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Abstract: Chemical-biological systems, such as bioreactors, contain stochastic and non-linear
interactions which are difficult to characterize. The highly complex interactions between microbial
species and communities may not be sufficiently captured using first-principles, stationary, or
low-dimensional models. This paper explores a data analysis strategy, which combines three
predictive models (Random Forests, Support Vector Machines, and Neural Networks), three
clustering models (hierarchical, Gaussian mixtures, and Dirichlet mixtures), and two feature selection
approaches (Mean Decrease in Accuracy and its conditional variant). By doing so, the outcome of a
bioreactor is not only predicted with high accuracy, but the important features correlated with said
outcome are also identified. The novelty of this work lies in the extensive compare-and-contrast
of a wide arsenal of methods, as opposed to single methods which are often observed in papers in
similar fields. The results of this work show that Random Forest models predict test set outcomes
with the highest accuracy. Moreover, although the clustering methods successfully identified groups
of microbial species and their leaders, the groups are inconsistent when compared across the three
clustering methods. Finally, the two feature selection methods identified key variables features which
agree with a domain-knowledge understanding of the bioreactor system. Overall, the results indicate
that although it is possible to perform simultaneous analysis with chemical and biological data, the
clustering and feature analysis methods must be further refined for consistency and robustness.

Keywords: Machine Learning; bioinformatics; statistics

1 Introduction and Literature Review

Process control in the chemical and biological industries is undergoing a data revolution, as the
ability to extract knowledge from large volumes of data is becoming a reality. Between the 1980s
and 2010, the total volume of historical data expanded from megabytes to terabytes. This sparked a
big-data revolution, which resulted in the study of Machine Learning (ML) algorithms being developed
in the field of computer science. On one extreme, where data are abundant in samples but relatively
scarce in features, neural nets and Deep Learning by Hinton’s group [1] allows predictive models
to be constructed with unprecedented accuracy. On the other extreme, if data are scarce in samples
but abundant in features, models such as Bayesian Networks [2] and Markov Random Fields [3]
enable tasks such as inference and sampling. This results in a deeper understanding of the underlying
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probabilistic distributions behind the data, and enables “artificial" samples to be generated via methods
such as Gibbs [4] and importance sampling. ML tools are so accessible today, such that anybody can
train a deep neural net containing hundreds of layers and neurons within seconds using Tensorflow
[5].

ML in computer science typically focuses on predictive modelling of datasets containing large
numbers of samples, also known as big-N problems. Social-media data such as emails, images, or
videos come in the billions, and therefore models like Deep Learning have an abundance of data to
train and validate on. By contrast, the chemical and biological communities often see small-N problems,
in which having even hundreds of samples is considered exorbitant. For example, direct concentration
measurements of uncommon chemical or biological specimens species are costly and time-consuming.
In most cases, these are obtained using soft sensors or inferentials, which suffer from large time-lags
in-between measurements. Therefore, the abundance of small-N, big-d (high dimensionality) problems
warrant a different modelling and analysis paradigm in the field of engineering.

When process engineering data is combined with biological data, the difficulty of meaningful
analysis increases multiple-fold. The task of finding interpretable patterns and correlations in a
combined chemical-biological dataset is an enormous challenge. This is partially due to the potential
differences in time-scales, sampling rates, and dimensions in the two different types of data. Moreover,
if the microbial data contains species-relative abundance data, the modelling task becomes extremely
confounded. The species composition is stochastic, due to only some participating in the main reactions,
and many bystander species which exert diminished, indirect effects. Many species also perform
the same metabolic functions in a community, thus rendering them functionally redundant. Finally,
member species of a community may interact with others in protagonistic or antagonistic manners.
All of the aforementioned phenomena are present, but difficult to capture clearly in terms of their
direct effects on bioreactor performance changes. Therefore, the analysis of datasets of such complexity
require a strict workflow, to address as many anomalies as possible.

A general analysis framework can be suggested as follows. Given historical data, the process
outcome is identified and preferably separated into good and poor groups. This is common in processes
where the outcome pertains to a fractional or percentage value, corresponding to chemical yield
or removal. The data are “compressed"” using dimensionality-reduction techniques, which results
in a smaller subset of representative features. Predictive models are built using these high-impact
features, instead of the original feature-set (which may contain irrelevant or redundant data). Finally,
the representative features are ranked in terms of importance (in contributing to the final process
outcomes), using univariate feature selection techniques. The results from this approach serve as an
informative pre-cursor to decision-making and control, especially in processes where little to no prior
domain knowledge is available.

A visualization of the aforementioned framework is provided in Fig. 1 below, which can be
realized as a typical closed-loop feedback control block diagram [6]:

In the proposed workflow, the choice of MVs is dynamic - it is re-identified given each influx
of new data. On the other hand, traditional feedback control uses a static set of pre-specified MVs,
which may not always be impactful variables if the process and/or noise dynamics vary with time.
Specifically, the use of machine learning achieves a three-fold goal:

1. During each operating stage, operators would only need to monitor a small set of variables,
instead of hundreds or thousands. This simplifies the controller tuning and maintenance
drastically, and undesirable multivariable effects (such as input coupling) are reduced.

2. If the process model is time-varying and non-linear, first-principles models need to be
re-identified at every operating stage. These models are also known as white-box, as they are
purely mechanistic (ex. from mass, energy, or force balances) and based on physically-intuitive
parameters. By using black-box or purely empirical (i.e. data-based) machine learning models
instead, the process outcomes can be predicted ahead of time, such that unsatisfactory outcomes
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Figure 1. ML-guided process control and decision-making. Manipulated Variables (MVs) selected from the original
process features may be high-dimensional and full of confounding effects. Instead, the small subset of MVs most
responsible for causing observed process changes is identified using ML algorithms. The key MVs may change
from one operating stage to another, but they can be re-identified given the corresponding new data.

are prevented. Moreover, the machine learning models can be updated using new data collected
from each new operating stage, therefore eliminating the need of complete re-identification.

3. The ranking of feature impacts can be performed using grey-box models. These are data-based
machine learning models guided by a modest amount of first-principles or domain knowledge
about the system. This combination is exceptionally powerful if the domain knowledge is
accurate, since it allows the model structure to be well-defined. Not only does this improve
prediction accuracy dramatically, it also allows an analysis of the relative importance of each system
variable (or feature) compared against one another. From a control engineer’s perspective,
monitoring and adjusting the entire set of system variables may be impractical, especially
if the dimensionality is too high (i.e. hundreds or thousands of features). This is due to
the well-known phenomenon of the curse of dimensionality, as well as other issues such as
loop-coupling interactions [6]. On the other hand, if a small subset of that entire feature-space is
identified as the key, high-impact variables to monitor, then the control problem becomes feasible
and much more focused.

This paper will demonstrate the use of data analytics on a wastewater treatment process aimed at
removing selenium. The first part of this paper outlines a systematic data pre-processing workflow,
which combines both chemical and biological data on an equal scale. Then, a review of the state-of-art
ML techniques in bioinformatics is provided. Three unsupervised learning techniques - hierarchical
clustering, Gaussian mixtures, and Dirichlet mixtures - are explored as methods for dimensionality
reduction. Three supervised learning techniques - Random Forests (RFs), Support Vector Machines (SVMs),
and Artificial Neural Networks (ANNs) - are used to construct predictive models. Finally, important
process features are correlated with selenium removal rate using two techniques - Mean Decrease
in Accuracy (MDA), and its conditionally-permutated variant, C-MDA. The quality of modelling and
feature selection results are compared and contrasted across all explored methods.

One key difference between this work and others in the literature is the broad range of exploration,
as well as extensive compare-and-contrast, of numerous methodologies for data analysis. Most papers
focus on the proof-of-concept and results of a single technique, with focus on either the prediction task
or feature analysis task. When reading this paper, The reader should focus more on the strengths and
limitations of each method, given the results obtained, rather than the numerical values of the results
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themselves. The main goal of this work is to bring clarity to the appropriate use of analytics, given the
various characteristics and circumstances of the available raw process data.

1.1 Nomenclature and commonly-used terms

The nomenclature in this paper will follow machine learning literature by [7] and [8]. Historical
data can be divided into input data which contains time measurements of all process variables, and
output data which contains desired process outcomes. Input data are compactly expressed using the
matrix X € RN*% where N denotes the total number of samples and d the total number of variables.
Examples of these process variables or features include temperature, pH, valve actuator positions,
pump speeds, etc. Output data are denoted by y € RV, assuming only one outcome is considered in
any model. Furthermore, it is assumed that all outcome variables are independent of one another. If
multiple outcomes are to be analyzed at once, or if correlations exist between individual outcomes,
then they can be concatenated into a matrix Y. Examples of these outcomes include yields, final
concentrations or flowrates, extents of reaction, removal rates, etc. When the input data are expressed
as a matrix X, its N samples are oriented as rows and its d features as columns, i.e.,

— T = % - xj x| 1)

The bracket-enclosed superscript () denotes samples, which differentiates it from the subscript
j which denotes features. From a physically-intuitive perspective, these input features can be
further differentiated into macro variables and micro variables. Macro variables mostly consist of
sensor-measurable quantities, such as temperatures, flowrates, pressures, or pH. However, they can
also include inferential or soft-sensed variables [6], which are not directly measurable but can be inferred
from other easily-measurable variables. An example of this is the Chemical Oxygen Demand (COD),
which is measured by extracting liquid samples from the system and performing analytical laboratory
tests. On the other hand, micro variables are related to microbial properties, such as abundance counts
or Spearman’s/Pearson’s correlations (which account for microbial interactions). In most cases, micro
variables are inferential; a good example is Operational Taxonomic Unit (OTU) counts, which are
obtained via 165 gene sequencing.

1.2 Model training, validation, and testing

Training, validation, and testing sets are defined with subtle differences in the scientific,
engineering, and machine learning communities. This paper will adhere to the definitions accepted by
the machine learning communities, which are as follows:

e Training: Samples used to obtain mathematical mappings (or models) between the input and
output data.

e Validation (or development): Samples used to select optimal values of hyperaparameters - for
example: model complexity (or order), regularization constants, etc. Systematic methods such as
k-fold cross-validation are used.

o Testing: Samples restricted for assessing the performance (ex. accuracy) of the selected model.
This reflects its capability of generalizing to new, unseen samples.

When building a model, the test set cannot influence the selection of model structure, parameters or
hyperparameters in any way. This is known as the "Golden Rule of Machine Learning" [7]. Both [7]
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and [9] recommend a training/validation/testing split ratio between 50/25/25 and 90/5/5, for data
containing up to a few thousand samples, the. For data with more than a million samples, split ratios
between 90/10/10 and 98/1/1 are recommended. In these data-abundant cases, the goal is to use as
many samples as possible for training, while maintaining a respectable number of samples available
for validation and testing.

Training, validation and testing errors are usually evaluated in two different forms, depending on
whether the models are of a classification or regressive nature:

(0) £ y(i)) (Classification), 2)

7=
=
~
<

I
—

Error Fraction =

Q= I
1=
=
<

Il
-

Error Rate = @ — y(i)) (Regression), ©)]

The symbol 1 represents the indicator function and §*) the estimated output for the i*" sample using
the selected model. In the case of classification, the error is calculated as a fraction of mismatched
samples. In the case of regression, the error is computed as an average sum of errors in with respect to
the selected error function f (ex. mean squared error).

Finally, the bias-variance tradeoff is another important consideration when building a predictive
model. The user must compromise between a simple model which “under-fits” (high bias, small
variance) and a complex model that “over-fits” (small bias, high variance). The optimal point of balance
can be determined by techniques such as k-fold cross validation or information criteria measures.

1.3 Importance of Data Pre-Treatment

Bioreactor data, like data in any other application, is masked by noise which can originate from
any of the following factors:

Uncalibrated, aging, or malfunctioning sensors

Unexpected plant disruptions or shutdowns

Human errors in data recording (either incorrect or missing values)
Unmeasured, drifting disturbances (such as seasonal ambient temperatures)

Data must be cleaned prior to any modelling task, as the model quality is directly influenced by
the data quality. The following approaches are well-known and straightforward to employ, but are of
paramount importance in terms of obtaining high-quality predictive models:

1. Outlier removal based on human intuitions: the elimination of spurious sensor values (ex.
negative flowrates recorded through a valve) using a priori knowledge. These values can either
be replaced by NaN (missing) values, or estimates via imputation.

2. Standardization: the scaling of each feature to zero-mean and unit variance, equalizing the effect
of each individual feature. This prevents features with relatively large ranges (ex. flowrate with
range £1000) from dominating model weights over features with relatively small ranges (ex. pH
with range £0.1).

3. Imputation: the estimation of missing values, using a priori knowledge if available, or using
standard techniques such as interpolation - for example, Zero-Order-Hold (ZOH) or linear
interpolation.

4. Smoothing: the flattening of spiky measurements due to sensor noise, using techniques such as
Moving-Average (MA) filters.

5. Common time-grid alignment: the unification of sampling intervals for time-series data. For
example, consider a variable measured every second, and another measured every 0.5 seconds.
In order to model using both variables, each variable must contain the same number of samples.
Therefore the uniform time-grid can either be taken at every second (losing half the resolution of
the second variable) or every 0.5 seconds (requiring interpolation of the first variable).
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Although the aforementioned techniques are usually sufficient in removing simple abberations,
additional methods must also be considered in the case of more complex data. For example, the
interactive and non-linear nature bioreactor systems may require the following approaches:

1. Log-transforms of population counts: if population distributions are severely skewed towards
low or high counts, then it is more practical to express them as powers of suitable bases, such as
10 ore.

2. Removal of low-population species: this is akin to outlier removal based on a priori knowledge.
Species with low counts can be removed by defining an absolute cut-off (ex. any value below
1000), or by comparative magnitudes (ex. less than 5% of the next smallest value).

3. Correlations between species: In a microbiological community, individual members rarely
act independently. The effect of each individual upon all others can be quantified in terms
of co-existence, using linear correlation (ex. Pearson’s) or non-linear (ex. Spearman’s). The
co-behaviour of microorganisms can produce valuable insights into observed process outcomes.

1.4 Predictive Models

The task of prediction is an important one, especially in bio-remediation processes. Examples of
important process outcomes or outputs y include effluent pollutant concentrations, pollutant reduction
rates, etc. These variables are generally continuous, i.e. the goal is to predict their exact values,
rather than discrete categories. Prediction is the first step towards adequate control - if these values
cannot be predicted, then appropriate control actions based on these values cannot be introduced.
Prediction is usually accomplished using supervised learning: a model is constructed between known,
historical training inputs X (") and matching outputs y (@) The model’s hyperparameters, which are
parameters that determine model complexity (ex. model order or structure, the type and magnitude of
regularization used, etc.) are determined using a validation set. Finally, the new outputs §j are predicted
for new inputs X using the constructed model. In many applications within the machine learning
field, data are usually assumed to be independently-and-identically-distributed (IID). In other words, the
individual samples are not correlated with each other in time, and the probability of observing each
sample can be modelled by the same, stationary distribution. Therefore, standard machine learning
algorithms such as least-squares, Support Vector Machines (SVMs), etc. can be directly applied on the
raw data. On the other hand, in processes involving chemical and biological interactions, data are
often correlated both with respect to features and time. In these cases, the IID assumption does not
apply. Instead, the two following approaches are commonly employed:

o Obtain time-averaged values of each feature for each experiment or run, and treat all averages as
IID. This works for experiments which are fairly isolated and collect few samples per run (ex.
5 or less samples), but fails for experiments which are sampled at a high resolution (ex. 10s of
samples).

o Collect time-samples for each value of each feature, and employ time-series modelling techniques.
These approaches either account for temporal correlations directly, or use latent (hidden) variables
to indirectly characterize temporal dependencies.

For general process control, a time-series modelling framework has been established by [10].
These methods apply to data which is assumed to be Linear-Time-Invariant (LT1): the model explaining
the data obeys the principle of superposition, and is stationary. Although this assumption does not hold
perfectly for most chemical and biological systems, it holds approximately for systems excited by small
perturbations, or small sections of data corresponding to locally-linear periods of operation. Prominent
LTI time-series models include Finite-Impulse-Response (FIR), Autoregressive-with-Exogenous-Inputs
(ARX), and Autoregressive-with-Moving-Average (ARMA). Successful applications of these techniques are
demonstrated in [11] and [12]. In these papers, dominant members of the microbial communities were
first identified using networks, then an Autoregressive-with-Integrated-Moving-Average (ARIMA) model
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was constructed to characterize their temporal behaviour. Their co-existences were then associated
with tangible features, such as diet or presence of inflammations. Another application involving
time-series modelling includes [13], which first uses Bayesian networks to capture a probabilistic
model describing interactions between members of communities within microbial fuel cells. Then,
Artificial Neural Networks (ANNSs) are used to predict important process outcomes such as Coulombic
efficiency, power generation, and removal rates. Besides outcome prediction, however, ANNs can
also be used to estimate interim parameters. For example, [14], [15], and [16] used ANNSs to estimate
the optimal controller parameters in terms of controller performance and stability, for wastewater
treatment applications which are similar to the one outlined in this paper.

1.5 Clustering and Dimensionality Reduction

Clustering can be formulated as both supervised or unsupervised learning tasks. In the case
of supervised learning, clustering delves into the existing data to identify groups or classes of data
samples, or features, that belong together. One example is the segregation of process variables (such as
temperature, yield, etc.) into discrete bins, with class labels such as "good," "intermediate," or "poor."
The discretization is usually based on cut-off values, which can be determined ad hoc, by intuition,
or by statistical measures such as percentiles. Models are constructed between inputs and outputs
belonging to a training set, with its hyperparameters determined using a validation set, then used to
predict unknown outputs corresponding to new input samples on a test set.

On the other hand, clustering can also be performed as using unsupervised learning approaches.
An example is the k-means algorithm, which assigns data to a user-defined k clusters based on
Euclidean distances between individual samples. In this case, no new samples are involved, as
prediction is not the main goal; rather, the goal is to locate patterns within the data samples at
hand. Another example is the grouping of dogs into Carnivora (order), Canidae (family), and Canis
(genus) using hierarchical clustering. These represent three ranks of clusters which are formed using a
user-defined similarity metric (ex. Euclidean distance) between sample features.

Finally, clustering can also be applied to data features instead of samples. Examples include
Pearson’s and Spearman’s correlations within features, and association networks between bacterial
species given their abundance counts. [17] provides an extensive review of clustering within the
application of gene sequencing and phylogentic marking. Two main methods in the paper include
clustering based on similarity measures (such as Bray-Curtis) or probabilistic distributions (such as
mixture models). The Dirichlet Multinomial Model (DMM) approach is explored in greater detail in [18]
and [19]. This approach is preferred over hierarchical clustering or k-means for sparse data, where the
distribution values of the individual features (ex. taxa abundance counts) are skewed towards either
low or high numbers.

Regardless of which clustering method is employed, the common goal is to either identify groups
of samples which are "alike," or groups of features which are strongly associated with a certain process
outcome. In the current project, clustering will be used specifically to identify dominant OTUs which
are associated with satisfactory and poor reduction rates of pollutants.

1.6 Network Analysis

Individual OTUs of a microbial community act cocurrently rather than independently. Their
direct affects on the water chemistry variables are difficult to isolate, due to the stochastic nature of
such a community. Specifically, members may be protagonistic and antagonistic to one another, or they
may be neutral altogether as bystanders. Therefore, the exact effect of individual or groups of OTUs on
the final process outcome is extremely confounded. However, several recent papers have attempted
to bring clarity to the microbial effects. The approach is known as network analysis, and the overall
strategy is known as "networks to models"[11]. The more recent work of [12] showed that, not only
can dominant microbial groups be directly linked to a certain outcome, but indirect players (i.e. those
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facilitating the interaction between two dominant groups) can also be identified. Such a modelling
strategy can provide the engineer with second layer of knowledge, on top of existing process variables,
the importance of each microbial species on the process outcomes.

Network analysis attempts to find associations, given the abundance or population counts of
microbial species. This is a step-up from using the abundance counts themselves, since the counts
alone may not be entirely descriptive of the underlying chemical-biological effects. On the other
hand, associations (which are derived from abundance counts) indicate the nature of relationships
between individual species. Network models can be derived, for example, using Lotka-Volterra [20],
[21] (i.e. predatory vs co-existing relationships) or a more modern approach known as netassoc. The
netassoc model is statistical verification of co-cocurrence using an algorithm developed by [22]. It
estimates the true partial correlation between two pairwise OTU species by isolating and mitigating
the indirect effect of possible third (or more) species. Advantages of this approach include the ability
to visualize the total number of positive and negative links each OTU has with all other OTUs, thus
determining whether it is an aggregator or predator. From a process control perspective, the aggregator
OTUs associated with a positive process outcome (i.e. high removal rate) should be maintained, while
the corresponding predator OTUs should be inhibited as much as possible.

2 Background and Methods

Prediction can be performed using two main approaches, regression (continuous outcomes) and
classification (discrete, categorical outcomes). Both approaches produce estimates of new outcomes
given a new set of process inputs. In all prediction models, the goal is to minimize some form of error
or loss function between predictions 7 and real outputs y within the training set. The final goal is to
predict new outcomes matching a given set of new inputs. The three predictions used in this project
are outlined in the following subsections.

21 Supervised Learning Methods
2.1.1 Random Forests (RFs)

The first predictive model used in this work is Random Forests [23]. These are a class of models
which determines the final categorical outcome based on conditional binary splits of each feature.
Since it is computationally impractical to produce binary splits on an extremely large feature space,
random subsets of features are split on instead. The final outcome label is selected by taking a majority
vote. Refer to Section B for more details about this model.

2.1.2 Support Vector Machines (SVMs)

The second predictive model used is Support Vector Machines [24]. An SVM attempts to find
the separating boundaries between classes in the feature-space of the provided training data. Refer to
Section C for the details behind this model.

2.1.3 Artificial Neural Networks (ANNs) and Deep Learning (DL)

The final method used for prediction in this paper is Artificial Neural Networks. The more
popularly-known term Deep Learning refers to ANNSs that have more than 10-20 hidden layers [9]. If
the data sample-size N is abundant, a well-tuned ANN model can vastly outperform simpler ones
(such as RFs or SVMs) in terms of prediction accuracy. This is due to ANN activation functions (such
as ReLU or sigmoid) being universal approximators of any continuous function, linear or non-linear [25].
Modern ANNSs are usually constructed using the well-known Python package Tensorflow [5]. Refer to
Section D for the details behind this this model.
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An interesting, recent advancement in this field is the work of [26]. The authors developed the
Stochastic Configuration Network, which is an improved, adaptive version of ANNs. On each training
iteration, it learns not only the optimal parameters (i.e. weights and biases) that minimize prediction
error, but also the optimal architecture (i.e. number of layers, number of neurons in each layer).

2.2 Unsupervised Learning Methods

In many cases, the goal of data analysis is to not only make accurate predictions, but to also
look within the existing data to identify latent features responsible for the observed outcomes. As
an example relevant to the case study at hand, biological systems often deal with the analysis of
Operational Taxonomic Units (OTUs). These represent groups of micro-organisms which have been
clustered genetically using 16S rRNA sequencing [27]. When the macro (i.e. water-chemistry) variables
are brought into the analysis, the resulting chemical-microbiological interactions cannot be ignored.
However, these profound coupling effects are difficult to identify as closed-form expressions, due to
the stochastic nature of OTU communities. Raw biological data such as OTU abundances cannot be
used in its original form, for the following main reasons:

1. High dimensionality: Thousands of OTUs may be present in bioreactors, and hence it is not
feasible to include all of them as separate variables.

2. Dominant groups: Similar OTUs like to co-exist, while dissimilar OTUs like to “repel" or perhaps
even destroy one another. These interactions are difficult to characterize by examining abundance

counts alone.
3. Coupled interactions between micro and macro features: Chemical and biological variables

seldomly act in isolation. Their confounding effects should also be characterized in some manner.
4. Process insight/knowledge: Knowing which group(s) of OTUs are dominant and responsible

for good or poor outputs is invaluable, especially for subsequent process monitoring and control.

Therefore, several carefully-selected clustering and dimensionality reduction tools are required to
extract meaningful information from a chemical-biological system. These methods are outlined in the
following subsections.

2.2.1 Hierarchical Clustering

Hierarchical clustering performs grouping on microbial species, based on similarity measures
between pairwise species. The underlying assumption is that all species are similar to others, and that
the extent of similarity can be characterized using a ranking system. The similarities are quantified
using some popular metrics in the following Table 1:

Table 1. Typical similarity formulas used

Type S(x(i),x(f))
Euclidean Distance [|x®@ — x|},
Manhattan Distance [|x® — x()]||;
. . . . (T ()
Cosine Similarity W |
P . N=c N =
Jaccard Similarity l(ﬁmziiui(j):;, cell,---,C
) _ ()
Bray-Curtis Similarity %

The result of a hierarchical clustering can be expressed using a tree-like structure known as a
dendrogram, which shows the overall hierarchy or ranking of clusters. Obviously, different similarity
metrics result in different-looking dendrograms. Moreover, each dendrogram has various “depths"
which represent sample clusters of various sizes. The corresponding labels for new samples can be
quickly identified by determining which clusters these samples are closest to, based on the desired
similarity metric. Finally, dendrograms can be drawn using the following two different methods:
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o Agglomerative (bottom-up): Start with individual samples, then gradually merge them into
clusters until one big cluster remains. This is the most common method.

o Divisive (top-down): Samples start as one big cluster, then gradually diverge into an increasing
number of clusters, until one cluster is formed for each individual sample.

g T

Samples

Figure 2. A dendrogram representation of hierarchical clustering. At the bottom, each individual sample belongs
to its own cluster. Going up the dendrogram, samples are merged together based on the desired distance metric. At
the top, all samples are merged into one giant cluster.

Four main types of hierarchical clustering are commonly used [28]. These are accompanied by
two metrics, which determine the optimal clustering method among the four (i.e. Cophenetic correlations
[29]) as well as the optimal number of clusters (i.e. Silhouette analysis [30]). Details of these methods
can be found in Section E.

2.2.2 Probabilistic Mixture Models

The motivation behind using probabilistic mixtures is to model the underlying distributions of
the given data. Models using one distribution are sufficient for uni-modal systems, but fails to
capture multi-modal systems effectively. Therefore, data are usually modelled as the sums of various
probabilistic distributions, with the structure of said distributions specified as a prior assumption.
Mixture models are different from the hierarchical models mentioned in 2.2.1. The difference lies in
the assumption that in mixtures, each individual species is assigned a group to which it is similar, but
overlaps may occur between multiple groups. In other words, each species may belong to more than
one group. This introduces a degree of stochasticity which makes these models more flexible. The two
mixtures used in this paper are:

K
1. Gaussian Mixtures [8]: p(x) = ¥ wi N (x|pg, Ik ); underlying distribution is assumed to be
k=1

a sum of K weighted multivariate Gaussians with individual means and covariances. The
term wy represents the weighting factor for each Gaussian. Each Gaussian has the formula

N (x|p, Zx) = W cexp| = S(x—m) T E (x— i) |

2. Dirichlet Mixtures [19]: Define p() as a vector containing the probabilities that sample x(?)
belongs to each community species. The Dirichlet mixture prior over K distributions is P( pi) =
YK Dir(p") | ay)t, where ay are the Dirichlet parameters and 7y, are the Dirichlet weights.

The Gaussian assumption is reasonable for most natural processes, which assumes that the
underlying distributions are symmetric. When little a priori knowledge is available, it is a popular
choice. However, if domain knowledge is available, it should be used to guide the choice of distribution
used. For example, if OTU data mostly contains abundances skewed towards low counts, then the
Dirichlet mixture will model the data more accurately than Gaussian. Details behind the Dirichlet
distribution can be found in Section G.
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2.3 Feature Selection

If an outcome is predicted using a set of features, a natural question arises: "Which of these
features contribute the most to the observed predictions?" Although most feature selection approaches
in literature are often customized on a case-by-case basis, two overarching groups of methods can be
identified:

1. Hypothesis testing: A model is trained with all features left untouched. Then, features are either
removed or permutated (scrambled), either individually or conditionally according to other
features. The model is re-trained, and its accuracy is compared to the base-case accuracy. The
features which cause the largest decreases in model accuracy are considered “most important,”

and vice versa.
2. Scoring: A metric or “score” based on information or cross-entropy is defined and calculated for
all features. Features with the highest scores are identified as “most relevant,” and vice versa.

In the hypothesis testing framework, univariate (or single-feature) algorithms such as Mean
Decrease in Accuracy (MDA), Mean Gini Impurity (MGI) [31] have been developed for simple models
such as random forests. The MDA method can be visualized in Fig. 3.

X Yy
0 1750 2 1307 482 6065 0
1 |40s7 2 1190 84 7233 0
18 5082 41 1980 199 1575 0 Original Model:

0

12763 19 1188 3781 1208 0 93% Accuracy
7 |3972 96 4613 2497 1658 1

X y MDA = 5%
18 | 1750 2 1307 482 6065 ?
1 |4087 2 1190 84 7233 ? .

Model with x1 scrambled:

05082 41 1990 199 1575 ? 88% Accuracy
7 |2763 19 1188 3781 1208 ?
113972 96 4613 4497 1658 ?

Figure 3. MDA applied on a dataset with 6 features. During each outer iteration, the values of a single feature
are scrambled or permutated sample-wise. The model accuracy with the scrambled feature is compared against the
base-case model accuracy. If the accuracy decreases significantly, then the feature is considered "important.” On the
other hand, if the accuracy decreases negligibly, then the feature is "irrelevant" to the model.

Unfortunately, these univariate approaches have the following shortcomings:

o Inability to recognize coupling effects between multiple features, such as correlations or
redundancies [32].

o Inability to distinguish conditional effects between features, i.e. whether a feature is “relevant”
given the presence of other feature(s).

The second point above confounds the definition of “relevance." A classic example is the prediction
of presence of genetic disease (the outcome) using the genetic information of a person’s mother
and grandmother. If information from the mother is absent, then the grandmother’s genes may be
identified as a “relevant" feature. However, if genetic information is present from both the mother
and grandmother, then the grandmother’s genes may become “redundant” and thus an “irrelevant"
feature. Therefore, the “relevance" of a feature contingent or conditional on the presence of other
features. [33] has made significant contribution in the modelling of conditional dependencies. Its
proposed Conditional Mean Decrease in Accuracy (C-MDA) approach is a variation on classic MDA,
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as  Where conditional permutations are performed given the presence of other features. The conditional is
207 defined as the appearance of secondary features within specified ranges of values. The difference in
a8  permutation between MDA and C-MDA can be realized in the following Fig. 4.

X y
0 1750 2\ 1307 482 6065 0
1 |4087 2 | 1190 84 7233 0
1 |2763 19 / 1188 3781 1208 0

Scramble x,; , given 0 < x;< 20

R y
1 |1750 2% 1307 482 6065 ?
0 j4087 2 | 1190 84 7233 ?
1 |2763 19 f 1188 3781 1208 ?

Figure 4. In CMDA, the permutation is only performed on the values of a feature given the presence of another
feature falling within a range of values. By contrast, permutation in traditional MDA (as shown in Fig. 3) is
performed on all values of a feature, with no consideration of other features.

« 3 Process Description

410 The case study pertains to a wastewater treatment process located downstream of a mining
a1 operation. Due to proprietary reasons, the description is kept at a general level.

a2 3.1 Process Flow Diagram and Description

a13 The process can be visualized as the general bioreactor shown in Fig. 5:

Mine-influenced water Effluent

>
Bioreactor
Performance

Nutrients

Figure 5. Simple bioreactor schematic, with wastewater and biological nutrients as inlets, and treated effluent as
outlet. The system contains directly-measurable macro variables related to water chemistry (such as contact time 7),
and difficult-to-measure micro variables reflecting the metabolism of micro-organisms.
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Selenate and nitrate concentrations in the bioreactor effluent must be reduced to below 10% and
3%, respectively [34], [35]. These chemical species bio-accumulate in the marine ecosystem [36] and
thus reach harmful levels at the top of the food chain.

3.2 Water Chemistry Details

The feed to the first reactor is wastewater, which contains the main pollutant selenate (SeOi*). The
selenate is to be reduced to elemental selenium (Se) by a series of two bioreactors. Samples are extracted
from the bioreactors during each operating stage (at irregular intervals) and analyzed, in order to
determine and record values of various water chemistry variables. These features are summarized in
the following Table 2.

Table 2. Water Chemistry Variables

Variable Description

T or EBCT Empty-Bed-Contact-Time = ﬁ’g&‘gﬁ (min)
Ammoniagy; Concentration of NHj in effluent ( "ig)

Nitrate;, Concentration of NO; in influent (:;—)

Nitriteyy,: Concentration of NO, in effluent (Tg)

SeD;, Concentration of total dissolved Se in influent (%)
COD;, Chemical oxygen demand in the influent (%)
MicroC Equal to 1 if MicroC is added as carbon source, otherwise 0
Acetate Equal to 1 if Acetate is added as carbon source, otherwise 0

Reactor 1 Equal to 1 if Reactor 1 is the relevant bioreactor, otherwise 0
Reactor 2 Equal to 1 if Reactor 2 is the relevant bioreactor, otherwise 0

3.3 Microbiology Details

In addition to the water chemistry data, data pertaining to the microbial presence is available in
the form of Operational Taxonomic Units (OTUs). An OTU is a cluster of 16S rRNA gene biomarkers
that are more than 97% similar to one another. Therefore, each OTU is considered to represent one
bacterial species [27]. In this case study, the numerical values associated with each OTU are known as
raw abundance counts. These counts can be considered normalized population counts of each bacterial
species, which fall within the range of 0 ~ 16000.

4 Data Pretreatment

Before the water chemistry and micro-biological data can be used for modelling or feature analysis,
they must be pre-processed. The steps involved can be visualized as a workflow in the following Fig. 6.

The data pre-processing was performed using Jupyter iPython notebooks. The raw dataset
originally consists of two files: one containing water chemistry data, and one containing OTU counts.
First, samples containing missing or NaN values were removed using the dropna function in pandas.
Then, spurious process values (such as negative flowrates) were removed by Boolean functions. The
remaining samples were then cross-matched between the water chemistry and OTU files, by use of
SamplelD tags which identify common operating stages. This results in a total of N = 56 samples
containing both water chemistry and microbial information. Although this is a small sample-size, it is
unfortunately all the data that could be collected from this treatment plant.

4.1 Pretreatment of Water Chemistry Data

Each water chemistry variable outlined in Table 2 (except SamplelD) are standardized via the
following two steps:
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Time Feature .

- " " ! v
Dimensionality - OTU Waterchem
Reduction Abundances variables
v
Representative
OTUs
l -~ Feature
ML Models :
Selection
Process Key Process
Outcomes Variables

Figure 6. Workflow of the pre-processing, dimensionality reduction, modelling, and feature selection steps. The
final goal is to transform the input data into predicted outcomes, as well as key variables responsible for said

outcomes.
444 1. Mean-centering: For each feature j, subtract its sample values by its mean value, i.e. x](.i) —
445 x(i) — Ui
) ‘u]
446 2. dnifying-variance: Divide the values from the previous step by the corresponding feature
(@)
, X
447 standard deviations, i.e. x](l) — (]7—]

aas  In the standardized data matrix, each feature (or column) has a mean of Hj= 0 and variance sz =1,
40 which removes any weight-skewing effects during model construction due to varying feature ranges.

=0 4.2 Pretreatment of Microbiological Data

as1 The OTU raw abundance counts are recorded in a matrix where the number of samples and
a2 number of OTUs are N = 56 and dp7y; = 305, respectively. The raw counts fall within the range of
43 0 ~ 16000. As observed in Fig. 7 below, the abundance distribution is heavily skewed towards the
sss  lower numbers, which means that any model built using these raw counts would be heavily biased
ass  towards the lightly-populated OTU species:

The skew is partially remedied by applying a [0gj-transformation to all raw counts. Since many
raw counts are equal to zero, 1 is added to every value before the logjo transformation, to ensure
the log1o operation is valid. Counts equal to zero would still remain zero after transformation, since
log19(0+ 1) = 0. The overall operation is:

Countyegeq = 10g10(Countyay + 1) (4)

sse  The resulting distribution of the scaled counts can be observed in Fig. 8: it is still skewed towards the
a7 low end, but not as severely as the raw counts.
as8 These counts are now in a suitable form for data analysis outlined in the following Section 5.
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Distribution of Raw OTU Abundance Counts

0.0030 1

0.0025 4

0.0020 1

0.0015 4

0.0010 4

Normalized Occurence

0.0005 1

0.0000 T T \ " ‘ ‘ r ‘ r
0 2000 4000 6000 8000 10000 12000 14000 16000

Abundance Count

Figure 7. Distribution of all available raw OTU abundance counts.

Distribution of logl0 OTU Abundance Counts

Normalized Occurence

0 T T T : r
0] 1 2 3 4

logl0(Abundance Count)

Figure 8. Distribution of OTU abundance counts, after logyo transformation.

5 Data Analysis

This section compares and contrasts the pertinent results from various supervised, unsupervised,
and feature selection methods. Please visit the main author’s GitHub repository to access the data and
code.

5.1 Hierarchical Clustering of OTUs

The logjo-transformed counts obtained from pre-processing are first analyzed in terms of
biological associations. This provides preliminary knowledge into the possible co-existing and/or
antagonistic interactions between OTUs. In order to prevent spurious correlations (which are possible
using methods such as Pearson or Spearman correlations), the netassoc algorithm by [22] is used. The
result is a 305-by-305 matrix acting as a "pseudo” distance matrix between all OTUs, which can then be
used for hierarchical clustering.

Before the netassoc distances can be used, however, it must undergo one final transformation:
normalization of values between 0 and 1. This follows the concept of similarity being analogous to
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small distances (i.e. distances close to zero), and dissimilarity being analogous to large distances. The
operation in Eq. 5 accomplishes this scaling:

dist — distyin
distmax — distmin

distscaled = ®)
At this point, the hierarchical clustering models can finally be constructed. First, the following four
hierarchical clustering methods are performed on the scaled netassoc distance matrix:

1. Unweighted Pair-Group Method with Arithmetic Means (UPGMA)
2. Ward’s Minimum Variance Method (Ward)

3. Nearest-Neighbour Method (Single-Linkage)

4. Farthest-Neighbour Method (Complete-Linkage)

This was accomplished using the scipy package cluster.hierarchy. In order to determine the
"optimal” clustering method out of the four, the Cophenetic correlation values (see Section E) were
obtained using the cluster.cophenet command, for all four methods. The results are shown in the
following Table 3:

Table 3. Cophenetic correlations

Method Coph. correlation
UPGMA 0.51
Ward 0.41
Single-linkage 0.08
Complete-linkage 0.22

Cophenetic correlations can be thought of as how well a clustering method preserves the similarites
between raw samples. Since the UPGMA method has the highest Cophenetic correlation, it was selected
as the most suitable clustering method. A dendrogram was then constructed using this method, and it
can be visualized in the following Fig. 9:

The optimal number of clusters on this UPGMA dendrogram is determined by Silhouette analysis
(see Section E), which is a measure of how well cluster members belong to their respective clusters, given
the number of desired clusters K. Silhouette values are computed for cluster numbers K = 2 through
K =100, and the results are plotted on the following Fig. 10:

From Silhouette analysis, K = 45 groups appears to be the "optimal" cut-off with the overall
highest Silhouette value. However, this is assuming that all netassoc distances are suitable for use.
Recall that a normalized distance of 0 resembles similarity, and a distance of 1 resembles dissimilarity.
A distance of 0.5 corresponds to neither similarity or dissimilarity. Values in that vicinity represent
"neutral" OTU interactions which act as noise, confounding the clustering model. To remedy this issue,
a distance cut-off approach inspired by [37] was employed. If a hierarchy with a distance cut-off value of
distcys is constructed, it means that no cluster contains members which are spread apart by a distance
greater than dist,;. This reduces the amount of overlap between distinct clusters. To determine the
precise value of dist.,, several UPGMA hierarchies were constructed using distance cutoffs within the
set of values distcyt € [0.4,0.6]. The resulting Silhouette values are reported in the following Fig. 11:

The optimal distance cut-off is located at 0.54 with a corresponding maximum Silhouette value of
0.068. By constructing a UPGMA hierarchy with this cut-off, no two members within any cluster are
spread apart by a normalized distance of 0.54. This UPGMA hierarchy yields a total of K = 37 clusters,
and its dendrogram is provided in the following Fig. 12:

In each cluster, the "dominant” OTU was determined as the one closest (in terms of normalized
netassoc distance) to the cluster centroid. The coordinates of each centroid were readily calculated
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Figure 9. UPGMA dendrogram (top) and heatmap (bottom) showing log-transformed OTU abundances. The rows
of the heatmap represent individual samples, while the columns represent individual OTUs. Dark colours on the
heatmap represent distances close to zero and hence similar OTUs, while light colours represent large distances and

hence dissimilar OTUs.
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Figure 10. Silhouette numbers for clusters 2 < K < 100. The highest value of 0.117 occurs at K = 45.

using the distances in the dendrogram. The remaining OTUs in the cluster were therefore considered
“followers." The entire cluster could then be considered a co-existing community of OTUs. In the
following Fig. 13, the number of members in each clusters (which is also shown in Fig. 12) is plotted

against the cluster number:

On one hand, clusters 13 and 34 are the largest communities, with 19 OTUs in each. On the other
hand, cluster 1 and 8 are the smallest communities, with 3 OTUs in each, followed by groups 16, 21,
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Figure 11. Silhouette values as a function of distance cut-off in UPGMA clustering. The optimal cutoff value is the
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Figure 12. Dendrogram of the UPGMA hierarchy with optimal distance cut-off, at a depth of K = 37 groups. Each
branch is labelled with the dominant OTU, and the number of its followers.

28, 35, and 37 which all contain 4 OTUs. Despite the considerable variance in community sizes, no
communities contain less than 3 OTUs or more than 20 OTUs. The membership distribution can be
observed in the reverse histogram, where the number of groups for each membership size is shown:
Fig. 14 shows that most clusters contain 4, 8, and 9 OTUs, followed by 5 and 7 OTUs. Most clusters
have a population ranging between 4 and 12 OTUs, which indicates a healthy clustering distribution.
For the subsequent prediction and feature extraction steps, only the 37 dominant OTUs shown in
Fig. 12 are considered, out of the total 305 OTUs to begin with. Although 37 is still a reasonablly large
number (and not between 2 and 10, ideally), the choice is based on a combination of statistically-justified

methods.
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Figure 13. Cluster populations for UPGMA dendrogram with k = 37 groups.
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Figure 14. Membership distribution for UPGMA dendrogram with K = 37 clusters.

5.2 Gaussian Mixture Analysis of OTUs

Instead of using hierarchical clustering, another possible approach is to group OTUs using
Gaussian Mixture Models (GMMs). The assumption here is that the underlying distribution behind the
OTU abundances can be modelled as a sum of multivariate Gaussians. Each Gaussian can be considered
a "cluster” of OTUs, with its centroid represented by the mean, and its spread (or size) represented by
its variance. The overall GMM is built using the scikitlearn subpackage mixture.GaussianMixture. In
order to determine the “optimal” number of Gaussians K, the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) values are determined for each value of K. This is performed by
calling the .aic and .bic attributes of the GMM models within scikitlearn. The results are plotted in the

following Fig. 15 and Fig. 16:
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Figure 15. AIC values for GMMs with cluster sizes 1 < K < 30. The minimum occurs at K = 21, which is selected

as the desired number of groups.
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Figure 16. BIC values for GMMs of cluster sizes 1 < K < 30. The minimum occurs at K = 1, indicating that one

single group should be considered. This is an impractical result and is therefore discarded.

The AIC minimum suggests that the 305 OTUs should be optimally clustered into a GMM with
K = 21 groups. On the other hand, the BIC minimum suggests that a GMM with only one cluster is
optimal. This is a meaningless result which should be discarded, since it suggests that all OTUs are
similar. Note that the BIC values increase almost monotonically from K = 1 group onwards, meaning
no suitable number of clusters can be determined using this criterion. Therefore, the AIC result is used

to move forward.
The cluster population and membership plots can be observed in the following Fig. 17 and Fig. 18:
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Figure 17. Populations for the AIC-optimal GMM model with K = 21 clusters.
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Figure 18. Membership for the AIC-optimal GMM model with k = 21 clusters.

Notice that the GMM cluster sizes have a much higher variance than the hierarchical clusters.
Cluster 12 contains 66 out of the 305 total OTUs, while most other clusters contain between 2 and 40
OTUs. The skewed nature of the results is most likely due to the log-transformed OTU abundances
being skewed towards the low counts. Therefore, the underlying Gaussian assumption (which assumes
symmetrical distributions) is inaccurate. Moreover, the Gaussian mixture models were constructed
using the abundance counts of OTUs, and not the associations as the hierarchical models were in
Section 5.1. These two reasons alone explain why the Gaussian clusters identified are inconsistent
across runs, and turned out to provide little intuition regarding the microbial community effects.
Nevertheless, the results are summarized in the following Table 4, which highlights the dominant OTU
in each GMM cluster as well as the cluster size.
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Table 4. Dominant OTUs from Gaussian Mixture clusters

Group Number Dominant OTU Group Size

1 OTU200 27
2 OTU46 13
3 OTU11 4
4 OTU112 8
5 OTU3313 37
6 OTU470 22
7 OTU6 4
8 OTU2756 10
9 OTU157 5
10 OTU48 6
11 OTU3057 20
12 OTU185 66
13 OTU559 25
14 OTU778 26
15 OTU8968 7
16 OTU14 1
17 OTU105 15
18 OTUS8 1
19 OTu77 3
20 OTU93 4
21 OTU1 1

5.3 Dirichlet Mixture Analysis of OTUs

In the previous Section 5.2, the OTU abundances were assumed to follow an underlying Gaussian
distribution. In light of Fig. 7 and Fig. 8, this assumption is clearly inaccurate, since even the distribution
of log-transformed values appears to be skewed towards the low counts. Therefore, a more suitable
assumption for the OTU clusters is the Dirichlet Multinomial Mixture (DMM) (see Section G). Instead of
using Python, the Dirichlet Multinomial R package developed by [38] is used. This algorithm is capable
of constructing a set of DMM muodels, assessing the optimal model(s) using AIC, BIC, or Laplace
Information Criterion (LIC), then producing heatmaps of the clustering results based on the Dirichlet
weights of each cluster.

Unlike the hierachical or Gaussian approaches where the clustering is performed on the OTUs
and not the samples, the DMM clustering is the exact opposite: the samples are clustered and not the
OTUs. The results, however, can still be interpreted to identify the dominant OTUs for further analysis.
For the 55 existing samples, the heatmap in Fig. 19 shows the BIC-optimal DMM clusters, labelled with
the 20 OTUs of highest Dirichlet weights.

Note that the rows of the heatmap represent individual OTUs. In the first row (OTUS6), a
dark-shaded band exists in the mid-samples, including a commonly high abundance of OTU6 in
those samples and low abundances elsewhere. Similarly, for the second row (OTU4), a common
high-abundance band is observed for the first and last few samples, with low abundances elsewhere.
This visual result reinforces the concept that the DMM model clusters the individual samples (columns)
and not the OTUs. However, notice that going down the heatmap from OTU6 to OTU35, the
dark-shaded bands appear less frequently. The colours become increasingly white, indicating an
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Figure 19. Heatmap of the BIC-optimal DMM model, with respect to the 20 highest-weighting OTUs. Colours are
coded according to log-transformed OTU abundances; dark colour indicates high OTU abundance, and vice versa.

» overall decrease in OTU abundance. Below the 20"-OTU cutoff (of OTU35), the rows are entirely
ses white with close to zero abundance, and therefore those results have been truncated from the figure.
seo Therefore, the 20 OTUs shown in Fig. 19 are considered as the dominant OTUs, akin to those in the
s7o hierarchical and GMM clustering results. However, the followers of these 20 dominant OTUs cannot
s be determined, since the clustering was not performed OTU-wise.

[
o

s=» 5.4 Prediction Results

573 The 10 water chemistry variables (outlined in Table 2) are combined with representative OTUs
sz Obtained from Sections 5.1, 5.2, and 5.3. Together, these serve as inputs. When combined with the
s7s  corresponding, labelled process outcomes of Selenium Reduction Rate (SeRR), predictive models are
sz trained for the estimation of SeRR of new samples.

577 The models can be categorized in terms of their inputs, as follows:

578 1. Base case: Water chemistry variables only.

579 2. Hierarchical: Water chemistry variables plus representative OTUs obtained using hierarchical
580 clustering.

s81 3. Gaussian: Water chemistry variables plus representative OTUs obtained using GMMs.

582 4. Dirichlet: Water chemistry variables plus representative OTUs obtained using DMM:s.

583 The idea is to observe whether the addition of biological features improves or confounds the
ses  predictive capabilities of these models. The actual models consist of the following three types:

585 1. Random Forests (RFs)
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2. Support Vector Machines (SVMs)
3. Artificial Neural Nets (ANNs)

The raw SeRR values obtained from plant data were normalized and discretized into two (binary)
classes, 0 and 1. Class 0 (poor) corresponds to SeRR values which fall below the mean SeRR, and Class
1 (satisfactory) corresponds to values above the mean. Out of the N = 56 total data samples, 29 have a
class label of 0 and 27 have a class label of 1, therefore the overall distribution is fairly even (i.e. not
skewed towards one label).

For each model, 40% of samples from each class are randomly selected as test samples for
performance assessment, and the remaining 60% of samples as training samples for model construction.
Note that this approach eliminates the possibility of biased selection from either class. If the training
and testing sets were instead selected arbitrarily from the entire dataset, then they could possibly be
skewed (ex. many samples selected from Class 1, but few from Class 0).

No wvalidation (development) set was required, since the hyperparameters of each model (i.e.
regularization constants, model complexity, etc.) were selected to be fixed values for simplicity.
The RF model was constructed using the RandomForestClassifier module from scikitlearn.ensemble, with
bootstrapping disabled. Although bootstrapping is normally recommended, the data sample-size in
this case (N = 56) is extremely small for modelling purposes. Therefore, all of the existing 56 - 0.6 ~ 34
samples are required for training; any arbitrary selection of samples without replacement could skew
the training set. The SVM model was constructed using the sklearn.svm.svc module, with a regularizer
value of C = 1 and the default linear kernel. Finally, the ANN model was constructed using tensorflow,
with 10 layers of 20 neurons each, a learning rate of « = 0.01 and a /»-regularizer of « = 0.1. In order
to maintain reasonable computational times required by each model, a maximum of 1000 epochs (or
"outer iterations") were allowed. The ANN model was allowed 50 steps (or "inner iterations") per
epoch.

The prediction accuracy of each model on the test set (of 56 - 0.4 ~ 22 samples) is reported in the
following Table 5, with respect to the type of inputs used.

Table 5. Prediction results for each model type.

Base Case Hierarchical Gaussian Dirichlet

RF 96.3 90.6 93.4 92.2
SVM 91.8 87.2 91.3 90.6
ANN 81.7 78.6 83.4 80.2

The RF models produced the most accurate test predictions for every case, followed by SVMs
then ANNs. When comparing the input types, the base case accuracy turned out to be the highest for
both RF and SVM models. The addition of hierarchical OTU clusters had the largest detrimental effect
on the test accuracy, as observed by the uniform, marked decreases across all three model types. The
addition of Gaussian OTU clusters improved the test accuracy for the ANN model, but proved to be
detrimental for the RF and SVM models, albeit with the least impact. The addition of Dirichlet OTU
clusters also decreased the model accuracy for all three models, but not as much as the hierarchical.
These results clearly show that the addition of biological data, which was initially expected to improve
quality of prediction, actually degrades it. Even though the OTU abundances should contain valuable
insight into the biological community interactions, the observed confounding effect is most likely
due to the undesirable qualities of the data. These include the inherent noise present in the OTU
abundances, and also the relatively low sample size (N = 56) to begin with. Another reason could be
that the explored clustering methods are incapable of cleraly extracting information related to coupling
effects between OTUs and water chemistry variables.
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If a model were to be selected for actual prediction of process outcomes, it would be the RF using
base-case, water chemistry variables. This model achieves a respectable > 95% accuracy on the binary
classification of SeRR.

5.5 Feature Selection Results

The relevant features in the prediction framework are defined as those which contribute
significantly to the accuracy of the model. The results in Section 5.4 showed the RF model as the most
accurate one out of the 3 modelling approaches, and therefore it will be used for feature analysis in this
section. The univariate feature selection strategy, Mean Decrease in Accuracy (MDA), was first used to
determine "relevant” features in terms of predicting the outcome SeRR. A RF model was constructed
for each of the input types of hierarchical, Gaussian, and Dirichlet clustering. 10000 permutations of
MDA were performed for each RF model; the averaged feature importances for each are summarized
in the following Tables 6, 7, and 8. Only the top 4 water chemistry and top 5 OTU features are reported
for conciseness.

Table 6. MDA feature importances for hierarchical clustering

Feature MDA (%)

SeD,in 6.3
Ammonia,y; 0.3
EBCT 0.2
Nitritegys 0.2
OTU215 1.5
OTU2637 0.6
OTU1579 0.6
OTU49 0.6
OTU3945 0.5

Table 7. MDA feature importances for Gaussian clustering

Feature MDA (%)

SeD,in 7.1
EBCT 1.2
Ammoniagy; 0.7
Nitriteyys 0.7
OTU57 1.5
OTU7347 1.1
OTU2765 0.9
OTU48 0.9
OTU7?7 0.8

Table 8. MDA feature importances for Dirichlet clustering

Feature = MDA (%)

SeD/in 53
EBCT 1.9
Nitriteoy: 1.1
COD;, 0.7
OTU35 14
OTU8 1.0
OTu7 1.0
OTU1 0.6
OTU9 0.5

Notice that Sep ;, consistently appears in each table as the most "relevant" feature, as MDAs
of 5 ~ 7% are observed as this feature is permutated. EBCT appears to be the second contender,
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causing accuracy drops of 1 ~ 2% in most cases when permutated. Ammonia,,; and Nitrite,,; are
the next most "relevant” features, however permutating them causes negligible accuracy drops of
(< 1%) on the RF models. Therefore Sep ;, and EBCT can be comfortably concluded as the main
deciders of overall selenium removal rate, in terms of all water chemistry variables. This result is
logical from a domain-knowledge perspective, since both variables are used to calculation for SeRR
using a mass-balance approach.

On the other hand, no consistent OTU features are observed. The most consistent one is OTU7
which appears in the top-5 lists for both GMM and DMM clustering approaches. However, most OTU
features show accuracy drops close to 1%, or less. These low MDA values render the representative
OTUs indistinguishable from random-noise features, therefore no clear conclusion can be formed in
terms of the OTU features. This result falls in line with those obtained in Section 5.4, which showed
that the biological variables confounded the models, rather than providing clarity.

Note that the MDA approach is univariate, which means it ignores possible correlations or
between existing features. In order to address this issue partially, the Conditional Mean Decrease in
Accuracy (C-MDA) approach is also explored. In C-MDA, the permutations of features are performed,
given the presence of other features. For example, when the feature Sep;, is permutated, it is
conditioned on the fact that the feature EBCT falls within a certain bracket of values. The R package
developed by [33] is used to perform these C-MDA experiments, since the algorithm systematically
decides the best values for the secondary variables to be conditioned upon. The detailed results can
be found in Fig. A22, A23, and A24 in Section I. The "relevant” variables from each RF model can be
summarized in the following Table 9:

Table 9. Overall CP feature importances

Rank Feature
1 SeD,in
EBCT
Nitriteyy:
COD;,
Nitrate;,
Ammoniagy,;

N Ul = W N

Notice that Sep ;, and EBCT are, again, identified as the primary “relevant" features. These
results agree with those obtained from ordinary MDA. The dominance of these two variables is logical,
given that they both appear in the mass balance for calculation of SeRR. Moreover, C-MDA suggests
that the secondary "relevant" features are nitrite outflow, COD inflow, nitrate inflow, and ammonia
outflow (to a lesser extent), which are also similar results compared to those from MDA. Therefore,
both feature selection methods suggest the existence of hidden interactions between these biological
features and selenium removal. However, the exact functional forms of these interactions, as well
as any domain-knowledge-related interpretations, are unclear from these feature selection methods.
Therefore, these secondary features serve as, at best, recommendations for monitoring and control.

6 Conclusions

In this work, a two-fold data analysis was performed on a wastewater-treating bioreactor. First,
the binary process outcome of selenium reduction rate was predicted using three model types - RF,
SVM, and ANN. For each type of model, the use of four different input types were explored - water
chemistry features only (base-case), UPGMA hierarchical clusters, Gaussian clusters, and Dirichlet
clusters. The clustering methods were performed in order to reduce the large initial dimensionality
of the biological features. Out of all model types, the RF model was the most accurate in terms of
predicting outcomes on the test set. Unfortunately, the addition of biological information (in the form
of OTU abundances) detrimentally affected the test prediction accuracies compared to using only
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the water chemistry variables. Actually, none of the three clustering techniques identified clusters
of acceptable quality. Specifically, the hierarchical clusters had low accompanying Silhouette values,
while the Gaussian clusters had high membership variation and were inconsistent between runs. The
Dirichlet clusters were supposedly a better reflection of the true underlying probabilistic distribution
of the OTUs. However, their addition still hurt the predictive models” performance. Out of the three
clustering techniques, the hierarchical clustering approach had the largest confounding effect on model
accuracy. In light of these results, a significant future effort is required on the revision of selected
clustering techniques for meaningful feature extraction.

The second analysis was performed in regards to the determination of "relevant" process variables,
through univariate (MDA) and conditionally-univariate (C-MDA) feature selection techniques. Both
techniques show that the features of retention time and selenium inlet flowrate dominantly influence
the selenium removal rate. This result is expected from a domain-knowledge perspective, in terms of
mass balances. Interestingly, variables such as ammonia outflow, nitrite outflow, and COD also play
significant roles in affecting selenium removal rate, even though the biological intuitions behind these
results are not revealed. The feature importances obtained from MDA and C-MDA are similar, despite
C-MDA being more of a multi-variate method. Several representative OTU features were identified to
be "relevant,” but their inconsistent results across the three clustering methods yield no interpretable
conclusions.

Overall, the results show that the core assumptions behind the clustering were potentially
incorrect, or incomplete. Specifically, the OTUs were assumed to fall into similar groups, with a "leader"
in each group. However, they may share little similarities in reality, and have completely independent
(instead of agglomerative) roles in affecting the process outcome. Although the stochasticity of the
microbial community was not fully understood from the results, the contributions of this work are still
non-trivial. Through the comparison and critique of various ML algorithms presented here, the reader
is encouraged to perceive this work as a cursory endeavour into meaningful process analytics.

6.1 Directions for future work

In terms of predictive models, the ones used in this work performed adequately in terms of test-set
accuracy. However, the Stochastic Configuration Network (SCN) approach [26] could be explored in
a future work, in terms of its potential benefits to prediction accuracy as well as feature information
extraction.

The proposed feature analysis methods require further revision, in order to improve the reliability
of their results. Specifically, the underlying reasons behind the inconsistencies between hierarchical,
GMM, and DMM clusters (and hence the representative OTUs) should be investigated. One potential
factor may be the marked differences between each clustering method. A future paper which
theoretically explores these points could potentially shed light on which clustering method is optimal,
given a specific type of raw data. Some straightforward suggestions for improvement include the
use of ensemble methods to produce a majority vote, over a large number of clustering experiments.
Another possible improvement is the inclusion of chemical (or process) variables in the clustering
decisions, although the exact implementation of this approach is not clear presently. Finally, the feature
selection methods (MDA, C-MDA) should also be expanded to include multivariate interactions. A
possible strategy would be to utilize Bayesian Networks [2] to map causal relationships between
variables. This has been demonstrated as a feasible approach in recent publications, for example, [39].

Once the work on data pre-processing and analysis is complete, the next step would be to
implement the obtained feature knowledge into to a controller. Specifically, these ML-guided results
should be used by the controller to select relevant Manipulated Variables (MVs), as well as decide on
the optimal control actions. Future papers can be written regarding the efficacy of this ML-guided
controller compared to well-known benchmarks, such as Proportional-Integral-Derivative (PID) [6] or
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Model Predictive Control (MPC) [40]. The autonomy (i.e. self-driving characteristic) of this controller
can be developed using ideas from the field of Reinforcement Learning (RL) [41].

Author Contributions: The individual contributions of the listed authors are as follows: conceptualization, Y.T.
and S.B.; methodology, Y.T. and S.B.; software, Y.T. and L.C.S.; formal analysis, Y.T. and S.B.; investigation, Y.T. and
S.B.; resources, Y.T. and S.B. and L.C.S.; data curation, Y.T. and S.B. and L.C.S.; writing—original draft preparation,
Y.T. and S.B.; writing—review and editing, Y.T. and S.B. and B.G; visualization, Y.T. and L.C.S.; supervision, S.B.
and B.G.; project administration, S.B. and B.G.; funding acquisition, S.B. and B.G.

Funding: This research was funded by the Genome British Columbia User Partnership Program, grant number
UPP026 to S.A. Baldwin (PI.) and B. Gopaluni (co P.I.)

Acknowledgments: The authors would like to gratefully acknowledge Shams Elnawawi, a senior undergraduate
student whose extensive coding expertise contributed significantly to the software development in Python.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
ANN Artificial Neural Net

ARIMA  Autoregressive with Integrated Moving Average
ARMA Autoregressive with Moving Average

ARX Autoregressive with Exogenous Inputs
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DMM Dirichlet Mixture Model
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SeRR Selenium Reduction Rate

UPGMA  Unweighted Pair-Group Method with Arithmetic Means
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A Standardization of data

Prior to predictive modelling, features of a dataset are often standardized or normalized in order to

homogenize the importance of each feature, such that each ends up with zero mean and unit variance.
(@)
X

Mathematically, each feature is scaled by the operation x/(i) — "—f”], using the respective feature

9j

N N .
means jij = % '21 x]{l) and feature standard deviations 0; = \/ % .Zl(x](l) — >
1= 1=

B Details of the Random Forest (RF) model

Random Forests are a well-known model covered in many texts, such as [42] and [8]. Its main
advantage is the convenience of implementation; many optimized packages (such as scikitlearn) exist
which allow users to obtain results quickly even for large datasets. The goal of RFs is to map the raw
features of a dataset to outcomes, which are discrete class labels ¢ € [1,C]. Each of the original d,
variables is split into two regions, one above and one below a threshold value 6. These regions become
the branches of the first split on said variable. Each split is a conditional partition of a variable, which
decides the final outcome. If a split on the first feature is insufficient to decide the final outcome, then
a second split is performed off of the two branches from the first split. This continues until a clear
outcome is realized.

A simple example demonstrating the partitioning of 2 features is provided in the following
Table Al.

Table A1l. Feature partitioning for a 2-feature decision tree, with 22 = 4 possible partitions. Each partition is
labelled using a number between 0 and 3. The threshold values 6 decide which partition each sample falls under.

X1 < 601 x1 > 01
Xy < 63 0 1
Xy > 6y 2 3

To model all possible outcomes, 2% partitions or branches are potentially required in total (where
dy is the total number of features). The computation cost of this calculation becomes impractically
large for common computing devices (such as PCs or laptops), as dy approaches numbers as small as
15. If dy is extremely large (ex. hundreds or thousands), the outcome-space cannot be feasibly mapped
out in its entirety. However, it can be approximately sampled using the concept of Random Forests (RFs)
[43]. In this approach, a random subset of all d features is selected and split on; the tree constructed
using these arbitrarily-selected features is called a RF. Since not all d, features can be accounted for in
a single RF, a large number of RFs are constructed (i.e. thousands or more) and the predicted class
labels are determined by taking a majority vote across all obtained outcomes. An example of this is
illustrated in the following Fig A1.

The threshold value 6 used for each split is determined by a simple scoring rule in most cases [23].
For example, the feature x; may have a range of values x; min < %1 < X1 max. A computational routine
would define an arbitrary step-size € (usually a fraction of the gap x; max — ¥1,min), then start with the
threshold value x1 min + € and work all the way up to x1 max — €. The final threshold value is selected
as the one resulting in the highest model accuracy (in terms of training).

In order to construct RFs which produce an unbiased estimate of the true class label for each
given data sample, a technique known as bootstrapping or bootstrap aggregating (“bagging”) can be used
[23] [44]. Each RF randomly selects from the total N data samples to train on, with replacement, such
that over a large number of RFs the total number of samples selected turns out to be approximately
0.63N. Bootstrapping also mitigates numerical instabilities, which can occur with RFs and are especially
common in complex models such as ANNs. However, it is only viable if the sample size N is sufficiently



783

Version September 2, 2019 submitted to Journal Not Specified 30 of 48

Majority vote: § =1

Figure A1. Multiple random forests constructed for a binary-class problem. The outcomes (either Class 0 or 1) are
decided by combining sequential splits of d; randomly selected features, from the original dy-dimensional feature
space. The final outcome is determined by a majority vote of individual outcomes from all trees.

large (thousands or more). When bootstrapping on small datasets (N on the order of hundreds or less),
special care must be taken to bootstrap over a large number of iterations.

C Details of the Support Vector Machine (SVM) model

The Support Vector Machine maps existing samples of a training set to their corresponding given
classes, such that the classes of new samples can be predicted. However, instead of partitioning
on binary splits of each feature like RFs, SVMs directly find the separating boundaries between the
classes of data. Support vectors are the vectors between the closest data sample in each class to the
separating boundaries [24]; the distances of these vectors are maximized in order to optimize the
extent of separation between classes. Although the boundaries can be found using the hinge-loss
function, computational routines today instead use the softmax function as a smooth approximation of
the hinge-loss. This approximation improves the numerical stability in solving for the SVM model via
gradient descent, while not hindering its accuracy [45]. The softmax calculates the probability p that each
sample x(/) belongs in class ¢ € [1,C]. The well-known logistic regression is the special-case of softmax
for the binary (2-class) scenario. The parameters w represents the model coefficients corresponding
to each specific class. Specifically, the w, terms represent the model weights, assuming sample x()
belongs in class c. Similarly, the terms w, () represent coefficients assuming sample x(!) has a class

label y() € [1, C]. Using these concepts, the softmax probability for any sample can be expressed as:

exp(w],x1)

p(y9|w, x)) = (A1)

C o
¥ exp(w/ x()
c=1

An example of multi-class SVM with 4 classes (C = 4) is shown in Fig. A2.

Data that is linearly-separable allows linear boundaries to be drawn to separate the different classes.
The equations of these separating hyperplanes can be obtained using methods described in [24]. On
the other hand, data that is non-linearly-separable cannot be accurately modelled by linear separating
boundaries. In these cases, the kernel trick [7] can be used to construct high-dimensional feature spaces
in which the data becomes linearly separable.
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Figure A2. Multi-class SVM for 4 classes. The hyperplanes (lines) in the 2-D space clearly separate the 4 distinct
classes with acceptable misclassification rates. A smooth approximation can be made using a 4-class softmax

function.

Figure A3. A linearly-separable dataset (left), versus a non-linearly-separable dataset (right), adapted from [46].

. D Details behind Artificial Neural Networks (ANNSs)

a0 Unlike least squares or SVMs which can only perform regression or classification, respectively,
sos ANNS can predict either continuous (regression) or discrete (classification) outputs. The first layer in
soz an ANN consists of an activation function acting upon an affine, i.e. y = A(WX + b). The function A
sos is usually a non-linear transformation of its linear argument (WX + b). If A were chosen to be linear
=00 in every layer of the network, the whole ANN would trivially reduce to a linear least-squares model.

Bias vector

Input X

\ !
w3z
Input X; _..._ Output ¥ = A(W* X +b)
/

Input X5 Single Neuron

Figure A4. Visualization of the operation y = A(WX + b) in a single ANN node. The weighted sum of its inputs
is added to a bias term; the final sum is transformed by a nonlinear activation function chosen by the user.

s10 Subsequent layers follow the same affine-activation transformation, i.e. zl[lH] = A(wz!! +b). For
s each neuron z, the subscript represents the neuron number, while the superscript represents the layer
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sz in which the neuron is located. The following Table A2 contains some commonly-used activation
a1 functions within ANNS:

Table A2. Typical activation functions for neural networks

Activation Abbreviation Formula
Affine af f(z) wz+ b

0, ifz<0
Step S(z) L ifz>0
Sigmoid sig(z) Tre=
Hyperbolic Tangent tanh(z) eriz:i
Rectified Linear Unit ReLU(z) max(0,z)

Leaky Rectified Linear Unit LReLU(z) max(nz,z)

a14 The entire neural net can be visualized as the following structure, with inputs entering the leftmost
a5 side and outputs exiting right-most side.

Output

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure A5. Conventional ANN structure with two hidden layers.

=« E Details of hierarchical clustering

817 The four main types of hierarchical clustering used in literature are [28]:

1. Single Linkage (Nearest-Neighbour): "Nearest-neighbour" clustering. Initially, each sample
is considered a centroid. The pair of samples with the smallest distance between them is
merged together; subsequent clusters are merged according to the distances between their closest
members. The linkage function is expressed as:

D(Cp,Cp) = min d(x",x0)), (A2)
x(i)eCp,x(f)qu

a18 Cp and C; represent two arbitrary clusters, and D the distance between them.
2. Complete Linkage (Farthest-Neighbour): Also known as “farthest-neighbour” clustering.
Identical to single linkage, except clusters are merged together according to distances between
their farthest members. The linkage function is expressed as:

D(Cp,Cq) =  max  d(x),x). (A3)
x<i)eCp,x(f)qu

3. Agglomerative Averages: Also known as “average" clustering. Identical to single linkage, except

clusters are merged together according to average distances between their members. The linkage
function is expressed as:

D<CPI Cl]) = # Z Z d(x(i)/ x(]))/ (A4)
IColIG] e, e,
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where |Cp| represents the number of samples in each cluster, during each iteration.

4. Ward’s Method: Also known as “minimum-variance" clustering. Instead of merging samples or
clusters together based on distance, it starts by assigning “zero variance" to all clusters. Then, an
Analysis of Variance (ANOVA) test is performed: two arbitrarily-selected clusters are merged
together. The “increase in variance" is calculated as:

Cpl- 1G] |~
A(Cp,Cq) = 1= q|||Cp—Cq||§ (A5)

Cpl +1Cq
for all pairwise clusters. C,, represents the centroid coordinates for cluster Cp. The pair of clusters
that results in the smallest increase in variance is then merged at each iteration.

The Agglomerative Average approach includes the subroutines Unweighted Pair-Group Method
with Averages (UPGMA), Unweighted Pair-Group Method with Centroids (UPGMC), Weighted
Pair-Group Method with Averages (WPGMA), and Weighted Pair-Group Method with Centroids
(WPGMC), which are discussed in detail in [47]. The difference between these methods lie within
the use of averaged Euclidean coordinates versus pre-determined centroids, and whether each data
sample contribution is equal or weighted (with the weights determined by some a priori information).

The confidence of clustering results can be quantitatively assessed by two metrics:

1. Cophenetic correlations [29]: Measures how well a specified clustering method preserves
original pairwise distances between samples. In other words, how similar are the average
inter-cluster distances between pairwise points compared to their actual distances? The formula
is:

T (d(x), ) — d)
i#j

w ¥ (d(x0), x0)) — dP2][ & (ed (x0), x0)) — cd 2]
i#] i#]

(A6)

which returns a value between 0 and 1, where d represents average distances from all pairs
of x(),x(), cd represents the Cophenetic distance between two pairwise points x(!) and x(/),
defined as the distance from the base of the dendrogram to the first node joining x() and x(/).
2. Silhouette analysis [30]: Measures the optimal depth of a specified clustering method.
Mathematically, it assesses how well each sample x(/) belongs to its assigned cluster Cp. Each
individual Silhouette number is evaluated as:
1

4

() _ o
X — X
s — "G 7€ (A7)

)
() ()
max(xcq, xcp)
where C, represents the closest cluster to each Cp. At each depth on the dendrogram, the average
N
Silhouette number is evaluated across all samples and calculated as 5 = & ¥ s(). The depth
i=1

with the highest § is then selected for that particular clustering scheme.

By combining the Cophenetic and Silhouette analyses as outlined above, the “most confident"
clustering method (i.e. UPGMA vs. Ward vs. single-linkage vs. complete-linkage) and the optimal
clustering depth, respectively, can both be selected.

F Details behind Probabilistic Mixtures

The motivation behind using probabilistic mixtures is to model the underlying distributions of
the given data. Models using one distribution are sufficient for uni-modal systems, but fails to
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capture multi-modal systems effectively. Therefore, data are usually modelled as the sums of various
probabilistic distributions, with the structure of said distributions specified as a prior assumption.
Mixture models are different from the hierarchical models mentioned in 2.2.1. The difference lies in
the assumption that in mixtures, each individual species is assigned a group to which it is similar, but
overlaps may occur between multiple groups. In other words, each species may belong to more than
one group. This introduces a degree of stochasticity which makes these models more flexible. The two
mixtures used in this paper are:

K
1. Gaussian Mixtures [8]: p(x) = Y wiN (x|py, Lx); underlying distribution is assumed to be
k=1

a sum of K weighted multivariate Gaussians with individual means and covariances. The
term wy represents the weighting factor for each Gaussian. Each Gaussian has the formula
N (xlm Z) = Fo—imamsexp| = g(x—m) T I (x— ) |.

2. Dirichlet Mixtures [19]: Define p(!) as a vector containing the probabilities that sample x(?)
belongs to each community species. The Dirichlet mixture prior over K distributions is P(p()) =
Y&, Dir(p') | ag) 7ty, where ay, are the Dirichlet parameters and 71y, are the Dirichlet weights.

The Gaussian assumption is reasonable for most natural processes, which assumes that the
underlying distributions are symmetric. When little a priori knowledge is available, it is a popular
choice. However, if domain knowledge is available, it should be used to guide the choice of distribution
used. For example, if OTU data mostly contains abundances skewed towards low counts, then the
Dirichlet mixture will model the data more accurately than Gaussian. This type of mixture model is
discussed in greater detail in the following Section G.

G Details behind the Dirichlet mixture

The detailed modelling equations behind Dirichlet distributions and mixtures can be found in
[19]. A summary of the paper’s results is as follows:

e The likelihood of observing each sample x(?) is:

4 4 (i)
LW [ p0] = [ %u x@]! ﬁu i

j=1 j=1 x](l)

(A8)

where dpTy is the total number of OTU species, p}i) the probability that sample i belongs to
species j, and X ) the abundance count of species j in sample i.
o The total likelihood across all samples is therefore:

Lx|pM, ., pMN)y = HL(I)(x(z) | p®) (A9)
i=1

o The Dirichlet distribution is modelled as:

. doru [p](.i)]GmJ'*l doru (0)
Dir(p\" | 6m) = T'(6) ]j W&( ; P —1) (A10)
j=1 ] j=1
where 6 represents the Dirichlet precision (i.e. large 6 implies all p](.i) values lie close to the mean
d
p value, and vice versa), m a normalization constant such that OZT;U mj =1, and ¢ the Dirac delta
j=1

function which ensures further normalization.
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o The Dirichlet mixture prior over K distributions is:

. K .
P(p? Q) = Y Dir(p" |a)me (A11)
k=1
860 where ay = Omy are the Dirichlet parameters, m, the Dirichlet weights, and Q =
870 (K,ay,- -+ ,ak, pi1, - - - , k) the complete set of mixture hyperparameters.

e The Dirichlet mixture posterior over K distributions is:

_ L LOGO | pD)Dir(pt) | ag)

- Al2
YK P(x0) [y (A12)

P(p" |x),Q)
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H Time plots of process variables over time

The time-plots of all water chemistry variables (in Table 2) are provided here. This enables a
visual analysis of the variations over time. Due to proprietary reasons, the values have been normalized
using the pre-processing procedure outlined in Section 4. The plots are separated by reactor number,
i.e. Reactor; and Reactor; to distinguish the behaviour in the two different reactors. The horizontal
time-axis represents duration measured in hours.

H.1 Time-plots from Reactor 1
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Figure A6. Normalized empty-bed contact time for Reactor 1.
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Figure A7. Normalized ammonia outlet flowrate for Reactor 1.
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Figure A8. Normalized nitrate inlet flowrate for Reactor 1.
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Figure A9. Normalized nitrite outlet flowrate for Reactor 1.
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Figure A10. Normalized selenium inlet flowrate for Reactor 1.
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Figure A11. Normalized chemical oxygen demand for Reactor 1.
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Figure A12. Normalized categorical carbon source (MicroC) for Reactor 1.
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Figure A13. Normalized categorical carbon source (Acetate) for Reactor 1.
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Figure A15. Normalized ammonia outlet flowrate for Reactor 2.
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Figure A16. Normalized nitrate inlet flowrate for Reactor 2.
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Figure A17. Normalized nitrite outlet flowrate for Reactor 2.
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Figure A18. Normalized selenium inlet flowrate for Reactor 2.
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Figure A19. Normalized chemical oxygen demand for Reactor 2.
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Figure A20. Normalized categorical carbon source (MicroC) for Reactor 2.
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Figure A21. Normalized categorical carbon source (Acetate) for Reactor 2.
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I Feature selection results from C-MDA

44 of 48

The following figures show the feature importances obtained using the Conditional Permutation
algorithm developed by [33]. The plots are separated for the 3 cases of hierarchical, Gaussian, and

Dirichlet OTU-clusters.
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Figure A22. Conditional feature importances for hierarchical clustering.
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Figure A23. Conditional feature importances for GMM clustering.
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Figure A24. Conditional feature importances for DMM clustering.
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