FRIT method.
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System

Figure 2: Block diagram of �ctitious reference iterative tuning (FRIT).

Database O�ine Updating Algorithm based on E-FRIT

Extended Fictitious Reference Iterative Tuning (E-FRIT)

The FRIT method14 calculates the control parameters of a linear controller directly using a

set of closed-loop data obtained by a stable controller. An optimal control parameter vector

θ∗ = [c∗0, c
∗
1, . . . , c

∗
n]

T is calculated by using closed-loop data u0(θ, t) and y0(θ, t) obtained by

a linear controller C(θ, z−1) with an initial control parameters vector θ = [c0, c1, . . . , cn]
T . In

other words, the �ctitious reference signal r̃(θ, t) is generated by the above closed-loop data

and the control parameters, and the optimal control parameters vector θ∗ = [c∗0, c
∗
1, . . . , c

∗
n]

T

is calculated using this signal. The block diagram of the FRIT method is shown in Fig. 2.

C(θ, z−1)/∆ expresses a linear controller with an integrator. In addition, C(θ, z−1) is given

as the following polynomial.

C(θ, z−1) = c0 + c1z
−1 + · · ·+ cnz

−n, (12)

where n indicates the order of the controller. In the PID controller, the order of n equals to

2. From Fig. 2, the following equation is obtained as the I/O relationship of the controller.

u0(θ, t) =
C(θ, z−1)

∆
{r̃(θ, t)− y0(θ, t)}. (13)
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By rewriting (13), r̃(θ, t) is given as follows.

r̃(θ, t) = C−1(θ, z−1)∆u0(θ, t) + y0(θ, t). (14)

In the FRIT method, a reference model Gm(z
−1) with the desired properties is designed by

the user in advance, and the output from the model is de�ned as yr(t). Moreover this method

solves the following optimization problem and derives the optimal control parameters. Thus,

the controller with optimal control parameters can be obtained by a set of closed-loop data.

θ∗ = arg min
θ

JFRIT(θ) (15)

JFRIT(θ) =
1

N

N∑
t=1

{y0(θ, t)− yr(θ, t)}2 (16)

However, the method was pointed out that the criterion (16) is not enough in process

systems that give emphasis to the stability of a closed loop system because the criterion only

focuses on the minimization of the output error. Therefore, Masuda et al have proposed

the following new criterion that is introduced a penalty term of the di�erential system input

∆ũ(t) to the previous criterion.23

θ∗ = arg min
θ

JE-FRIT(θ) (17)

JE-FRIT(θ) =
1

N

N∑
t=1

[
{y0(θ, t)− yr(θ, t)}2 + λfs∆ũ(θ, t)2

]
(18)

∆ũ(θ, t) = C(θ){r̃(θ, t)− yr(θ, t)} (19)

fs =

√
Var [yr(θ, t)− y0(t)]

Var [∆ũ(θ, t)]
(20)

Where fs is a scaling parameter. This method is called Extended-FRIT (E-FRIT) method.

The original FRIT and E-FRIT methods can be applied to only linear systems. Thus, in this

work, the concept of the E-FRIT method is introduced to the o�ine updating algorithm of
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the DD-PID controller. The speci�c algorithm of the updating method is presented in the

next section.

Derivation of Updating Algorithm based on E-FRIT

In this research, the PID gains of the datasets stored in the initial database are updated

using closed-loop data. In order to calculate the PID gains, k neighbor datasets around a

query ϕ̄0(t) is chosen by using (8). Where the query ϕ̄0(t) is calculated by using closed-loop

data r0(t), y0(t) and u0(t) as follows.

ϕ̄0(t) := [r0(t+ 1), r0(t), y0(t), . . . , y0(t− ny + 1),

u0(t− 1), . . . , u0(t− nu + 1)]T . (21)

Next, PID gains θPID(t) are calculated by (9). Furthermore, the calculated PID gains

θPID(t) are updated by the following steepest descent method.

θT
PID(t)− η

∂J(t+ 1)

∂θT
PID(t)

, (22)

where J(t) is the criterion of the method de�ned as follows:

J(t) =
1

2

{
ε(θPID, t)

2 + λfs∆ũ(θPID, t− 1)2
}
, (23)

ε(θPID, t) = y0(t)− yr(θPID, t), (24)

∆ũ(θPID, t) = KI(t){r̃(t)− yr(t)} −KP (t)∆yr(t)−KD(t)∆
2yr(t). (25)

From (3) and (14), r̃(t) is calculated as follows.

r̃(t) := y0(t) +
1

KI(t)

{
∆u0(t) +KP (t)∆y0(t) +KD(t)∆

2y0(t)
}
. (26)
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yr(t) can be calculated by the �ctitious reference signal r̃(t) and the reference model Gm(z
−1)

as follows.

yr(t) = Gm(z
−1)r̃(t). (27)

Moreover, Gm(z
−1) is given as follows.9

Gm(z
−1) =

z−1P (1)

P (z−1)
, (28)

P (z−1) = 1 + p1z
−1 + p2z

−2. (29)

P (z−1) is the characteristic polynomial. The coe�cients of P (z−1) are designed as follows.24

p1 = −2 exp
(
− ρ

2µ

)
cos

(√
4µ−1
2µ

ρ
)

p2 = exp
(
− ρ

µ

)
ρ := Ts/σ

µ := 0.25(1− δ) + 0.51δ


. (30)

In (30), Ts is the sampling interval. Further, σ denotes the rise time in which the system

output attains about 60% of the �nal value of a step reference signal. The damping property

δ is generally set within 0 ≤ δ ≤ 2.0. According to the above equations, P (z−1) can be

obtained by setting σ and δ.
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The second term of the right side (22) is developed as follows.

∂J(t+ 1)

∂KP (t)
=

1

2

∂ε(t+ 1)

∂yr(t+ 1)

∂yr(t+ 1)

∂r̃(t)

∂r̃(t)

∂KP (t)
+

λfs
2

∂∆ũ(t)2

∂∆ũ(t)

∂∆ũ(t)

∂KP (t)

= −ε(t+ 1)P (1)
∆y0(t)

KI(t)
+ λfs∆ũ(t){∆y0(t)−∆yr(t)}

∂J(t+ 1)

∂KI(t)
=

1

2

∂ε(t+ 1)

∂yr(t+ 1)

∂yr(t+ 1)

∂r̃(t)

∂r̃(t)

∂KI(t)
+

λfs
2

∂∆ũ(t)2

∂∆ũ(t)

∂∆ũ(t)

∂KI(t)

= ε(t+ 1)P (1)
x0(t)

KI(t)2
+ λfs∆ũ(t){y0(t)− yr(t)}

∂J(t+ 1)

∂KD(t)
=

1

2

∂ε(t+ 1)

∂yr(t+ 1)

∂yr(t+ 1)

∂r̃(t)

∂r̃(t)

∂KD(t)
+

λfs
2

∂∆ũ(t)2

∂∆ũ(t)

∂∆ũ(t)

∂KD(t)

= −ε(t+ 1)P (1)
∆2y0(t)

KI(t)
+ λfs∆ũ(t){∆2y0(t)−∆2yr(t)}



. (31)

Where

x0(t) = ∆u0(t) +KP (t)∆y0(t) +KD(t)∆
2y0(t). (32)

After calculating the above correction terms, the PID gains of the datasets are updated

according to the following equation.

Φ(j)←
[
ϕ̄

T
(tj),θ

T
PID(tj)− η

∂J(t+ 1)

∂θT
PID(t)

]
, j = 1, . . . , k. (33)

This procedure is executed iteratively until the amount of correction in (23) becomes su�-

ciently small. Eventually, the database is updated completely and the control performance

of the closed-loop system is improved to get closer to the desired closed-loop property. The

database updating algorithm of the proposed method is summarized as follows and a block

diagram is shown in Fig. 3.
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Figure 3: Brock diagram of data-driven extended �ctitious reference iterative tuning (DD-
E-FRIT) method.

Algorithm

The proposed algorithm is summed up as follows:

Step 1: Create a query ϕ̄0(t) from the operating data, and calculate the distance between

ϕ̄0(t) and all of the ϕ̄(tj) by using (8).

Step 2: Sort the database in ascending order of their distance, and extract k neighbor data.

Step 3: Calculate local PID gains θT
PID(t) using the neighbor data by using (9).

Step 4: Calculate correction terms by (31).

Step 5: Update PID gains in the database by using (33).

Step 6: Repeat from Step1 to Step 5 until value of (23) at each step becomes su�ciently

small.

Numerical Examples

This simulation deals with a polystyrene reactor model shown in Fig. 4. The control ob-

jective is to control the reactor temperature by manipulating the jacket temperature. A

mathematical relationship between the reactor temperature and jacket temperature is given
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Figure 4: Schematic of polystyrene reactor.

as follows:25 In this simulation, the sampling interval is set to Ts = 1.0 s.

y(t) = 0.804y(t− 1) + 5.739× 1015 · exp{−Ea/R(y(t− 1) + 273)}+ 0.148u(t− 1) +
ξ(t)

∆
.

(34)

where ξ(t) indicates the modeling error of the plant. In this simulation, the error is described

as the white Gaussian noise with zero mean and variance of 0.052.

Firstly, a PID controller with �xed PID gains was applied. The reference signals were

set as follows:

r(t) =


60 (0 ≤ t < 300)

70 (300 ≤ t < 600)

85 (600 ≤ t < 900)

. (35)

The �xed PID gains were calculated based on the Chien, Hrones, and Reswick (CHR)

method1 as follows:

KP = 9.0, KI = 0.5 KD = 1.0. (36)

The control result obtained by �xed PID controller is as shown in Fig. 5. This result shows

that the transient properties of the system output at di�erent reference signals are not the

same. It implies the di�culty of obtaining good control performance at each equilibrium
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Figure 5: Control result by �xed PID controller.

point using the �xed PID controller because of the nonlinearity of the system. All the

obtained closed-loop data and �xed PID gains were transformed according to the format of

the datasets in eq. (5), and an initial database was created from these datasets.

The simulations validated three cases: (1) the data-driven self-tuning PID controller,19

(2) the database-driven PID controller updated by FRIT,20 and (3) the data-driven PID

controller with the proposed method. In the simulations, the characteristic polynomial of

the reference model P (z−1) is expressed as

P (z−1) = 1− 1.34z−1 + 0.449z−2. (37)

The above polynomial was utilized in all of the cases.

Case 1: Data-driven self-tuning PID controller (conventional method)

Self-tuning control is one of the e�ective controller design approaches for nonlinear systems.

The data-driven self-tuning PID controller is proposed and the e�ectiveness of the method

has been veri�ed in conventional research.19 The conventional data-driven PID controller

design approach was applied to the controlled object. The control results are shown in Fig.
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Figure 6: Control result obtained by data-driven self-tuning PID controller.
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Figure 7: Trajectories of PID gains corresponding to Fig. 6.

6 and Fig. 7.

These results show that overshoot occurred at approximately 10 steps because the con-

troller used the recursive least squares for estimating its PID gains. Moreover, although it

can achieve good control performance from 50 to 600 steps, the system falls into an unstable

state after 600 steps. This indicates that the self-tuning mechanism could be unable to deal

with the strong nonlinearity of the plant.
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Table 1: Design parameters used in simulations.

Variable Value Description

k 30 Number of neighbor data

ny 3 Order of output variables

nu 2 Order of input variables

ηP 0.1 Learning rate of P gain

ηI 0.01 Learning rate of I gain

ηD 0.01 Learning rate of D gain

σ 5.0 Rise time of reference model

δ 0 Damping property of reference model

Case 2: Database-driven PID controller with DD-FRIT method

(conventional method)

The conventional DD-PID controller updated by conventional DD-FRIT method20 was ap-

plied to the controlled object. The database generated by closed-loop data in Fig. 5 obtained

by the �xed PID controller. The design parameters for online database updating are listed

in Table 1.

After setting the parameters, o�ine updating based on FRIT was executed by utilizing

the closed-loop data that was used for generating an optimal database. As stated above,

this method requires a number of iterations to complete the updating. Thus, in order to

con�rm whether updating has been completed, the following error function was introduced

and monitored:

J(epoch) =
1

N

N∑
t=1

ε(t)2 (38)

The error behaviors of o�ine updating are shown in Fig. 8. Note that, the learning rates

ηP,I,D are adjusted heuristically. In particular, the su�ciently small values are set as initial
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Figure 8: Error behaviors using o�ine updating method based on DD-FRIT.
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Figure 9: Control result of DD-PID controller updated by DD-FRIT.

values of the rates, and these values are gradually changed to larger values while con�rming

with the curve in Fig. 8, eventually, the ratios are set to the values shown in Table 1.

The above strategy is also adopted in machine learning algorithms.26 The �gure shows that

updating progressed signi�cantly at approximately 10 epochs, and convergence was almost

achieved at 80 epochs. In this case, the database updated by 100 epochs that is considered

satisfactorily updated is adopted.

The control result obtained by the DD-PID controller is shown in Fig. 9. The trajectories

of PID gains are shown in Fig. 10. From these results, the conventional DD-PID controller

can obtain good control results even if the controlled object has strong nonlinearity. In this

case, the variance of ∆u(t) is 10.78.
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Figure 10: Trajectories of PID gains corresponding to Fig. 9.
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Figure 11: Criterion behaviors using proposed o�ine updating method.

Case 3: Database-driven PID controller with proposed method

The same initial database applied in case 2 was utilized as an initial database. The same

parameters in Table 1 were also used to update the database. In this case, in order to

con�rm whether updating has been completed, the following error function was introduced

and monitored:

J(epoch) =
1

N

N∑
t=1

{
ε(t)2 + λfs∆ũ(t)2

}
(39)

Where the weight coe�cient λ is set to 0.15. The criterion behaviors of o�ine updating

are shown in Fig. 11. In this case, the database updated by 100 epochs that is considered

satisfactorily updated is adopted.

The control result is shown in Fig. 12, and trajectories of the PID gains are shown in
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Figure 12: Control result of DD-PID controller updated by the proposed method.
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Figure 13: Trajectories of PID gains corresponding to Fig. 12.

Fig. 13. The �gures show that the desired control results were obtained by tuning PID gains

adaptively. From the results, the variance of the control input ∆u(t) is obviously suppressed

compared with the previous DD-FRIT method. The variance of ∆u(t) is 7.24, therefore, the

proposed method can suppress the variance more than 30%.

The e�ects of each criterion (DD-FRIT and DD-E-FRIT) on the calculated PID param-

eters are considered. By comparing Fig. 10 with Fig. 13, these �gures show that all the PID

gains are averagely smaller than the PID gains obtained by the conventional DD-FRIT. The

reason can be considered that the sensitivity of the controller is tuned small values because
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Figure 14: Appearance of controlled object.

of the penalty term to the di�erence of the input signal in eq. (18), that is λ. Therefore, the

result shows that the proposed method can achieve good control performance considering

actuators load.

Experimental Result

The usefulness of the proposed method is evaluated in this section. The appearance of a

controlled object is shown in Fig. 14, and a schematic of the system is illustrated as Fig.

15. This section deals with temperature control of drained water y(t) [◦C] by manipulating

the valve position for hot water u(t) [%] (the opening ratio is between 0 and 100%). The

sampling interval of the control systems is set to Ts = 10 s.

To obtain the initial closed-loop data, a PID controller with �xed PID gains was applied.

The reference values were set as follows:

r(t) =

 30 (0 ≤ t < 500)

40 (500 ≤ t < 1000)
. (40)
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Figure 15: Schematic of controlled object.
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Figure 16: Control result by �xed PID controller.

The initial PID parameters determined by CHR method were set as follows:

KP = 1.42, KI = 0.143, KD = 1.40. (41)

The control results obtained by the �xed PID controller are shown in Fig. 16. The temper-

ature control of a tank system is usually treated as a linear control problem. However, the

results show that the tracking properties of the output temperature are di�erent. Thus, it
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Figure 17: Control result by �xed PID controller obtained by conventional E-FRIT.

is inferred that the system may have some nonlinearity.

In this section, the conventional E-FRIT controller and the proposed DD-PID controller

are applied to the controlled object. Firstly, the conventional E-FRIT method23 is applied.

The closed-loop data in Fig. 16 is utilized to calculate PID parameters. The characteristic

polynomial of the reference model P (z−1) is shown below.

P (z−1) = 1− 1.69z−1 + 0.717z−2. (42)

These coe�cients are obtained by parameters σ = 120 and δ = 0 in (30) set by the user,

respectively. Moreover, λ in eq. (18) is set to λ = 0.1. The minimization problem given

by eq. (17) is solved by using 'fmincon' command supported by MATLAB R2017b. The

lower limit of the solutions are set to 0 in the function, that is the obtained PID gains are

constrained to positive values. The obtained PID parameters are shown below.

KP = 1.149, KI = 0.120, KD = 6.94× 10−8. (43)

The control result obtained by the conventional E-FRIT method is shown in 17. lthough,

good control result is obtained when the reference value is set r(t) = 40, control perfor-

24



mance strongly deteriorated when the reference value is r(t) = 30. This result indicates

that although the conventional E-FRIT method works well to linear systems, the obtained

parameters cannot get good control performance at each equilibrium points if the control

object has nonlinearity.

Next, the DD-PID controller with propose method is applied. The initial database was

generated by the obtained closed-loop data in Fig. 16. Moreover, the design parameters for

o�ine database updating are listed in Table 2. The conditions of σ, δ, and λ are the same

parameters that the conventional E-FRIT method used.

Table 2: Design parameters used in experiment.

．

Variable Value Description

k 10 Number of neighbor data

ny 2 Order of output variables

nu 5 Order of input variables

ηP 1.0× 10−5 Learning rate of P gain

ηI 1.0× 10−6 Learning rate of I gain

ηD 1.0× 10−5 Learning rate of D gain

σ 120 Rise time of reference model

δ 0 Damping property of reference model

λ 0.1 Weight coe�cient for control input in E-FRIT

The criterion behavior calculated by (39) is shown in Fig. 18. The updating su�ciently

converged at approximately 300 epochs. Thus, the database updated at 300 epochs was

utilized in this experiment. The control results obtained by the proposed DD-PID con-

troller are shown in Fig. 19 and Fig. 20. These results show that good control performance

was achieved at each equilibrium point by adjusting the PID gains adaptively. The results

demonstrate the usefulness of the proposed method. From these results, the conventional

E-FRIT can only deal with linear systems because it determines a �xed control parameter.
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Figure 18: Criterion behaviors using proposed o�ine updating method.
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Figure 19: Control result DD-PID controller with the database updated by the proposed
method.
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Figure 20: Trajectories of PID gains corresponding to Fig. 19.

On the other hands, the proposed method can deal with more wide systems such as nonlin-

ear systems because it applies E-FRIT method to a piecewise linear system by introducing
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a concept of the local linearization of JIT modeling. Therefore, the proposed method is

considered a modi�cation of the E-FRIT method. However, by expanding to DD-PID con-

trol scheme, the proposed method has a drawback that the required design parameters are

increased than the conventional E-FRIT.

Conclusion

In this work, an E-FRIT-based updating algorithm of the DD-PID controller was considered.

An optimal initial database can be created using only one-shot operating data by introducing

a �ctitious reference signal in the E-FRIT method. Moreover, the DD-PID controller with an

updated database can be obtained to achieve the desired control performance for nonlinear

systems. The simulation results show that the proposed controller can achieve good control

results considering the variances of control input, by using only one set of closed-loop data.

Moreover, the experimental results show that the proposed method improved the control

performance greatly. Thus, the application range of the proposed controller in real industrial

systems is considered as wider than that of the conventional DD-PID controller. However,

this method cannot be applied on systems with time delays longer than the sampling time

because the method computes updated PID gains by the steepest decent method based on

the one-step ahead system output. Thus, if a system has a long time delay, the updating

may not be e�cient. Solving this problem will be point of our future work.
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