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Abstract: Chemical-biological systems, such as bioreactors, contain stochastic and non-linear1

interactions which are difficult to characterize. The highly complex interactions between microbial2

species and communities may not be sufficiently captured using first-principles, stationary, or3

low-dimensional models. This paper explores a data analysis strategy, which combines three4

predictive models (Random Forests, Support Vector Machines, and Neural Networks), three5

clustering models (hierarchical, Gaussian mixtures, and Dirichlet mixtures), and two feature selection6

approaches (Mean Decrease in Accuracy and its conditional variant). By doing so, the outcome of a7

bioreactor is not only predicted with high accuracy, but the important features correlated with said8

outcome are also identified. The novelty of this work lies in the extensive compare-and-contrast9

of a wide arsenal of methods, as opposed to single methods which are often observed in papers in10

similar fields. The results of this work show that Random Forest models predict test set outcomes11

with the highest accuracy. Moreover, although the clustering methods successfully identified groups12

of microbial species and their leaders, the groups are inconsistent when compared across the three13

clustering methods. Finally, the two feature selection methods identified key variables features which14

agree with a domain-knowledge understanding of the bioreactor system. Overall, the results indicate15

that although it is possible to perform simultaneous analysis with chemical and biological data, the16

clustering and feature analysis methods must be further refined for consistency and robustness.17

Keywords: Machine Learning; bioinformatics; statistics18

1 Introduction and Literature Review19

Process control in the chemical and biological industries is undergoing a data revolution, as the20

ability to extract knowledge from large volumes of data is becoming a reality. Between the 1980s21

and 2010, the total volume of historical data expanded from megabytes to terabytes. This sparked a22

big-data revolution, which resulted in the study of Machine Learning (ML) algorithms being developed23

in the field of computer science. On one extreme, where data are abundant in samples but relatively24

scarce in features, neural nets and Deep Learning by Hinton’s group [1] allows predictive models25

to be constructed with unprecedented accuracy. On the other extreme, if data are scarce in samples26

but abundant in features, models such as Bayesian Networks [2] and Markov Random Fields [3]27

enable tasks such as inference and sampling. This results in a deeper understanding of the underlying28
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probabilistic distributions behind the data, and enables “artificial" samples to be generated via methods29

such as Gibbs [4] and importance sampling. ML tools are so accessible today, such that anybody can30

train a deep neural net containing hundreds of layers and neurons within seconds using Tensorflow31

[5].32

ML in computer science typically focuses on predictive modelling of datasets containing large33

numbers of samples, also known as big-N problems. Social-media data such as emails, images, or34

videos come in the billions, and therefore models like Deep Learning have an abundance of data to35

train and validate on. By contrast, the chemical and biological communities often see small-N problems,36

in which having even hundreds of samples is considered exorbitant. For example, direct concentration37

measurements of uncommon chemical or biological specimens species are costly and time-consuming.38

In most cases, these are obtained using soft sensors or inferentials, which suffer from large time-lags39

in-between measurements. Therefore, the abundance of small-N, big-d (high dimensionality) problems40

warrant a different modelling and analysis paradigm in the field of engineering.41

When process engineering data is combined with biological data, the difficulty of meaningful42

analysis increases multiple-fold. The task of finding interpretable patterns and correlations in a43

combined chemical-biological dataset is an enormous challenge. This is partially due to the potential44

differences in time-scales, sampling rates, and dimensions in the two different types of data. Moreover,45

if the microbial data contains species-relative abundance data, the modelling task becomes extremely46

confounded. The species composition is stochastic, due to only some participating in the main reactions,47

and many bystander species which exert diminished, indirect effects. Many species also perform48

the same metabolic functions in a community, thus rendering them functionally redundant. Finally,49

member species of a community may interact with others in protagonistic or antagonistic manners.50

All of the aforementioned phenomena are present, but difficult to capture clearly in terms of their51

direct effects on bioreactor performance changes. Therefore, the analysis of datasets of such complexity52

require a strict workflow, to address as many anomalies as possible.53

A general analysis framework can be suggested as follows. Given historical data, the process54

outcome is identified and preferably separated into good and poor groups. This is common in processes55

where the outcome pertains to a fractional or percentage value, corresponding to chemical yield56

or removal. The data are “compressed" using dimensionality-reduction techniques, which results57

in a smaller subset of representative features. Predictive models are built using these high-impact58

features, instead of the original feature-set (which may contain irrelevant or redundant data). Finally,59

the representative features are ranked in terms of importance (in contributing to the final process60

outcomes), using univariate feature selection techniques. The results from this approach serve as an61

informative pre-cursor to decision-making and control, especially in processes where little to no prior62

domain knowledge is available.63

A visualization of the aforementioned framework is provided in Fig. 1 below, which can be64

realized as a typical closed-loop feedback control block diagram [6]:65

In the proposed workflow, the choice of MVs is dynamic - it is re-identified given each influx66

of new data. On the other hand, traditional feedback control uses a static set of pre-specified MVs,67

which may not always be impactful variables if the process and/or noise dynamics vary with time.68

Specifically, the use of machine learning achieves a three-fold goal:69

1. During each operating stage, operators would only need to monitor a small set of variables,70

instead of hundreds or thousands. This simplifies the controller tuning and maintenance71

drastically, and undesirable multivariable effects (such as input coupling) are reduced.72

2. If the process model is time-varying and non-linear, first-principles models need to be73

re-identified at every operating stage. These models are also known as white-box, as they are74

purely mechanistic (ex. from mass, energy, or force balances) and based on physically-intuitive75

parameters. By using black-box or purely empirical (i.e. data-based) machine learning models76

instead, the process outcomes can be predicted ahead of time, such that unsatisfactory outcomes77
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Figure 1. ML-guided process control and decision-making. Manipulated Variables (MVs) selected from the original
process features may be high-dimensional and full of confounding effects. Instead, the small subset of MVs most
responsible for causing observed process changes is identified using ML algorithms. The key MVs may change
from one operating stage to another, but they can be re-identified given the corresponding new data.

are prevented. Moreover, the machine learning models can be updated using new data collected78

from each new operating stage, therefore eliminating the need of complete re-identification.79

3. The ranking of feature impacts can be performed using grey-box models. These are data-based80

machine learning models guided by a modest amount of first-principles or domain knowledge81

about the system. This combination is exceptionally powerful if the domain knowledge is82

accurate, since it allows the model structure to be well-defined. Not only does this improve83

prediction accuracy dramatically, it also allows an analysis of the relative importance of each system84

variable (or feature) compared against one another. From a control engineer’s perspective,85

monitoring and adjusting the entire set of system variables may be impractical, especially86

if the dimensionality is too high (i.e. hundreds or thousands of features). This is due to87

the well-known phenomenon of the curse of dimensionality, as well as other issues such as88

loop-coupling interactions [6]. On the other hand, if a small subset of that entire feature-space is89

identified as the key, high-impact variables to monitor, then the control problem becomes feasible90

and much more focused.91

This paper will demonstrate the use of data analytics on a wastewater treatment process aimed at92

removing selenium. The first part of this paper outlines a systematic data pre-processing workflow,93

which combines both chemical and biological data on an equal scale. Then, a review of the state-of-art94

ML techniques in bioinformatics is provided. Three unsupervised learning techniques - hierarchical95

clustering, Gaussian mixtures, and Dirichlet mixtures - are explored as methods for dimensionality96

reduction. Three supervised learning techniques - Random Forests (RFs), Support Vector Machines (SVMs),97

and Artificial Neural Networks (ANNs) - are used to construct predictive models. Finally, important98

process features are correlated with selenium removal rate using two techniques - Mean Decrease99

in Accuracy (MDA), and its conditionally-permutated variant, C-MDA. The quality of modelling and100

feature selection results are compared and contrasted across all explored methods.101

One key difference between this work and others in the literature is the broad range of exploration,102

as well as extensive compare-and-contrast, of numerous methodologies for data analysis. Most papers103

focus on the proof-of-concept and results of a single technique, with focus on either the prediction task104

or feature analysis task. When reading this paper, The reader should focus more on the strengths and105

limitations of each method, given the results obtained, rather than the numerical values of the results106



Version September 2, 2019 submitted to Journal Not Specified 4 of 48

themselves. The main goal of this work is to bring clarity to the appropriate use of analytics, given the107

various characteristics and circumstances of the available raw process data.108

1.1 Nomenclature and commonly-used terms109

The nomenclature in this paper will follow machine learning literature by [7] and [8]. Historical
data can be divided into input data which contains time measurements of all process variables, and
output data which contains desired process outcomes. Input data are compactly expressed using the
matrix X ∈ RN×dx , where N denotes the total number of samples and dx the total number of variables.
Examples of these process variables or features include temperature, pH, valve actuator positions,
pump speeds, etc. Output data are denoted by y ∈ RN , assuming only one outcome is considered in
any model. Furthermore, it is assumed that all outcome variables are independent of one another. If
multiple outcomes are to be analyzed at once, or if correlations exist between individual outcomes,
then they can be concatenated into a matrix Y . Examples of these outcomes include yields, final
concentrations or flowrates, extents of reaction, removal rates, etc. When the input data are expressed
as a matrix X, its N samples are oriented as rows and its dx features as columns, i.e.,

X =



[x(1)]>
...

[x(i)]>
...

[x(N)]>


=

x1 · · · xj · · · xdx

 . (1)

The bracket-enclosed superscript (i) denotes samples, which differentiates it from the subscript110

j which denotes features. From a physically-intuitive perspective, these input features can be111

further differentiated into macro variables and micro variables. Macro variables mostly consist of112

sensor-measurable quantities, such as temperatures, flowrates, pressures, or pH. However, they can113

also include inferential or soft-sensed variables [6], which are not directly measurable but can be inferred114

from other easily-measurable variables. An example of this is the Chemical Oxygen Demand (COD),115

which is measured by extracting liquid samples from the system and performing analytical laboratory116

tests. On the other hand, micro variables are related to microbial properties, such as abundance counts117

or Spearman’s/Pearson’s correlations (which account for microbial interactions). In most cases, micro118

variables are inferential; a good example is Operational Taxonomic Unit (OTU) counts, which are119

obtained via 16S gene sequencing.120

1.2 Model training, validation, and testing121

Training, validation, and testing sets are defined with subtle differences in the scientific,122

engineering, and machine learning communities. This paper will adhere to the definitions accepted by123

the machine learning communities, which are as follows:124

• Training: Samples used to obtain mathematical mappings (or models) between the input and125

output data.126

• Validation (or development): Samples used to select optimal values of hyperaparameters - for127

example: model complexity (or order), regularization constants, etc. Systematic methods such as128

k-fold cross-validation are used.129

• Testing: Samples restricted for assessing the performance (ex. accuracy) of the selected model.130

This reflects its capability of generalizing to new, unseen samples.131

When building a model, the test set cannot influence the selection of model structure, parameters or132

hyperparameters in any way. This is known as the "Golden Rule of Machine Learning" [7]. Both [7]133
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and [9] recommend a training/validation/testing split ratio between 50/25/25 and 90/5/5, for data134

containing up to a few thousand samples, the. For data with more than a million samples, split ratios135

between 90/10/10 and 98/1/1 are recommended. In these data-abundant cases, the goal is to use as136

many samples as possible for training, while maintaining a respectable number of samples available137

for validation and testing.138

Training, validation and testing errors are usually evaluated in two different forms, depending on
whether the models are of a classification or regressive nature:

Error Fraction =
1
n

n

∑
i=1

1(ŷ(i) 6= y(i)) (Classification), (2)

Error Rate =
1
n

n

∑
i=1

f (ŷ(i) − y(i)) (Regression), (3)

The symbol 1 represents the indicator function and ŷ(i) the estimated output for the ith sample using139

the selected model. In the case of classification, the error is calculated as a fraction of mismatched140

samples. In the case of regression, the error is computed as an average sum of errors in with respect to141

the selected error function f (ex. mean squared error).142

Finally, the bias-variance tradeoff is another important consideration when building a predictive143

model. The user must compromise between a simple model which “under-fits” (high bias, small144

variance) and a complex model that “over-fits” (small bias, high variance). The optimal point of balance145

can be determined by techniques such as k-fold cross validation or information criteria measures.146

1.3 Importance of Data Pre-Treatment147

Bioreactor data, like data in any other application, is masked by noise which can originate from148

any of the following factors:149

• Uncalibrated, aging, or malfunctioning sensors150

• Unexpected plant disruptions or shutdowns151

• Human errors in data recording (either incorrect or missing values)152

• Unmeasured, drifting disturbances (such as seasonal ambient temperatures)153

Data must be cleaned prior to any modelling task, as the model quality is directly influenced by154

the data quality. The following approaches are well-known and straightforward to employ, but are of155

paramount importance in terms of obtaining high-quality predictive models:156

1. Outlier removal based on human intuitions: the elimination of spurious sensor values (ex.157

negative flowrates recorded through a valve) using a priori knowledge. These values can either158

be replaced by NaN (missing) values, or estimates via imputation.159

2. Standardization: the scaling of each feature to zero-mean and unit variance, equalizing the effect160

of each individual feature. This prevents features with relatively large ranges (ex. flowrate with161

range ±1000) from dominating model weights over features with relatively small ranges (ex. pH162

with range ±0.1).163

3. Imputation: the estimation of missing values, using a priori knowledge if available, or using164

standard techniques such as interpolation - for example, Zero-Order-Hold (ZOH) or linear165

interpolation.166

4. Smoothing: the flattening of spiky measurements due to sensor noise, using techniques such as167

Moving-Average (MA) filters.168

5. Common time-grid alignment: the unification of sampling intervals for time-series data. For169

example, consider a variable measured every second, and another measured every 0.5 seconds.170

In order to model using both variables, each variable must contain the same number of samples.171

Therefore the uniform time-grid can either be taken at every second (losing half the resolution of172

the second variable) or every 0.5 seconds (requiring interpolation of the first variable).173
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Although the aforementioned techniques are usually sufficient in removing simple abberations,174

additional methods must also be considered in the case of more complex data. For example, the175

interactive and non-linear nature bioreactor systems may require the following approaches:176

1. Log-transforms of population counts: if population distributions are severely skewed towards177

low or high counts, then it is more practical to express them as powers of suitable bases, such as178

10 or e.179

2. Removal of low-population species: this is akin to outlier removal based on a priori knowledge.180

Species with low counts can be removed by defining an absolute cut-off (ex. any value below181

1000), or by comparative magnitudes (ex. less than 5% of the next smallest value).182

3. Correlations between species: In a microbiological community, individual members rarely183

act independently. The effect of each individual upon all others can be quantified in terms184

of co-existence, using linear correlation (ex. Pearson’s) or non-linear (ex. Spearman’s). The185

co-behaviour of microorganisms can produce valuable insights into observed process outcomes.186

1.4 Predictive Models187

The task of prediction is an important one, especially in bio-remediation processes. Examples of188

important process outcomes or outputs y include effluent pollutant concentrations, pollutant reduction189

rates, etc. These variables are generally continuous, i.e. the goal is to predict their exact values,190

rather than discrete categories. Prediction is the first step towards adequate control - if these values191

cannot be predicted, then appropriate control actions based on these values cannot be introduced.192

Prediction is usually accomplished using supervised learning: a model is constructed between known,193

historical training inputs X(train) and matching outputs y(train). The model’s hyperparameters, which are194

parameters that determine model complexity (ex. model order or structure, the type and magnitude of195

regularization used, etc.) are determined using a validation set. Finally, the new outputs ŷ are predicted196

for new inputs X̂ using the constructed model. In many applications within the machine learning197

field, data are usually assumed to be independently-and-identically-distributed (IID). In other words, the198

individual samples are not correlated with each other in time, and the probability of observing each199

sample can be modelled by the same, stationary distribution. Therefore, standard machine learning200

algorithms such as least-squares, Support Vector Machines (SVMs), etc. can be directly applied on the201

raw data. On the other hand, in processes involving chemical and biological interactions, data are202

often correlated both with respect to features and time. In these cases, the IID assumption does not203

apply. Instead, the two following approaches are commonly employed:204

• Obtain time-averaged values of each feature for each experiment or run, and treat all averages as205

IID. This works for experiments which are fairly isolated and collect few samples per run (ex.206

5 or less samples), but fails for experiments which are sampled at a high resolution (ex. 10s of207

samples).208

• Collect time-samples for each value of each feature, and employ time-series modelling techniques.209

These approaches either account for temporal correlations directly, or use latent (hidden) variables210

to indirectly characterize temporal dependencies.211

For general process control, a time-series modelling framework has been established by [10].212

These methods apply to data which is assumed to be Linear-Time-Invariant (LTI): the model explaining213

the data obeys the principle of superposition, and is stationary. Although this assumption does not hold214

perfectly for most chemical and biological systems, it holds approximately for systems excited by small215

perturbations, or small sections of data corresponding to locally-linear periods of operation. Prominent216

LTI time-series models include Finite-Impulse-Response (FIR), Autoregressive-with-Exogenous-Inputs217

(ARX), and Autoregressive-with-Moving-Average (ARMA). Successful applications of these techniques are218

demonstrated in [11] and [12]. In these papers, dominant members of the microbial communities were219

first identified using networks, then an Autoregressive-with-Integrated-Moving-Average (ARIMA) model220
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was constructed to characterize their temporal behaviour. Their co-existences were then associated221

with tangible features, such as diet or presence of inflammations. Another application involving222

time-series modelling includes [13], which first uses Bayesian networks to capture a probabilistic223

model describing interactions between members of communities within microbial fuel cells. Then,224

Artificial Neural Networks (ANNs) are used to predict important process outcomes such as Coulombic225

efficiency, power generation, and removal rates. Besides outcome prediction, however, ANNs can226

also be used to estimate interim parameters. For example, [14], [15], and [16] used ANNs to estimate227

the optimal controller parameters in terms of controller performance and stability, for wastewater228

treatment applications which are similar to the one outlined in this paper.229

1.5 Clustering and Dimensionality Reduction230

Clustering can be formulated as both supervised or unsupervised learning tasks. In the case231

of supervised learning, clustering delves into the existing data to identify groups or classes of data232

samples, or features, that belong together. One example is the segregation of process variables (such as233

temperature, yield, etc.) into discrete bins, with class labels such as "good," "intermediate," or "poor."234

The discretization is usually based on cut-off values, which can be determined ad hoc, by intuition,235

or by statistical measures such as percentiles. Models are constructed between inputs and outputs236

belonging to a training set, with its hyperparameters determined using a validation set, then used to237

predict unknown outputs corresponding to new input samples on a test set.238

On the other hand, clustering can also be performed as using unsupervised learning approaches.239

An example is the k-means algorithm, which assigns data to a user-defined k clusters based on240

Euclidean distances between individual samples. In this case, no new samples are involved, as241

prediction is not the main goal; rather, the goal is to locate patterns within the data samples at242

hand. Another example is the grouping of dogs into Carnivora (order), Canidae (family), and Canis243

(genus) using hierarchical clustering. These represent three ranks of clusters which are formed using a244

user-defined similarity metric (ex. Euclidean distance) between sample features.245

Finally, clustering can also be applied to data features instead of samples. Examples include246

Pearson’s and Spearman’s correlations within features, and association networks between bacterial247

species given their abundance counts. [17] provides an extensive review of clustering within the248

application of gene sequencing and phylogentic marking. Two main methods in the paper include249

clustering based on similarity measures (such as Bray-Curtis) or probabilistic distributions (such as250

mixture models). The Dirichlet Multinomial Model (DMM) approach is explored in greater detail in [18]251

and [19]. This approach is preferred over hierarchical clustering or k-means for sparse data, where the252

distribution values of the individual features (ex. taxa abundance counts) are skewed towards either253

low or high numbers.254

Regardless of which clustering method is employed, the common goal is to either identify groups255

of samples which are "alike," or groups of features which are strongly associated with a certain process256

outcome. In the current project, clustering will be used specifically to identify dominant OTUs which257

are associated with satisfactory and poor reduction rates of pollutants.258

1.6 Network Analysis259

Individual OTUs of a microbial community act cocurrently rather than independently. Their260

direct affects on the water chemistry variables are difficult to isolate, due to the stochastic nature of261

such a community. Specifically, members may be protagonistic and antagonistic to one another, or they262

may be neutral altogether as bystanders. Therefore, the exact effect of individual or groups of OTUs on263

the final process outcome is extremely confounded. However, several recent papers have attempted264

to bring clarity to the microbial effects. The approach is known as network analysis, and the overall265

strategy is known as "networks to models"[11]. The more recent work of [12] showed that, not only266

can dominant microbial groups be directly linked to a certain outcome, but indirect players (i.e. those267
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facilitating the interaction between two dominant groups) can also be identified. Such a modelling268

strategy can provide the engineer with second layer of knowledge, on top of existing process variables,269

the importance of each microbial species on the process outcomes.270

Network analysis attempts to find associations, given the abundance or population counts of271

microbial species. This is a step-up from using the abundance counts themselves, since the counts272

alone may not be entirely descriptive of the underlying chemical-biological effects. On the other273

hand, associations (which are derived from abundance counts) indicate the nature of relationships274

between individual species. Network models can be derived, for example, using Lotka-Volterra [20],275

[21] (i.e. predatory vs co-existing relationships) or a more modern approach known as netassoc. The276

netassoc model is statistical verification of co-cocurrence using an algorithm developed by [22]. It277

estimates the true partial correlation between two pairwise OTU species by isolating and mitigating278

the indirect effect of possible third (or more) species. Advantages of this approach include the ability279

to visualize the total number of positive and negative links each OTU has with all other OTUs, thus280

determining whether it is an aggregator or predator. From a process control perspective, the aggregator281

OTUs associated with a positive process outcome (i.e. high removal rate) should be maintained, while282

the corresponding predator OTUs should be inhibited as much as possible.283

2 Background and Methods284

Prediction can be performed using two main approaches, regression (continuous outcomes) and285

classification (discrete, categorical outcomes). Both approaches produce estimates of new outcomes286

given a new set of process inputs. In all prediction models, the goal is to minimize some form of error287

or loss function between predictions ŷ and real outputs y within the training set. The final goal is to288

predict new outcomes matching a given set of new inputs. The three predictions used in this project289

are outlined in the following subsections.290

2.1 Supervised Learning Methods291

2.1.1 Random Forests (RFs)292

The first predictive model used in this work is Random Forests [23]. These are a class of models293

which determines the final categorical outcome based on conditional binary splits of each feature.294

Since it is computationally impractical to produce binary splits on an extremely large feature space,295

random subsets of features are split on instead. The final outcome label is selected by taking a majority296

vote. Refer to Section B for more details about this model.297

2.1.2 Support Vector Machines (SVMs)298

The second predictive model used is Support Vector Machines [24]. An SVM attempts to find299

the separating boundaries between classes in the feature-space of the provided training data. Refer to300

Section C for the details behind this model.301

2.1.3 Artificial Neural Networks (ANNs) and Deep Learning (DL)302

The final method used for prediction in this paper is Artificial Neural Networks. The more303

popularly-known term Deep Learning refers to ANNs that have more than 10-20 hidden layers [9]. If304

the data sample-size N is abundant, a well-tuned ANN model can vastly outperform simpler ones305

(such as RFs or SVMs) in terms of prediction accuracy. This is due to ANN activation functions (such306

as ReLU or sigmoid) being universal approximators of any continuous function, linear or non-linear [25].307

Modern ANNs are usually constructed using the well-known Python package Tensorflow [5]. Refer to308

Section D for the details behind this this model.309
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An interesting, recent advancement in this field is the work of [26]. The authors developed the310

Stochastic Configuration Network, which is an improved, adaptive version of ANNs. On each training311

iteration, it learns not only the optimal parameters (i.e. weights and biases) that minimize prediction312

error, but also the optimal architecture (i.e. number of layers, number of neurons in each layer).313

2.2 Unsupervised Learning Methods314

In many cases, the goal of data analysis is to not only make accurate predictions, but to also315

look within the existing data to identify latent features responsible for the observed outcomes. As316

an example relevant to the case study at hand, biological systems often deal with the analysis of317

Operational Taxonomic Units (OTUs). These represent groups of micro-organisms which have been318

clustered genetically using 16S rRNA sequencing [27]. When the macro (i.e. water-chemistry) variables319

are brought into the analysis, the resulting chemical-microbiological interactions cannot be ignored.320

However, these profound coupling effects are difficult to identify as closed-form expressions, due to321

the stochastic nature of OTU communities. Raw biological data such as OTU abundances cannot be322

used in its original form, for the following main reasons:323

1. High dimensionality: Thousands of OTUs may be present in bioreactors, and hence it is not324

feasible to include all of them as separate variables.325

2. Dominant groups: Similar OTUs like to co-exist, while dissimilar OTUs like to “repel" or perhaps326

even destroy one another. These interactions are difficult to characterize by examining abundance327

counts alone.328

3. Coupled interactions between micro and macro features: Chemical and biological variables329

seldomly act in isolation. Their confounding effects should also be characterized in some manner.330

4. Process insight/knowledge: Knowing which group(s) of OTUs are dominant and responsible331

for good or poor outputs is invaluable, especially for subsequent process monitoring and control.332

Therefore, several carefully-selected clustering and dimensionality reduction tools are required to333

extract meaningful information from a chemical-biological system. These methods are outlined in the334

following subsections.335

2.2.1 Hierarchical Clustering336

Hierarchical clustering performs grouping on microbial species, based on similarity measures337

between pairwise species. The underlying assumption is that all species are similar to others, and that338

the extent of similarity can be characterized using a ranking system. The similarities are quantified339

using some popular metrics in the following Table 1:340

Table 1. Typical similarity formulas used

Type S(x(i), x(j))

Euclidean Distance ||x(i) − x(j)||2
Manhattan Distance ||x(i) − x(j)||1
Cosine Similarity x(i)>x(j)

||x(i) ||2·||x(j) ||2
Jaccard Similarity 1(x(i)=c ∩ x(j)=c)

1(x(i)=c ∪ x(j)=c) , c ∈ [1, · · · , C]

Bray-Curtis Similarity ∑|x(i)−x(j) |
∑|x(i)+x(j) |

The result of a hierarchical clustering can be expressed using a tree-like structure known as a341

dendrogram, which shows the overall hierarchy or ranking of clusters. Obviously, different similarity342

metrics result in different-looking dendrograms. Moreover, each dendrogram has various “depths"343

which represent sample clusters of various sizes. The corresponding labels for new samples can be344

quickly identified by determining which clusters these samples are closest to, based on the desired345

similarity metric. Finally, dendrograms can be drawn using the following two different methods:346
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• Agglomerative (bottom-up): Start with individual samples, then gradually merge them into347

clusters until one big cluster remains. This is the most common method.348

• Divisive (top-down): Samples start as one big cluster, then gradually diverge into an increasing349

number of clusters, until one cluster is formed for each individual sample.350

Figure 2. A dendrogram representation of hierarchical clustering. At the bottom, each individual sample belongs
to its own cluster. Going up the dendrogram, samples are merged together based on the desired distance metric. At
the top, all samples are merged into one giant cluster.

Four main types of hierarchical clustering are commonly used [28]. These are accompanied by351

two metrics, which determine the optimal clustering method among the four (i.e. Cophenetic correlations352

[29]) as well as the optimal number of clusters (i.e. Silhouette analysis [30]). Details of these methods353

can be found in Section E.354

2.2.2 Probabilistic Mixture Models355

The motivation behind using probabilistic mixtures is to model the underlying distributions of356

the given data. Models using one distribution are sufficient for uni-modal systems, but fails to357

capture multi-modal systems effectively. Therefore, data are usually modelled as the sums of various358

probabilistic distributions, with the structure of said distributions specified as a prior assumption.359

Mixture models are different from the hierarchical models mentioned in 2.2.1. The difference lies in360

the assumption that in mixtures, each individual species is assigned a group to which it is similar, but361

overlaps may occur between multiple groups. In other words, each species may belong to more than362

one group. This introduces a degree of stochasticity which makes these models more flexible. The two363

mixtures used in this paper are:364

1. Gaussian Mixtures [8]: p(x) =
K
∑

k=1
wkN (x|µk, Σk); underlying distribution is assumed to be365

a sum of K weighted multivariate Gaussians with individual means and covariances. The366

term wk represents the weighting factor for each Gaussian. Each Gaussian has the formula367

N (x|µk, Σk) =
1√

(2π)dx ·det(Σk)
· exp

[
− 1

2 (x− µk)
> · Σ−1

k · (x− µk)

]
.368

2. Dirichlet Mixtures [19]: Define p(i) as a vector containing the probabilities that sample x(i)369

belongs to each community species. The Dirichlet mixture prior over K distributions is P(p(i)) =370

∑K
k=1 Dir(p(i) | αk)πk, where αk are the Dirichlet parameters and πk are the Dirichlet weights.371

The Gaussian assumption is reasonable for most natural processes, which assumes that the372

underlying distributions are symmetric. When little a priori knowledge is available, it is a popular373

choice. However, if domain knowledge is available, it should be used to guide the choice of distribution374

used. For example, if OTU data mostly contains abundances skewed towards low counts, then the375

Dirichlet mixture will model the data more accurately than Gaussian. Details behind the Dirichlet376

distribution can be found in Section G.377



Version September 2, 2019 submitted to Journal Not Specified 11 of 48

2.3 Feature Selection378

If an outcome is predicted using a set of features, a natural question arises: "Which of these379

features contribute the most to the observed predictions?" Although most feature selection approaches380

in literature are often customized on a case-by-case basis, two overarching groups of methods can be381

identified:382

1. Hypothesis testing: A model is trained with all features left untouched. Then, features are either383

removed or permutated (scrambled), either individually or conditionally according to other384

features. The model is re-trained, and its accuracy is compared to the base-case accuracy. The385

features which cause the largest decreases in model accuracy are considered “most important,"386

and vice versa.387

2. Scoring: A metric or “score" based on information or cross-entropy is defined and calculated for388

all features. Features with the highest scores are identified as “most relevant," and vice versa.389

In the hypothesis testing framework, univariate (or single-feature) algorithms such as Mean390

Decrease in Accuracy (MDA), Mean Gini Impurity (MGI) [31] have been developed for simple models391

such as random forests. The MDA method can be visualized in Fig. 3.392

Figure 3. MDA applied on a dataset with 6 features. During each outer iteration, the values of a single feature
are scrambled or permutated sample-wise. The model accuracy with the scrambled feature is compared against the
base-case model accuracy. If the accuracy decreases significantly, then the feature is considered "important." On the
other hand, if the accuracy decreases negligibly, then the feature is "irrelevant" to the model.

Unfortunately, these univariate approaches have the following shortcomings:393

• Inability to recognize coupling effects between multiple features, such as correlations or394

redundancies [32].395

• Inability to distinguish conditional effects between features, i.e. whether a feature is “relevant"396

given the presence of other feature(s).397

The second point above confounds the definition of “relevance." A classic example is the prediction398

of presence of genetic disease (the outcome) using the genetic information of a person’s mother399

and grandmother. If information from the mother is absent, then the grandmother’s genes may be400

identified as a “relevant" feature. However, if genetic information is present from both the mother401

and grandmother, then the grandmother’s genes may become “redundant" and thus an “irrelevant"402

feature. Therefore, the “relevance" of a feature contingent or conditional on the presence of other403

features. [33] has made significant contribution in the modelling of conditional dependencies. Its404

proposed Conditional Mean Decrease in Accuracy (C-MDA) approach is a variation on classic MDA,405
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where conditional permutations are performed given the presence of other features. The conditional is406

defined as the appearance of secondary features within specified ranges of values. The difference in407

permutation between MDA and C-MDA can be realized in the following Fig. 4.408

Figure 4. In CMDA, the permutation is only performed on the values of a feature given the presence of another
feature falling within a range of values. By contrast, permutation in traditional MDA (as shown in Fig. 3) is
performed on all values of a feature, with no consideration of other features.

3 Process Description409

The case study pertains to a wastewater treatment process located downstream of a mining410

operation. Due to proprietary reasons, the description is kept at a general level.411

3.1 Process Flow Diagram and Description412

The process can be visualized as the general bioreactor shown in Fig. 5:413

Figure 5. Simple bioreactor schematic, with wastewater and biological nutrients as inlets, and treated effluent as
outlet. The system contains directly-measurable macro variables related to water chemistry (such as contact time τ),
and difficult-to-measure micro variables reflecting the metabolism of micro-organisms.
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Selenate and nitrate concentrations in the bioreactor effluent must be reduced to below 10 µg
L and414

3 mg
L , respectively [34], [35]. These chemical species bio-accumulate in the marine ecosystem [36] and415

thus reach harmful levels at the top of the food chain.416

3.2 Water Chemistry Details417

The feed to the first reactor is wastewater, which contains the main pollutant selenate (SeO2−
4 ). The418

selenate is to be reduced to elemental selenium (Se) by a series of two bioreactors. Samples are extracted419

from the bioreactors during each operating stage (at irregular intervals) and analyzed, in order to420

determine and record values of various water chemistry variables. These features are summarized in421

the following Table 2.422

Table 2. Water Chemistry Variables

Variable Description
τ or EBCT Empty-Bed-Contact-Time = volume

flowrate (min)
Ammoniaout Concentration of NH3 in effluent (mg

L )
Nitratein Concentration of NO−3 in influent (mg

L )
Nitriteout Concentration of NO−2 in effluent (mg

L )
SeDin Concentration of total dissolved Se in influent ( µg

L )
CODin Chemical oxygen demand in the influent (mg

L )
MicroC Equal to 1 if MicroC is added as carbon source, otherwise 0
Acetate Equal to 1 if Acetate is added as carbon source, otherwise 0

Reactor 1 Equal to 1 if Reactor 1 is the relevant bioreactor, otherwise 0
Reactor 2 Equal to 1 if Reactor 2 is the relevant bioreactor, otherwise 0

3.3 Microbiology Details423

In addition to the water chemistry data, data pertaining to the microbial presence is available in424

the form of Operational Taxonomic Units (OTUs). An OTU is a cluster of 16S rRNA gene biomarkers425

that are more than 97% similar to one another. Therefore, each OTU is considered to represent one426

bacterial species [27]. In this case study, the numerical values associated with each OTU are known as427

raw abundance counts. These counts can be considered normalized population counts of each bacterial428

species, which fall within the range of 0 ∼ 16000.429

4 Data Pretreatment430

Before the water chemistry and micro-biological data can be used for modelling or feature analysis,431

they must be pre-processed. The steps involved can be visualized as a workflow in the following Fig. 6.432

The data pre-processing was performed using Jupyter iPython notebooks. The raw dataset433

originally consists of two files: one containing water chemistry data, and one containing OTU counts.434

First, samples containing missing or NaN values were removed using the dropna function in pandas.435

Then, spurious process values (such as negative flowrates) were removed by Boolean functions. The436

remaining samples were then cross-matched between the water chemistry and OTU files, by use of437

SampleID tags which identify common operating stages. This results in a total of N = 56 samples438

containing both water chemistry and microbial information. Although this is a small sample-size, it is439

unfortunately all the data that could be collected from this treatment plant.440

4.1 Pretreatment of Water Chemistry Data441

Each water chemistry variable outlined in Table 2 (except SampleID) are standardized via the442

following two steps:443
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Figure 6. Workflow of the pre-processing, dimensionality reduction, modelling, and feature selection steps. The
final goal is to transform the input data into predicted outcomes, as well as key variables responsible for said
outcomes.

1. Mean-centering: For each feature j, subtract its sample values by its mean value, i.e. x(i)j ←−444

x(i)j − µj445

2. Unifying-variance: Divide the values from the previous step by the corresponding feature446

standard deviations, i.e. x(i)j ←−
x(i)j
σj

447

In the standardized data matrix, each feature (or column) has a mean of µj = 0 and variance σ2
j = 1,448

which removes any weight-skewing effects during model construction due to varying feature ranges.449

4.2 Pretreatment of Microbiological Data450

The OTU raw abundance counts are recorded in a matrix where the number of samples and451

number of OTUs are N = 56 and dOTU = 305, respectively. The raw counts fall within the range of452

0 ∼ 16000. As observed in Fig. 7 below, the abundance distribution is heavily skewed towards the453

lower numbers, which means that any model built using these raw counts would be heavily biased454

towards the lightly-populated OTU species:455

The skew is partially remedied by applying a log10-transformation to all raw counts. Since many
raw counts are equal to zero, 1 is added to every value before the log10 transformation, to ensure
the log10 operation is valid. Counts equal to zero would still remain zero after transformation, since
log10(0 + 1) = 0. The overall operation is:

Countscaled = log10(Countraw + 1) (4)

The resulting distribution of the scaled counts can be observed in Fig. 8: it is still skewed towards the456

low end, but not as severely as the raw counts.457

These counts are now in a suitable form for data analysis outlined in the following Section 5.458



Version September 2, 2019 submitted to Journal Not Specified 15 of 48

Figure 7. Distribution of all available raw OTU abundance counts.

Figure 8. Distribution of OTU abundance counts, after log10 transformation.

5 Data Analysis459

This section compares and contrasts the pertinent results from various supervised, unsupervised,460

and feature selection methods. Please visit the main author’s GitHub repository to access the data and461

code.462

5.1 Hierarchical Clustering of OTUs463

The log10-transformed counts obtained from pre-processing are first analyzed in terms of464

biological associations. This provides preliminary knowledge into the possible co-existing and/or465

antagonistic interactions between OTUs. In order to prevent spurious correlations (which are possible466

using methods such as Pearson or Spearman correlations), the netassoc algorithm by [22] is used. The467

result is a 305-by-305 matrix acting as a "pseudo" distance matrix between all OTUs, which can then be468

used for hierarchical clustering.469

Before the netassoc distances can be used, however, it must undergo one final transformation:
normalization of values between 0 and 1. This follows the concept of similarity being analogous to

https://github.com/yitingtsai90/Bioreactor-data-analysis
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small distances (i.e. distances close to zero), and dissimilarity being analogous to large distances. The
operation in Eq. 5 accomplishes this scaling:

distscaled =
dist− distmin

distmax − distmin
(5)

At this point, the hierarchical clustering models can finally be constructed. First, the following four470

hierarchical clustering methods are performed on the scaled netassoc distance matrix:471

1. Unweighted Pair-Group Method with Arithmetic Means (UPGMA)472

2. Ward’s Minimum Variance Method (Ward)473

3. Nearest-Neighbour Method (Single-Linkage)474

4. Farthest-Neighbour Method (Complete-Linkage)475

This was accomplished using the scipy package cluster.hierarchy. In order to determine the476

"optimal" clustering method out of the four, the Cophenetic correlation values (see Section E) were477

obtained using the cluster.cophenet command, for all four methods. The results are shown in the478

following Table 3:479

Table 3. Cophenetic correlations

Method Coph. correlation
UPGMA 0.51

Ward 0.41
Single-linkage 0.08

Complete-linkage 0.22

Cophenetic correlations can be thought of as how well a clustering method preserves the similarites480

between raw samples. Since the UPGMA method has the highest Cophenetic correlation, it was selected481

as the most suitable clustering method. A dendrogram was then constructed using this method, and it482

can be visualized in the following Fig. 9:483

The optimal number of clusters on this UPGMA dendrogram is determined by Silhouette analysis484

(see Section E), which is a measure of how well cluster members belong to their respective clusters, given485

the number of desired clusters K. Silhouette values are computed for cluster numbers K = 2 through486

K = 100, and the results are plotted on the following Fig. 10:487

From Silhouette analysis, K = 45 groups appears to be the "optimal" cut-off with the overall488

highest Silhouette value. However, this is assuming that all netassoc distances are suitable for use.489

Recall that a normalized distance of 0 resembles similarity, and a distance of 1 resembles dissimilarity.490

A distance of 0.5 corresponds to neither similarity or dissimilarity. Values in that vicinity represent491

"neutral" OTU interactions which act as noise, confounding the clustering model. To remedy this issue,492

a distance cut-off approach inspired by [37] was employed. If a hierarchy with a distance cut-off value of493

distcut is constructed, it means that no cluster contains members which are spread apart by a distance494

greater than distcut. This reduces the amount of overlap between distinct clusters. To determine the495

precise value of distcut, several UPGMA hierarchies were constructed using distance cutoffs within the496

set of values distcut ∈ [0.4, 0.6]. The resulting Silhouette values are reported in the following Fig. 11:497

The optimal distance cut-off is located at 0.54 with a corresponding maximum Silhouette value of498

0.068. By constructing a UPGMA hierarchy with this cut-off, no two members within any cluster are499

spread apart by a normalized distance of 0.54. This UPGMA hierarchy yields a total of K = 37 clusters,500

and its dendrogram is provided in the following Fig. 12:501

In each cluster, the "dominant" OTU was determined as the one closest (in terms of normalized502

netassoc distance) to the cluster centroid. The coordinates of each centroid were readily calculated503
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Figure 9. UPGMA dendrogram (top) and heatmap (bottom) showing log-transformed OTU abundances. The rows
of the heatmap represent individual samples, while the columns represent individual OTUs. Dark colours on the
heatmap represent distances close to zero and hence similar OTUs, while light colours represent large distances and
hence dissimilar OTUs.

Figure 10. Silhouette numbers for clusters 2 < K < 100. The highest value of 0.117 occurs at K = 45.

using the distances in the dendrogram. The remaining OTUs in the cluster were therefore considered504

“followers." The entire cluster could then be considered a co-existing community of OTUs. In the505

following Fig. 13, the number of members in each clusters (which is also shown in Fig. 12) is plotted506

against the cluster number:507

On one hand, clusters 13 and 34 are the largest communities, with 19 OTUs in each. On the other508

hand, cluster 1 and 8 are the smallest communities, with 3 OTUs in each, followed by groups 16, 21,509
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Figure 11. Silhouette values as a function of distance cut-off in UPGMA clustering. The optimal cutoff value is the
one corresponding to the maximum Silhouette value.

Figure 12. Dendrogram of the UPGMA hierarchy with optimal distance cut-off, at a depth of K = 37 groups. Each
branch is labelled with the dominant OTU, and the number of its followers.

28, 35, and 37 which all contain 4 OTUs. Despite the considerable variance in community sizes, no510

communities contain less than 3 OTUs or more than 20 OTUs. The membership distribution can be511

observed in the reverse histogram, where the number of groups for each membership size is shown:512

Fig. 14 shows that most clusters contain 4, 8, and 9 OTUs, followed by 5 and 7 OTUs. Most clusters513

have a population ranging between 4 and 12 OTUs, which indicates a healthy clustering distribution.514

For the subsequent prediction and feature extraction steps, only the 37 dominant OTUs shown in515

Fig. 12 are considered, out of the total 305 OTUs to begin with. Although 37 is still a reasonablly large516

number (and not between 2 and 10, ideally), the choice is based on a combination of statistically-justified517

methods.518
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Figure 13. Cluster populations for UPGMA dendrogram with k = 37 groups.

Figure 14. Membership distribution for UPGMA dendrogram with K = 37 clusters.

5.2 Gaussian Mixture Analysis of OTUs519

Instead of using hierarchical clustering, another possible approach is to group OTUs using520

Gaussian Mixture Models (GMMs). The assumption here is that the underlying distribution behind the521

OTU abundances can be modelled as a sum of multivariate Gaussians. Each Gaussian can be considered522

a "cluster" of OTUs, with its centroid represented by the mean, and its spread (or size) represented by523

its variance. The overall GMM is built using the scikitlearn subpackage mixture.GaussianMixture. In524

order to determine the “optimal" number of Gaussians K, the Akaike Information Criterion (AIC) and525

Bayesian Information Criterion (BIC) values are determined for each value of K. This is performed by526

calling the .aic and .bic attributes of the GMM models within scikitlearn. The results are plotted in the527

following Fig. 15 and Fig. 16:528
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Figure 15. AIC values for GMMs with cluster sizes 1 < K < 30. The minimum occurs at K = 21, which is selected
as the desired number of groups.

Figure 16. BIC values for GMMs of cluster sizes 1 < K < 30. The minimum occurs at K = 1, indicating that one
single group should be considered. This is an impractical result and is therefore discarded.

The AIC minimum suggests that the 305 OTUs should be optimally clustered into a GMM with529

K = 21 groups. On the other hand, the BIC minimum suggests that a GMM with only one cluster is530

optimal. This is a meaningless result which should be discarded, since it suggests that all OTUs are531

similar. Note that the BIC values increase almost monotonically from K = 1 group onwards, meaning532

no suitable number of clusters can be determined using this criterion. Therefore, the AIC result is used533

to move forward.534

The cluster population and membership plots can be observed in the following Fig. 17 and Fig. 18:535
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Figure 17. Populations for the AIC-optimal GMM model with K = 21 clusters.

Figure 18. Membership for the AIC-optimal GMM model with k = 21 clusters.

Notice that the GMM cluster sizes have a much higher variance than the hierarchical clusters.536

Cluster 12 contains 66 out of the 305 total OTUs, while most other clusters contain between 2 and 40537

OTUs. The skewed nature of the results is most likely due to the log-transformed OTU abundances538

being skewed towards the low counts. Therefore, the underlying Gaussian assumption (which assumes539

symmetrical distributions) is inaccurate. Moreover, the Gaussian mixture models were constructed540

using the abundance counts of OTUs, and not the associations as the hierarchical models were in541

Section 5.1. These two reasons alone explain why the Gaussian clusters identified are inconsistent542

across runs, and turned out to provide little intuition regarding the microbial community effects.543

Nevertheless, the results are summarized in the following Table 4, which highlights the dominant OTU544

in each GMM cluster as well as the cluster size.545
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Table 4. Dominant OTUs from Gaussian Mixture clusters

Group Number Dominant OTU Group Size
1 OTU200 27
2 OTU46 13
3 OTU11 4
4 OTU112 8
5 OTU3313 37
6 OTU470 22
7 OTU6 4
8 OTU2756 10
9 OTU157 5
10 OTU48 6
11 OTU3057 20
12 OTU185 66
13 OTU559 25
14 OTU778 26
15 OTU8968 7
16 OTU14 1
17 OTU105 15
18 OTU8 1
19 OTU77 3
20 OTU93 4
21 OTU1 1

5.3 Dirichlet Mixture Analysis of OTUs546

In the previous Section 5.2, the OTU abundances were assumed to follow an underlying Gaussian547

distribution. In light of Fig. 7 and Fig. 8, this assumption is clearly inaccurate, since even the distribution548

of log-transformed values appears to be skewed towards the low counts. Therefore, a more suitable549

assumption for the OTU clusters is the Dirichlet Multinomial Mixture (DMM) (see Section G). Instead of550

using Python, the Dirichlet Multinomial R package developed by [38] is used. This algorithm is capable551

of constructing a set of DMM models, assessing the optimal model(s) using AIC, BIC, or Laplace552

Information Criterion (LIC), then producing heatmaps of the clustering results based on the Dirichlet553

weights of each cluster.554

Unlike the hierachical or Gaussian approaches where the clustering is performed on the OTUs555

and not the samples, the DMM clustering is the exact opposite: the samples are clustered and not the556

OTUs. The results, however, can still be interpreted to identify the dominant OTUs for further analysis.557

For the 55 existing samples, the heatmap in Fig. 19 shows the BIC-optimal DMM clusters, labelled with558

the 20 OTUs of highest Dirichlet weights.559

Note that the rows of the heatmap represent individual OTUs. In the first row (OTU6), a560

dark-shaded band exists in the mid-samples, including a commonly high abundance of OTU6 in561

those samples and low abundances elsewhere. Similarly, for the second row (OTU4), a common562

high-abundance band is observed for the first and last few samples, with low abundances elsewhere.563

This visual result reinforces the concept that the DMM model clusters the individual samples (columns)564

and not the OTUs. However, notice that going down the heatmap from OTU6 to OTU35, the565

dark-shaded bands appear less frequently. The colours become increasingly white, indicating an566
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Figure 19. Heatmap of the BIC-optimal DMM model, with respect to the 20 highest-weighting OTUs. Colours are
coded according to log-transformed OTU abundances; dark colour indicates high OTU abundance, and vice versa.

overall decrease in OTU abundance. Below the 20th-OTU cutoff (of OTU35), the rows are entirely567

white with close to zero abundance, and therefore those results have been truncated from the figure.568

Therefore, the 20 OTUs shown in Fig. 19 are considered as the dominant OTUs, akin to those in the569

hierarchical and GMM clustering results. However, the followers of these 20 dominant OTUs cannot570

be determined, since the clustering was not performed OTU-wise.571

5.4 Prediction Results572

The 10 water chemistry variables (outlined in Table 2) are combined with representative OTUs573

obtained from Sections 5.1, 5.2, and 5.3. Together, these serve as inputs. When combined with the574

corresponding, labelled process outcomes of Selenium Reduction Rate (SeRR), predictive models are575

trained for the estimation of SeRR of new samples.576

The models can be categorized in terms of their inputs, as follows:577

1. Base case: Water chemistry variables only.578

2. Hierarchical: Water chemistry variables plus representative OTUs obtained using hierarchical579

clustering.580

3. Gaussian: Water chemistry variables plus representative OTUs obtained using GMMs.581

4. Dirichlet: Water chemistry variables plus representative OTUs obtained using DMMs.582

The idea is to observe whether the addition of biological features improves or confounds the583

predictive capabilities of these models. The actual models consist of the following three types:584

1. Random Forests (RFs)585
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2. Support Vector Machines (SVMs)586

3. Artificial Neural Nets (ANNs)587

The raw SeRR values obtained from plant data were normalized and discretized into two (binary)588

classes, 0 and 1. Class 0 (poor) corresponds to SeRR values which fall below the mean SeRR, and Class589

1 (satisfactory) corresponds to values above the mean. Out of the N = 56 total data samples, 29 have a590

class label of 0 and 27 have a class label of 1, therefore the overall distribution is fairly even (i.e. not591

skewed towards one label).592

For each model, 40% of samples from each class are randomly selected as test samples for593

performance assessment, and the remaining 60% of samples as training samples for model construction.594

Note that this approach eliminates the possibility of biased selection from either class. If the training595

and testing sets were instead selected arbitrarily from the entire dataset, then they could possibly be596

skewed (ex. many samples selected from Class 1, but few from Class 0).597

No validation (development) set was required, since the hyperparameters of each model (i.e.598

regularization constants, model complexity, etc.) were selected to be fixed values for simplicity.599

The RF model was constructed using the RandomForestClassifier module from scikitlearn.ensemble, with600

bootstrapping disabled. Although bootstrapping is normally recommended, the data sample-size in601

this case (N = 56) is extremely small for modelling purposes. Therefore, all of the existing 56 · 0.6 ' 34602

samples are required for training; any arbitrary selection of samples without replacement could skew603

the training set. The SVM model was constructed using the sklearn.svm.svc module, with a regularizer604

value of C = 1 and the default linear kernel. Finally, the ANN model was constructed using tensorflow,605

with 10 layers of 20 neurons each, a learning rate of α = 0.01 and a `2-regularizer of α = 0.1. In order606

to maintain reasonable computational times required by each model, a maximum of 1000 epochs (or607

"outer iterations") were allowed. The ANN model was allowed 50 steps (or "inner iterations") per608

epoch.609

The prediction accuracy of each model on the test set (of 56 · 0.4 ' 22 samples) is reported in the610

following Table 5, with respect to the type of inputs used.611

Table 5. Prediction results for each model type.

Base Case Hierarchical Gaussian Dirichlet
RF 96.3 90.6 93.4 92.2

SVM 91.8 87.2 91.3 90.6
ANN 81.7 78.6 83.4 80.2

The RF models produced the most accurate test predictions for every case, followed by SVMs612

then ANNs. When comparing the input types, the base case accuracy turned out to be the highest for613

both RF and SVM models. The addition of hierarchical OTU clusters had the largest detrimental effect614

on the test accuracy, as observed by the uniform, marked decreases across all three model types. The615

addition of Gaussian OTU clusters improved the test accuracy for the ANN model, but proved to be616

detrimental for the RF and SVM models, albeit with the least impact. The addition of Dirichlet OTU617

clusters also decreased the model accuracy for all three models, but not as much as the hierarchical.618

These results clearly show that the addition of biological data, which was initially expected to improve619

quality of prediction, actually degrades it. Even though the OTU abundances should contain valuable620

insight into the biological community interactions, the observed confounding effect is most likely621

due to the undesirable qualities of the data. These include the inherent noise present in the OTU622

abundances, and also the relatively low sample size (N = 56) to begin with. Another reason could be623

that the explored clustering methods are incapable of cleraly extracting information related to coupling624

effects between OTUs and water chemistry variables.625
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If a model were to be selected for actual prediction of process outcomes, it would be the RF using626

base-case, water chemistry variables. This model achieves a respectable > 95% accuracy on the binary627

classification of SeRR.628

5.5 Feature Selection Results629

The relevant features in the prediction framework are defined as those which contribute630

significantly to the accuracy of the model. The results in Section 5.4 showed the RF model as the most631

accurate one out of the 3 modelling approaches, and therefore it will be used for feature analysis in this632

section. The univariate feature selection strategy, Mean Decrease in Accuracy (MDA), was first used to633

determine "relevant" features in terms of predicting the outcome SeRR. A RF model was constructed634

for each of the input types of hierarchical, Gaussian, and Dirichlet clustering. 10000 permutations of635

MDA were performed for each RF model; the averaged feature importances for each are summarized636

in the following Tables 6, 7, and 8. Only the top 4 water chemistry and top 5 OTU features are reported637

for conciseness.638

Table 6. MDA feature importances for hierarchical clustering

Feature MDA (%)
SeD,in 6.3

Ammoniaout 0.3
EBCT 0.2

Nitriteout 0.2
OTU215 1.5
OTU2637 0.6
OTU1579 0.6

OTU49 0.6
OTU3945 0.5

Table 7. MDA feature importances for Gaussian clustering

Feature MDA (%)
SeD,in 7.1
EBCT 1.2

Ammoniaout 0.7
Nitriteout 0.7
OTU57 1.5

OTU7347 1.1
OTU2765 0.9

OTU48 0.9
OTU7 0.8

Table 8. MDA feature importances for Dirichlet clustering

Feature MDA (%)
SeD,in 5.3
EBCT 1.9

Nitriteout 1.1
CODin 0.7
OTU35 1.4
OTU8 1.0
OTU7 1.0
OTU1 0.6
OTU9 0.5

Notice that SeD,in consistently appears in each table as the most "relevant" feature, as MDAs639

of 5 ∼ 7% are observed as this feature is permutated. EBCT appears to be the second contender,640
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causing accuracy drops of 1 ∼ 2% in most cases when permutated. Ammoniaout and Nitriteout are641

the next most "relevant" features, however permutating them causes negligible accuracy drops of642

(< 1%) on the RF models. Therefore SeD,in and EBCT can be comfortably concluded as the main643

deciders of overall selenium removal rate, in terms of all water chemistry variables. This result is644

logical from a domain-knowledge perspective, since both variables are used to calculation for SeRR645

using a mass-balance approach.646

On the other hand, no consistent OTU features are observed. The most consistent one is OTU7647

which appears in the top-5 lists for both GMM and DMM clustering approaches. However, most OTU648

features show accuracy drops close to 1%, or less. These low MDA values render the representative649

OTUs indistinguishable from random-noise features, therefore no clear conclusion can be formed in650

terms of the OTU features. This result falls in line with those obtained in Section 5.4, which showed651

that the biological variables confounded the models, rather than providing clarity.652

Note that the MDA approach is univariate, which means it ignores possible correlations or653

between existing features. In order to address this issue partially, the Conditional Mean Decrease in654

Accuracy (C-MDA) approach is also explored. In C-MDA, the permutations of features are performed,655

given the presence of other features. For example, when the feature SeD,in is permutated, it is656

conditioned on the fact that the feature EBCT falls within a certain bracket of values. The R package657

developed by [33] is used to perform these C-MDA experiments, since the algorithm systematically658

decides the best values for the secondary variables to be conditioned upon. The detailed results can659

be found in Fig. A22, A23, and A24 in Section I. The "relevant" variables from each RF model can be660

summarized in the following Table 9:661

Table 9. Overall CP feature importances

Rank Feature
1 SeD,in
2 EBCT
3 Nitriteout
4 CODin
5 Nitratein
6 Ammoniaout

Notice that SeD,in and EBCT are, again, identified as the primary “relevant" features. These662

results agree with those obtained from ordinary MDA. The dominance of these two variables is logical,663

given that they both appear in the mass balance for calculation of SeRR. Moreover, C-MDA suggests664

that the secondary "relevant" features are nitrite outflow, COD inflow, nitrate inflow, and ammonia665

outflow (to a lesser extent), which are also similar results compared to those from MDA. Therefore,666

both feature selection methods suggest the existence of hidden interactions between these biological667

features and selenium removal. However, the exact functional forms of these interactions, as well668

as any domain-knowledge-related interpretations, are unclear from these feature selection methods.669

Therefore, these secondary features serve as, at best, recommendations for monitoring and control.670

6 Conclusions671

In this work, a two-fold data analysis was performed on a wastewater-treating bioreactor. First,672

the binary process outcome of selenium reduction rate was predicted using three model types - RF,673

SVM, and ANN. For each type of model, the use of four different input types were explored - water674

chemistry features only (base-case), UPGMA hierarchical clusters, Gaussian clusters, and Dirichlet675

clusters. The clustering methods were performed in order to reduce the large initial dimensionality676

of the biological features. Out of all model types, the RF model was the most accurate in terms of677

predicting outcomes on the test set. Unfortunately, the addition of biological information (in the form678

of OTU abundances) detrimentally affected the test prediction accuracies compared to using only679
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the water chemistry variables. Actually, none of the three clustering techniques identified clusters680

of acceptable quality. Specifically, the hierarchical clusters had low accompanying Silhouette values,681

while the Gaussian clusters had high membership variation and were inconsistent between runs. The682

Dirichlet clusters were supposedly a better reflection of the true underlying probabilistic distribution683

of the OTUs. However, their addition still hurt the predictive models’ performance. Out of the three684

clustering techniques, the hierarchical clustering approach had the largest confounding effect on model685

accuracy. In light of these results, a significant future effort is required on the revision of selected686

clustering techniques for meaningful feature extraction.687

The second analysis was performed in regards to the determination of "relevant" process variables,688

through univariate (MDA) and conditionally-univariate (C-MDA) feature selection techniques. Both689

techniques show that the features of retention time and selenium inlet flowrate dominantly influence690

the selenium removal rate. This result is expected from a domain-knowledge perspective, in terms of691

mass balances. Interestingly, variables such as ammonia outflow, nitrite outflow, and COD also play692

significant roles in affecting selenium removal rate, even though the biological intuitions behind these693

results are not revealed. The feature importances obtained from MDA and C-MDA are similar, despite694

C-MDA being more of a multi-variate method. Several representative OTU features were identified to695

be "relevant," but their inconsistent results across the three clustering methods yield no interpretable696

conclusions.697

Overall, the results show that the core assumptions behind the clustering were potentially698

incorrect, or incomplete. Specifically, the OTUs were assumed to fall into similar groups, with a "leader"699

in each group. However, they may share little similarities in reality, and have completely independent700

(instead of agglomerative) roles in affecting the process outcome. Although the stochasticity of the701

microbial community was not fully understood from the results, the contributions of this work are still702

non-trivial. Through the comparison and critique of various ML algorithms presented here, the reader703

is encouraged to perceive this work as a cursory endeavour into meaningful process analytics.704

6.1 Directions for future work705

In terms of predictive models, the ones used in this work performed adequately in terms of test-set706

accuracy. However, the Stochastic Configuration Network (SCN) approach [26] could be explored in707

a future work, in terms of its potential benefits to prediction accuracy as well as feature information708

extraction.709

The proposed feature analysis methods require further revision, in order to improve the reliability710

of their results. Specifically, the underlying reasons behind the inconsistencies between hierarchical,711

GMM, and DMM clusters (and hence the representative OTUs) should be investigated. One potential712

factor may be the marked differences between each clustering method. A future paper which713

theoretically explores these points could potentially shed light on which clustering method is optimal,714

given a specific type of raw data. Some straightforward suggestions for improvement include the715

use of ensemble methods to produce a majority vote, over a large number of clustering experiments.716

Another possible improvement is the inclusion of chemical (or process) variables in the clustering717

decisions, although the exact implementation of this approach is not clear presently. Finally, the feature718

selection methods (MDA, C-MDA) should also be expanded to include multivariate interactions. A719

possible strategy would be to utilize Bayesian Networks [2] to map causal relationships between720

variables. This has been demonstrated as a feasible approach in recent publications, for example, [39].721

Once the work on data pre-processing and analysis is complete, the next step would be to722

implement the obtained feature knowledge into to a controller. Specifically, these ML-guided results723

should be used by the controller to select relevant Manipulated Variables (MVs), as well as decide on724

the optimal control actions. Future papers can be written regarding the efficacy of this ML-guided725

controller compared to well-known benchmarks, such as Proportional-Integral-Derivative (PID) [6] or726
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Model Predictive Control (MPC) [40]. The autonomy (i.e. self-driving characteristic) of this controller727

can be developed using ideas from the field of Reinforcement Learning (RL) [41].728
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Abbreviations739

The following abbreviations are used in this manuscript:740

741

ANN Artificial Neural Net
ARIMA Autoregressive with Integrated Moving Average
ARMA Autoregressive with Moving Average
ARX Autoregressive with Exogenous Inputs
C-MDA Conditional Mean Decrease in Accuracy
COD Chemical Oxygen Demand
DMM Dirichlet Mixture Model
EBCT Empty-Bed Contact Time
DL Deep Learning
DR Dimensionality Reduction
FIR Finite Impulse Response
GMM Gaussian Mixture Model
IID Independent and Identically Distributed
LTI Linear Time Invariant
MA Moving Average
MDA Mean Decrease in Accuracy
ML Machine Learning
MPC Model Predictive Control
MV Manipulated Variable
NaN Not a Number
OTU Operational Taxonomic Unit
PID Proportional-Integral-Derivative
SVM Support Vector Machine
rRNA Ribosomal Ribonucleic Acid
RF Random Forest
RL Reinforcement Learning
Se Selenium
SeRR Selenium Reduction Rate
UPGMA Unweighted Pair-Group Method with Arithmetic Means
ZOH Zero-Order Hold

742
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A Standardization of data743

Prior to predictive modelling, features of a dataset are often standardized or normalized in order to744

homogenize the importance of each feature, such that each ends up with zero mean and unit variance.745

Mathematically, each feature is scaled by the operation x(i)j ←
x(i)j −µj

σj
, using the respective feature746

means µj =
1
N

N
∑

i=1
x(i)j and feature standard deviations σj =

√
1
N

N
∑

i=1
(x(i)j − µj)2.747

B Details of the Random Forest (RF) model748

Random Forests are a well-known model covered in many texts, such as [42] and [8]. Its main749

advantage is the convenience of implementation; many optimized packages (such as scikitlearn) exist750

which allow users to obtain results quickly even for large datasets. The goal of RFs is to map the raw751

features of a dataset to outcomes, which are discrete class labels c ∈ [1, C]. Each of the original dx752

variables is split into two regions, one above and one below a threshold value θ. These regions become753

the branches of the first split on said variable. Each split is a conditional partition of a variable, which754

decides the final outcome. If a split on the first feature is insufficient to decide the final outcome, then755

a second split is performed off of the two branches from the first split. This continues until a clear756

outcome is realized.757

A simple example demonstrating the partitioning of 2 features is provided in the following758

Table A1.759

Table A1. Feature partitioning for a 2-feature decision tree, with 22 = 4 possible partitions. Each partition is
labelled using a number between 0 and 3. The threshold values θ decide which partition each sample falls under.

x1 < θ1 x1 > θ1
x2 < θ2 0 1
x2 > θ2 2 3

To model all possible outcomes, 2dx partitions or branches are potentially required in total (where760

dx is the total number of features). The computation cost of this calculation becomes impractically761

large for common computing devices (such as PCs or laptops), as dx approaches numbers as small as762

15. If dx is extremely large (ex. hundreds or thousands), the outcome-space cannot be feasibly mapped763

out in its entirety. However, it can be approximately sampled using the concept of Random Forests (RFs)764

[43]. In this approach, a random subset of all d features is selected and split on; the tree constructed765

using these arbitrarily-selected features is called a RF. Since not all dx features can be accounted for in766

a single RF, a large number of RFs are constructed (i.e. thousands or more) and the predicted class767

labels are determined by taking a majority vote across all obtained outcomes. An example of this is768

illustrated in the following Fig A1.769

The threshold value θ used for each split is determined by a simple scoring rule in most cases [23].770

For example, the feature x1 may have a range of values x1,min < x1 < x1,max. A computational routine771

would define an arbitrary step-size ε (usually a fraction of the gap x1,max − x1,min), then start with the772

threshold value x1,min + ε and work all the way up to x1,max − ε. The final threshold value is selected773

as the one resulting in the highest model accuracy (in terms of training).774

In order to construct RFs which produce an unbiased estimate of the true class label for each775

given data sample, a technique known as bootstrapping or bootstrap aggregating (“bagging") can be used776

[23] [44]. Each RF randomly selects from the total N data samples to train on, with replacement, such777

that over a large number of RFs the total number of samples selected turns out to be approximately778

0.63N. Bootstrapping also mitigates numerical instabilities, which can occur with RFs and are especially779

common in complex models such as ANNs. However, it is only viable if the sample size N is sufficiently780
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Figure A1. Multiple random forests constructed for a binary-class problem. The outcomes (either Class 0 or 1) are
decided by combining sequential splits of dk randomly selected features, from the original dx-dimensional feature
space. The final outcome is determined by a majority vote of individual outcomes from all trees.

large (thousands or more). When bootstrapping on small datasets (N on the order of hundreds or less),781

special care must be taken to bootstrap over a large number of iterations.782

C Details of the Support Vector Machine (SVM) model783

The Support Vector Machine maps existing samples of a training set to their corresponding given784

classes, such that the classes of new samples can be predicted. However, instead of partitioning785

on binary splits of each feature like RFs, SVMs directly find the separating boundaries between the786

classes of data. Support vectors are the vectors between the closest data sample in each class to the787

separating boundaries [24]; the distances of these vectors are maximized in order to optimize the788

extent of separation between classes. Although the boundaries can be found using the hinge-loss789

function, computational routines today instead use the softmax function as a smooth approximation of790

the hinge-loss. This approximation improves the numerical stability in solving for the SVM model via791

gradient descent, while not hindering its accuracy [45]. The softmax calculates the probability p that each792

sample x(i) belongs in class c ∈ [1, C]. The well-known logistic regression is the special-case of softmax793

for the binary (2-class) scenario. The parameters w represents the model coefficients corresponding794

to each specific class. Specifically, the wc terms represent the model weights, assuming sample x(i)795

belongs in class c. Similarly, the terms wy(i) represent coefficients assuming sample x(i) has a class796

label y(i) ∈ [1, C]. Using these concepts, the softmax probability for any sample can be expressed as:797

p(y(i)|w, x(i)) =
exp(w>

y(i)
x(i))

C
∑

c=1
exp(w>c x(i))

. (A1)

An example of multi-class SVM with 4 classes (C = 4) is shown in Fig. A2.798

Data that is linearly-separable allows linear boundaries to be drawn to separate the different classes.799

The equations of these separating hyperplanes can be obtained using methods described in [24]. On800

the other hand, data that is non-linearly-separable cannot be accurately modelled by linear separating801

boundaries. In these cases, the kernel trick [7] can be used to construct high-dimensional feature spaces802

in which the data becomes linearly separable.803
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Figure A2. Multi-class SVM for 4 classes. The hyperplanes (lines) in the 2-D space clearly separate the 4 distinct
classes with acceptable misclassification rates. A smooth approximation can be made using a 4-class softmax
function.

Figure A3. A linearly-separable dataset (left), versus a non-linearly-separable dataset (right), adapted from [46].

D Details behind Artificial Neural Networks (ANNs)804

Unlike least squares or SVMs which can only perform regression or classification, respectively,805

ANNs can predict either continuous (regression) or discrete (classification) outputs. The first layer in806

an ANN consists of an activation function acting upon an affine, i.e. y = A(WX + b). The function A807

is usually a non-linear transformation of its linear argument (WX + b). If A were chosen to be linear808

in every layer of the network, the whole ANN would trivially reduce to a linear least-squares model.809

Figure A4. Visualization of the operation y = A(WX + b) in a single ANN node. The weighted sum of its inputs
is added to a bias term; the final sum is transformed by a nonlinear activation function chosen by the user.

Subsequent layers follow the same affine-activation transformation, i.e. z[l+1]
i = A(wz[l] + b). For810

each neuron z, the subscript represents the neuron number, while the superscript represents the layer811
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in which the neuron is located. The following Table A2 contains some commonly-used activation812

functions within ANNs:813

Table A2. Typical activation functions for neural networks

Activation Abbreviation Formula
Affine a f f (z) wz + b

Step S(z)

{
0, if z < 0
1, if z ≥ 0

Sigmoid sig(z) 1
1+e−z

Hyperbolic Tangent tanh(z) ez−e−z

ez+e−z

Rectified Linear Unit ReLU(z) max(0, z)
Leaky Rectified Linear Unit LReLU(z) max(αz, z)

The entire neural net can be visualized as the following structure, with inputs entering the leftmost814

side and outputs exiting right-most side.815

Figure A5. Conventional ANN structure with two hidden layers.

E Details of hierarchical clustering816

The four main types of hierarchical clustering used in literature are [28]:817

1. Single Linkage (Nearest-Neighbour): "Nearest-neighbour" clustering. Initially, each sample
is considered a centroid. The pair of samples with the smallest distance between them is
merged together; subsequent clusters are merged according to the distances between their closest
members. The linkage function is expressed as:

D(Cp, Cq) = min
x(i)∈Cp ,x(j)∈Cq

d(x(i), x(j)). (A2)

Cp and Cq represent two arbitrary clusters, and D the distance between them.818

2. Complete Linkage (Farthest-Neighbour): Also known as “farthest-neighbour" clustering.
Identical to single linkage, except clusters are merged together according to distances between
their farthest members. The linkage function is expressed as:

D(Cp, Cq) = max
x(i)∈Cp ,x(j)∈Cq

d(x(i), x(j)). (A3)

3. Agglomerative Averages: Also known as “average" clustering. Identical to single linkage, except
clusters are merged together according to average distances between their members. The linkage
function is expressed as:

D(Cp, Cq) =
1

|Cp||Cq| ∑
x(i)∈Cp

∑
x(j)∈Cq

d(x(i), x(j)), (A4)
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where |Cp| represents the number of samples in each cluster, during each iteration.819

4. Ward’s Method: Also known as “minimum-variance" clustering. Instead of merging samples or
clusters together based on distance, it starts by assigning “zero variance" to all clusters. Then, an
Analysis of Variance (ANOVA) test is performed: two arbitrarily-selected clusters are merged
together. The “increase in variance" is calculated as:

∆(Cp, Cq) =
|Cp| · |Cq|
|Cp|+ |Cq|

||C̄p − C̄q||22 (A5)

for all pairwise clusters. C̄p represents the centroid coordinates for cluster Cp. The pair of clusters820

that results in the smallest increase in variance is then merged at each iteration.821

The Agglomerative Average approach includes the subroutines Unweighted Pair-Group Method822

with Averages (UPGMA), Unweighted Pair-Group Method with Centroids (UPGMC), Weighted823

Pair-Group Method with Averages (WPGMA), and Weighted Pair-Group Method with Centroids824

(WPGMC), which are discussed in detail in [47]. The difference between these methods lie within825

the use of averaged Euclidean coordinates versus pre-determined centroids, and whether each data826

sample contribution is equal or weighted (with the weights determined by some a priori information).827

The confidence of clustering results can be quantitatively assessed by two metrics:828

1. Cophenetic correlations [29]: Measures how well a specified clustering method preserves
original pairwise distances between samples. In other words, how similar are the average
inter-cluster distances between pairwise points compared to their actual distances? The formula
is:

∑
i 6=j

(d(x(i), x(j))− d̄)√
[ ∑
i 6=j

(d(x(i), x(j))− d̄)2][ ∑
i 6=j

(cd(x(i), x(j))− c̄d)2]
(A6)

which returns a value between 0 and 1, where d̄ represents average distances from all pairs829

of x(i),x(j). cd represents the Cophenetic distance between two pairwise points x(i) and x(j),830

defined as the distance from the base of the dendrogram to the first node joining x(i) and x(j).831

2. Silhouette analysis [30]: Measures the optimal depth of a specified clustering method.
Mathematically, it assesses how well each sample x(i) belongs to its assigned cluster Cp. Each
individual Silhouette number is evaluated as:

s(i) =
x̄(i)Cq
− x̄(i)Cp

max(x̄(i)Cq
, x̄(i)Cp

)
(A7)

where Cq represents the closest cluster to each Cp. At each depth on the dendrogram, the average832

Silhouette number is evaluated across all samples and calculated as s̄ = 1
N

N
∑

i=1
s(i). The depth833

with the highest s̄ is then selected for that particular clustering scheme.834

By combining the Cophenetic and Silhouette analyses as outlined above, the “most confident"835

clustering method (i.e. UPGMA vs. Ward vs. single-linkage vs. complete-linkage) and the optimal836

clustering depth, respectively, can both be selected.837

F Details behind Probabilistic Mixtures838

The motivation behind using probabilistic mixtures is to model the underlying distributions of839

the given data. Models using one distribution are sufficient for uni-modal systems, but fails to840
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capture multi-modal systems effectively. Therefore, data are usually modelled as the sums of various841

probabilistic distributions, with the structure of said distributions specified as a prior assumption.842

Mixture models are different from the hierarchical models mentioned in 2.2.1. The difference lies in843

the assumption that in mixtures, each individual species is assigned a group to which it is similar, but844

overlaps may occur between multiple groups. In other words, each species may belong to more than845

one group. This introduces a degree of stochasticity which makes these models more flexible. The two846

mixtures used in this paper are:847

1. Gaussian Mixtures [8]: p(x) =
K
∑

k=1
wkN (x|µk, Σk); underlying distribution is assumed to be848

a sum of K weighted multivariate Gaussians with individual means and covariances. The849

term wk represents the weighting factor for each Gaussian. Each Gaussian has the formula850

N (x|µk, Σk) =
1√

(2π)dx ·det(Σk)
· exp

[
− 1

2 (x− µk)
> · Σ−1

k · (x− µk)

]
.851

2. Dirichlet Mixtures [19]: Define p(i) as a vector containing the probabilities that sample x(i)852

belongs to each community species. The Dirichlet mixture prior over K distributions is P(p(i)) =853

∑K
k=1 Dir(p(i) | αk)πk, where αk are the Dirichlet parameters and πk are the Dirichlet weights.854

The Gaussian assumption is reasonable for most natural processes, which assumes that the855

underlying distributions are symmetric. When little a priori knowledge is available, it is a popular856

choice. However, if domain knowledge is available, it should be used to guide the choice of distribution857

used. For example, if OTU data mostly contains abundances skewed towards low counts, then the858

Dirichlet mixture will model the data more accurately than Gaussian. This type of mixture model is859

discussed in greater detail in the following Section G.860

G Details behind the Dirichlet mixture861

The detailed modelling equations behind Dirichlet distributions and mixtures can be found in862

[19]. A summary of the paper’s results is as follows:863

• The likelihood of observing each sample x(i) is:

L(i)[x(i)|p(i)] =

[ dOTU

∑
j=1

x(i)j

]
!

dOTU

∏
j=1

[p(i)j ]

x(i)j

(A8)

where dOTU is the total number of OTU species, p(i)
j the probability that sample i belongs to864

species j, and X(i)
j the abundance count of species j in sample i.865

• The total likelihood across all samples is therefore:

L(X | p(1), · · · , p(N)) =
N

∏
i=1

L(i)(x(i) | p(i)) (A9)

• The Dirichlet distribution is modelled as:

Dir(p(i) | θm) = Γ(θ)
dOTU

∏
j=1

[p(i)j ]θmj−1

Γ(θmj)
δ

( dOTU

∑
j=1

p(i)j − 1
)

(A10)

where θ represents the Dirichlet precision (i.e. large θ implies all p(i)j values lie close to the mean866

p value, and vice versa), m a normalization constant such that
dOTU

∑
j=1

mj = 1, and δ the Dirac delta867

function which ensures further normalization.868
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• The Dirichlet mixture prior over K distributions is:

P(p(i) |Q) =
K

∑
k=1

Dir(p(i) | αk)πk (A11)

where αk = θmk are the Dirichlet parameters, πk the Dirichlet weights, and Q =869

(K, α1, · · · , αK , pi1, · · · , πK) the complete set of mixture hyperparameters.870

• The Dirichlet mixture posterior over K distributions is:

P(p(i) | x(i), Q) =
∑K

k=1 L(i)(x(i) | p(i))Dir(p(i) | αk)πk

∑K
k=1 P(x(i) | αk)πk

(A12)
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H Time plots of process variables over time871

The time-plots of all water chemistry variables (in Table 2) are provided here. This enables a872

visual analysis of the variations over time. Due to proprietary reasons, the values have been normalized873

using the pre-processing procedure outlined in Section 4. The plots are separated by reactor number,874

i.e. Reactor1 and Reactor2 to distinguish the behaviour in the two different reactors. The horizontal875

time-axis represents duration measured in hours.876

H.1 Time-plots from Reactor 1877
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Figure A6. Normalized empty-bed contact time for Reactor 1.
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Figure A7. Normalized ammonia outlet flowrate for Reactor 1.
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Figure A8. Normalized nitrate inlet flowrate for Reactor 1.
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Figure A9. Normalized nitrite outlet flowrate for Reactor 1.
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Figure A10. Normalized selenium inlet flowrate for Reactor 1.
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Figure A11. Normalized chemical oxygen demand for Reactor 1.
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Figure A12. Normalized categorical carbon source (MicroC) for Reactor 1.

0 50 100 150 200 250
Duration

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Ac
et
at
e

Figure A13. Normalized categorical carbon source (Acetate) for Reactor 1.
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H.2 Time-plots from Reactor 2878
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Figure A14. Normalized empty-bed contact time for Reactor 2.
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Figure A15. Normalized ammonia outlet flowrate for Reactor 2.
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Figure A16. Normalized nitrate inlet flowrate for Reactor 2.
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Figure A17. Normalized nitrite outlet flowrate for Reactor 2.
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Figure A18. Normalized selenium inlet flowrate for Reactor 2.
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Figure A19. Normalized chemical oxygen demand for Reactor 2.
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Figure A20. Normalized categorical carbon source (MicroC) for Reactor 2.
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Figure A21. Normalized categorical carbon source (Acetate) for Reactor 2.
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I Feature selection results from C-MDA879

The following figures show the feature importances obtained using the Conditional Permutation880

algorithm developed by [33]. The plots are separated for the 3 cases of hierarchical, Gaussian, and881

Dirichlet OTU-clusters.882

Figure A22. Conditional feature importances for hierarchical clustering.
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Figure A23. Conditional feature importances for GMM clustering.
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Figure A24. Conditional feature importances for DMM clustering.
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