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Abstract

We develop a multi-objective economic model predictive control (m-econ MPC) framework to control and

optimize a nonlinear mechanical pulping (MP) process. M-econ MPC interprets economic MPC as a multi-

objective optimization problem that trades off economic and set-point tracking performance. This interpre-

tation allows us to construct a stabilizing constraint that guarantees closed-loop stability. The framework

infers unmeasured states of the MP process (associated with product consistency) by using a moving horizon

estimator (MHE). The MP process dynamics are described by using a nonlinear Wiener model. Examples

from a two-stage high-consistency MP process are employed to demonstrate that significant improvements

in economic performance are achievable.

Keywords: Economic model predictive control; moving horizon estimation; mechanical pulping process;

stability

1. Introduction

The mechanical pulping (MP) process is one of the most energy-intensive operations in the pulp and paper

industry [1, 2, 3, 4, 5, 6]. The development of control strategies for MP processes dates back to the mid-1970s

[2, 3, 4]. Significant research progress has been reported in the fields such as refining optimization, energy

reduction, and pulp quality improvement [5, 6, 7, 8]. In recent years, strong global competition has driven5

the development of new control and optimization techniques to reduce energy consumption and enforce strict

pulp quality specifications [9, 10, 11]. The development of advanced control strategies is difficult because MP

processes are inherently multivariable and involve strong interactions.

Model predictive control (MPC) is an optimization-based control technique that computes optimal control

policies by solving a finite horizon optimization problem in real time. An outstanding feature of MPC is that10

physical constraints on actuators and outputs can be incorporated directly in the optimization problem. As

a result, MPC has attracted considerable research efforts and has been widely applied in various industrial

processes [12, 13, 14]. In the context of MP processes, implementations of linear MPC have been reported
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in the past decade. These implementations use a linearization of the MP process [3, 15], which results

in suboptimal performance due to the presence of strong nonlinearities. The development of advanced15

optimization algorithms and computing hardware enable the direct handling of nonlinear dynamics in MPC

formulations [16, 17, 18, 19]. The authors in [9, 10, 11] presented results on the control and optimization

of MP processes using nonlinear MPC (NMPC). In our previous work [20], we proposed a multi-objective

economic MPC strategy (that we call m-econ MPC) for two-stage high consistency (HC) refining processes

2. We show that m-econ MPC can simultaneously minimize economic cost while enforcing set-point tracking20

(which is critical to maintain product quality). The controller sees economic and tracking performance

as conflicting goals and this insight is used to derive a stabilizing constraint that guarantees closed-loop

stability. More recently, the authors in [21] analyzed the inherent robustness properties for an economic

NMPC controller, which provides a high flexibility to optimize economic performance and remains robust in

the face of disturbances. Despite these advances, extensive obstacles still prevent the deployment of NMPC in25

MP processes [10]. Among these obstacles, state estimation is of primary importance because many process

variables cannot be measured reliably.

The majority of existing work on advanced control for MP processes is based on the assumption that the

state variables are measurable and known in real-time. However, information on important variables such as

pulp consistency in HC refining is rarely available due to the lack of measurement sensors (particularly fast30

and reliable online sensors). For instance, one of the most widely used sensors in industry is the pulp quality

monitor (PQM) that can measure the shives, fiber size distribution, and freeness in the pulp. This sensor

takes measurements infrequently (every 50-60 minutes) and thus limits the use of MPC.

State estimation for nonlinear systems is particularly challenging when there are constraints on the state

variables and disturbances [22, 23, 24]. To address such issues, moving horizon estimation (MHE) has been35

proposed as a practical approach that can directly embed nonlinear dynamics and constraints [25, 26]. In

MHE, estimates of the states are obtained in real-time by solving a short horizon optimization problem that

minimizes the difference between measurements and predicted outputs. A moving window of fixed size slides

forward in time and prior information on estimated states is updated via the so-called arrival cost .

In this paper we develop an economic MPC framework for a two-stage HC refining process that combines40

m-econ MPC with a MHE estimator. Using simulation experiments on a two-stage HC refining process, we

demonstrate that state variables can be inferred reliably from limited measurement data and that the MPC

can achieve significant improvements in economic performance.

The paper is outlined as follows. In Section 2, we present a brief introduction on the two-stage HC

refining process and some preliminaries on the MHE. Section 3 is devoted to the m-econ MPC technique for45

the two-stage HC MP process. The combination of MHE and m-econ MPC is elaborated in Section 4. In

2The pulp consistency is defined as the mass percentage ratio of wood to the mixture of wood and water. It is high consistency

(HC) when this ratio is between 20% and 50%, and it is low consistency (LC) when this value is between 3% and 5%.
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Figure 1: Operational units in a typical two-stage MP process

this section, we also present two simulations to demonstrate the performance of the proposed m-econ MPC

technique and MHE estimation, followed by conclusions in Section 5.

2. High Consistency Refining Process

2.1. Process description50

A multi-stage MP process generally consists of wood chip pretreatment, wood chip refining and pulp

refining stages as shown in Figure 1. In the wood chip pretreatment stage, wood chips will be screened

to remove over and under sized particles and then steamed and preheated at atmospheric pressure around

100◦C. There are typically two high consistency refiners in the wood chip refining stage - a primary and a

secondary refiner as shown in Figure 2. After pretreatment, the wood chips are introduced into the inlet of55

the primary HC refiner by the cylindrical chip transfer screw feeder. Dilution water is usually fed into the

inlet of the refiner to control the consistencies in the refining zone. The wood chips are broken down into

fibers as they pass through the two rotating discs of the refiners.

The key variables required for control and optimization of the process, such as manipulated variables,

operating variables and pulp quality variables, will be discussed in detail in the following subsections.60

Main process manipulated variables

Manipulated variables are the input variables which can be adjusted during the process operation. The

main inputs in a MP process, shown in Figure 2, are summarized in the left column of Table 1.

(1) Chip transfer screw speed, u1. The chip transfer screw speed for the primary refiner is the main

manipulated variable used to control the flow of chips from the preheater at the wood chips pretreatment65

stage to the inlet of the primary refiner. Any changes in the screw speed can affect the flow of dry fibres

to the refiner. Most pulp mills also use the transfer screw speed to set the desired production rate.
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Figure 2: Schematic of two-stage HC refining

Table 1: A list of process variables

MV Note Unit Notation SV Note Unit Notation

u1 Chip transfer screw speed rpm R x1 Production rate tonnes/day P

u2 Primary refiner plate gap mm Gp x2 Primary motor load MW Mp

u3 Primary dilution flow rate kg/s Dp x3 Primary consistency (?) % Cp

u4 Secondary refiner plate gap mm Gs x4 Secondary motor load MW Ms

u5 Secondary dilution flow rate kg/s Ds x5 Secondary consistency (?) % Cs

Note: The variables with (?) are unmeasurable state variables.

(2) Primary/secondary refiner plate gap u2, u4. The plate gap is the distance between two plates of a

refiner. It is normally controlled by a mechanical loading system. The gap size can be measured by a

gap sensor or indicated by changes in the relative shaft position. Variations in gap size directly impact70

the mechanical force exerted by plates onto wood chips, and thus affect the motor load.

(3) Primary/secondary dilution flow rate u3, u5. The refining zone consistency has a major effect on

pulp properties. The water added to the refiner will alter the consistency and thus change the pulp

quality. Large variations in the dilution water flow rate can also lead to unstable refining operation.

Manipulating the water flow rate at the inlet of the each refiner is commonly used by pulp mills to75

maintain the consistency in refiners.

Main process state/operating variables

The state variables are the key variables and highly correlated with the pulp properties. By controlling

manipulated variables the states are maintained at optimum set-points. The optimum set-points in a MPC

controller are determined by the economical operation of the MP process. The main process state variables80

used in this work are summarized in the right column of Table 1.
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(1) Production rate x1. Production rate is one of the most important operating considerations in pulp

mills. The production rate can be changed by adjusting the chip transfer screw speed. However, the

production rate varies with the variations in the raw wood chip quality such as wood species, chip

density, and moisture content. The production rate can also affect the specific energy and the pulp85

quality.

(2) Primary/secondary motor load x2, x4. Among the operating variables, motor load is one of the most

important measurements which are highly correlated with the pulp qualities. One way to set and

maintain the motor load is to adjust the plate gap since motor load is directly affected by and sensitive

to the gap size.90

(3) Primary/secondary consistency x3, x5. At a given specific energy, the consistency in the refining zone

for both the primary and secondary refiners has a major influence on pulp properties. An improved

consistency control can significantly reduce the fluctuations of motor load and enhance the refiner

performance.

Steam production is also an important operating variable because it is associated with high energy consump-95

tion. However, as is common practice in most pulp mills, this variable is rarely considered in control design

for MP processes.

Specific energy

Specific energy (SE) (in MW/tonnes/day) is the energy consumed per ton of dry pulp and is a critical

variable that strongly affects pulp properties [5]. SE is defined as the ratio of the motor load with respect

to the production rate. Therefore, motor load and production rate can be adjusted according to the desired

SE. One of the traditional pulp quality control strategies is to manipulate SE based on the quality-energy

relationship. For the i-th refiner and motor, SEi is defined as follows:

Specific Energy (SEi) :=
Motor loadi

Production rate
, i = p, s. (1)

where the subscript index i = p, s represents the primary and secondary refiners, respectively. For a two-stage

HC MP process, the total SE at time instant t for both primary and secondary refiner is defined as,

Total Specific Energy (TSEt) :=
Total motor load

Production rate
. (2)

In our economic MPC design, TSEt is embedded directly in the objective function and is used as an indicator

of economic performance.100

Pulp properties

The final pulp quality can be characterized by many property variables such as freeness, fibre length, shive

content, coarseness, and strength. To assess the quality of the pulp, we consider the following commonly

used pulp properties: Canadian Standard Freeness (CSF, ml), long fibre content (LFC, %) and shive content

(SC, %).105
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Process disturbances

Wood chips are the main raw materials for pulp production and thus variations in wood chips comprise

the main disturbance that affect the refining conditions and final pulp properties. In this work, variations

existing in the raw chips (such as the chip bulk density and chip moisture content) will be considered as

disturbances.110

Unmeasurable state variables

The consistency in the primary and secondary refiners (x3 and x5) cannot be measured reliably in real-

time and thus need to be inferred from the measured outputs (x1, x2, and x4) and inputs (u1, · · · , u5). The

consistency in the refiner is known to significantly impact pulp properties. A variety of advanced control

strategies have been proposed in the literature with the assumption that the consistency can be measured115

accurately and that it can be used directly by the controller. However, such assumption becomes questionable

given that practical sensors are usually not fast enough to measure the consistency in real-time. As a result,

a reliable state estimation mechanism for the consistency is needed to reduce fluctuations in the motor load

and for stabilizing the MP process.

2.2. HC refining model120

The mathematical models of mechanical refining process have been reported recently in [9, 10, 11, 20, 27].

The model used in this paper will be based on the Wiener-type models derived in our previous work [20, 27],

which were developed by using a combination of mechanistic and empirical methods. The production rate,

motor loads and consistencies for both primary and secondary refiners are treated as discretized differential

state variables. The chip-transfer screw speed, plate gap, and dilution water flow rates of each refiner are125

taken as manipulated variables. The model and disturbances are based on the data collected in identification

experiments on actual industrial processes, and it is shown that the developed model can represent the real

process with high-fidelity.

Consider the two-stage HC pulping process which can be described by nonlinear difference equations with

additive state and measurement noise 3:

xt+1 = Axt + h(xt, ut)︸ ︷︷ ︸
f(xt,ut)

+ζt, (3)

yt = g(xt) + ηt, (4)

where A ∈ Rnx×nx is the dynamic matrix which can be identified for the MP process by using linear system

identification methods. xt ∈ Rnx , ut ∈ Rnu , and yt ∈ Rny are the states, manipulated variables, and130

controlled outputs, respectively. For a two-stage HC process, xt and ut are defined in Table 1. The state

and input variables are required to satisfy the constraints xt ∈ X and ut ∈ U, where the sets X ⊆ Rnx

3Please refer to Appendix A for the details of two-stage HC MP process model.
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and U ⊆ Rnu are compact and contain the equilibrium point (xss, uss). The vector ζt ⊆ Rnζ is an additive

disturbance affecting the system dynamics and can be used to represent the disturbance attributed to the

state transition from xt to xt+1. The system states can be observed through the measurement equation (4)135

where yt ⊆ Rny is the observation and ηt ⊆ Rnv is the measurement error. In this work, we assume that ηt

is independent and identically distributed (i.i.d.) with known mean and variance. h(·) : Rnx × Rnu 7→ Rnx

is a nonlinear state function. f(·) : Rnx ×Rnu 7→ Rnx is a nonlinear function which represents the dynamics

that map the current input and state to the state at the next time instant.

The measurement vector yt is defined as

yt =
[
P̌ , M̌p, M̌s

]
. (5)

where P̌ , M̌p, M̌s are the noisy measurements of the state variables P , Mp, Ms, respectively.140

2.3. State estimation

For effective control an MPC on the HC refiner has to account for changes in state variables and therefore

states have to be estimated to solve the related optimization problem. However, when unmeasurable states

are present, the unmeasured states need to be inferred from the available (mostly noisy) measurements. The

model (3)–(4) is corrupted with process and measurement noise ζt and ηt that are assumed to be normally

distributed with zero mean and constant covariance Pζ and Pη:

ζt ∼ N(0, Pζ), ηt ∼ N(0, Pη). (6)

The states of the system need to be inferred from the measured outputs (5). Specifically, MHE uses a moving

measurement window of the form:

ITt = [Iyt
T
, Iut

T ] = [yt−Nmhe , · · · , yt−1, yt, ut−Nmhe , · · · , ut−1], t ≥ 0, (7)

to compute the estimates x̂t of the states xt. Nmhe is the size of the moving window for the estimator. It

is the information vector at time t. We formulate the estimation problem as the solution to the following

optimization problem,

min
z0,{ζk}

Nmhe−1

k=0

Jmhe := µ||z0 − x̄0t−Nmhe ||
2 +

Nmhe∑
k=0

||yt−Nmhe+k − g(zk)||2Qη +

Nmhe∑
k=0

||ζt−Nmhe+k||2Qζ (8)

s.t. zk+1 = f(zk, ut−Nmhe+k) + ζk, k = 0, . . . , Nmhe − 1, (9)

yk = g(zk) + ηk, k = 0, . . . , Nmhe, (10)

zk ∈ X, zNmhe ∈ Xf , k = 0, . . . , Nmhe − 1, (11)

where Jmhe is the optimal cost which incorporates the arrival cost (the first term in (8)) and the least-square145

error of the outputs (the second term in (8)) in the estimation horizon Nmhe. x̄
0
t−Nmhe is the prior value of

the initial state and µ is a weighting factor for the arrival cost. The state variables are subject to the state

model in (9) as well as the constraints in (11). The solution of the optimization problem is given by the state

trajectory [z̃0, · · · , z̃Nmhe ]. From the solution, we obtain the estimate of the current state of the system as

x̂t ← zNmhe . Conditions for stability of MHE have been established for general settings in [23, 24, 25, 26, 28].150
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3. M-econ MPC for the MP Process

In this section, we focus on the development of m-econ MPC for two-stage HC processes.

3.1. Basic notation and setting

Given the model of the two-stage HC refining process in the form (3) – (4), the set-point tracking value

function V trt and the economic value function V ect at time t are given by:155

V trt :=

t+Nmpc−1∑
k=t

Ltr(x̂k − xss, uk − uss), (12)

V ect :=

t+Nmpc−1∑
k=t

Lec(x̂k, uk), (13)

whereNmpc is the prediction horizon and x̂k denotes the estimated state at time k from MHE. Ltr(·) and Lec(·)

are the tracking stage cost and economic stage cost, respectively. (xss, uss) are equilibrium points which can

be calculated by solving a steady-state optimization problem. The mapping Ltr : Rnx × Rnu 7→ R is always

nonnegative. In the rest of this paper, Ltr(x̂k, uk) will be used as a compact representation of the stage cost

Ltr(x̂k − xss, uk − uss). In the formulation of economic MPC, the economic stage cost Lec : Rnx ×Rnu 7→ R160

is assumed to be bounded and related directly to the desired economics. The notation {x̂k, uk}
t+Nmpc
t will

be used hereafter to describe the trajectory of estimated states x̂k, k = t, . . . , t+Nmpc, from MHE and the

sequence of manipulated variables uk, k = t, . . . , t+Nmpc − 1, for brevity.

In what follows, we assume that the tracking MPC (tr MPC) is feasible for any xt ∈ X. The optimal

trajectory at time t + 1 is defined as {x̄k|t+1, ūk|t+1}
t+1+Nmpc
t+1 and is obtained by solving the optimization165

problem,

min
vk

Nmpc−1∑
k=0

Ltr(zk, vk), (14)

s.t. z0 = x̂t+1, zNmpc ∈ Xf ,

zk+1 = f(zk, vk), k = 0, . . . , Nmpc − 1,

yk = g(zk), k = 0, . . . , Nmpc,

zk ∈ X, vk ∈ U, k = 0, . . . , Nmpc − 1,

where zk, vk are the internal optimization variables representing states and controls, respectively. For the

nonlinear MP process defined in (3)-(4), we require that the terminal states lie in the terminal region Xf
instead of at the desired steady state xss. Xf ∈ X is a compact terminal region containing a neighborhood

of the point xss in its interior. The value function for tr MPC at time t+ 1 is shown to be

V̄ trt+1 :=

t+Nmpc∑
k=t+1

Ltr(x̄k|t+1, ūk|t+1). (15)

In the standard tr MPC problem, the stage cost is normally defined as penalizing the deviation of process

variables from their steady-state values. The closed-loop stability of tr MPC is established by treating the
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optimal cost along the closed-loop trajectory as a Lyapunov function [29, 30, 31, 32]. However, for economic

MPC, the corresponding stage cost function is defined by Lec(·), which may be selected by the user according170

to practical needs and such function may not be positive definite. As a result, most practical economic cost

functions cannot be used as Lyapunov functions and closed-loop stability cannot be guaranteed. In the next

subsection, we combine tr MPC and economic MPC into the multi-objective MPC formulation to enforce

stability.

3.2. Multi-objective economic MPC175

The trajectory {x̄k|t+1, ūk|t+1}
t+1+Nmpc
t+1 is optimal for the standard tr MPC problem in (14). Stability

of standard tr MPC technique is achieved by treating the tracking stage cost Ltr as a Lyapunov function.

Specifically, from Lyapunov theory for standard tr MPC, a sufficient condition that ensures closed-loop

stability is [32]:

V̄ trt+1 − V trt ≤ −Ltr(xt, ut). (16)

A less restrictive condition, reported in [33], shows that stability of any alternative MPC formulation can

also be guaranteed if the associated trajectory {xk|t+1, uk|t+1}
t+1+Nmpc
t+1 satisfies:

V trt+1 ≤ V̄ trt+1 + σ(V trt − V̄ trt+1), (17)

where σ ∈ [0, 1) is a scalar. Here, V̄ trt+1 (defined in (15)) is the value function of the optimal trajectory for

the tracking MPC at time instant t+ 1. The actual value function V trt+1 in (17) is defined as:

V trt+1 :=

t+Nmpc∑
k=t+1

Ltr(xk|t+1, uk|t+1). (18)

Since any feasible trajectory satisfying (17) leads to closed-loop stability, we may impose this condition as

a stabilizing constraint when formulating an economic MPC controller, which results in the m-econ MPC

formulation:

min
vk

Nmpc−1∑
k=0

Lec(zk, vk), (19)

s.t. z0 = x̂t+1, zNmpc ∈ Xf ,

zk+1 = f(zk, vk), k = 0, . . . , Nmpc − 1,

yk = g(zk), k = 0, . . . , Nmpc,

zk ∈ X, vk ∈ U, k = 0, . . . , Nmpc − 1,

Nmpc−1∑
k=0

Ltr(zk, vk) ≤ εt+1(σ), k = 0, . . . , Nmpc − 1, (20)

where

εt+1(σ) := V̄ trt+1 + σ(V trt − V̄ trt+1). (21)
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Note that the constraint in (20) is equivalent to the stabilizing constraint (17). Closed-loop stability of m-econ

MPC is then guaranteed by the stabilizing constraint in (17). The argument of this statement is outlined as

follows. Adding the term −V trt to both sides of (17) we have

V trt+1 − V trt ≤ (1− σ)(V̄ trt+1 − V trt ). (22)

Combining (17) and (22), the following inequality holds for any feasible solution,

V trt+1 − V trt ≤ −(1− σ)Ltr(xt, ut). (23)

Since (1−σ)Ltr(xt, ut) is nonnegative for σ ∈ [0, 1), we can conclude that the trajectory {xk|t+1, uk|t+1}
t+1+Nmpc
t+1

obtained from solving the m-econ MPC algorithm (19)–(21) is stable. More precisely, the closed-loop sys-180

tem is asymptotically stable under the control law obtained from solving the m-econ MPC problem for any

σ ∈ [0, 1). A detailed derivation of this result is provided in [33].

Remark 1. Note that by imposing the stabilizing constraint (17) to the m-econ MPC, we can merge the

capability of tr MPC in assuring closed-loop stability and the merits of economic MPC together to achieve

both tracking and economic performances. Although we may sacrifice certain economic profit compared with185

the pure economic MPC, what we gain in guaranteeing the stability is much more meaningful and crucial for

most practical MP processes. Moreover, this m-econ MPC method provides a degree-of-freedom (the tuning

parameter σ) to tune the trade-off between economics and tracking performance.

4. M-econ MPC and MHE Design for the MP Process and Simulation Results

4.1. M-econ MPC and MHE Design for the MP Process190

The MP process is a complex multi-input multi-output (MIMO) nonlinear process with strong interactions

among variables. Based on the two-stage HC model developed in (3)-(4) and the m-econ MPC and MHE

approaches presented in the previous section, we are now in a position to combine the MHE and m-econ MPC

for MP processes. The graphical depiction of the integrated m-econ MPC and MHE framework is shown in

Figure 3.195

Mechanical Pulping 
Process

Output            Input

m-econ MPC
Output            Input

MHE

𝑦

𝑦

𝑢

𝑢 𝑢
ො𝑥

Figure 3: Graphical depiction of the integrated m-econ MPC and MHE for MP process
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Table 2: The implementation of m-econ MPC and MHE for a two-stage HC process

Algorithm of the m-econ MPC and MHE

Input: x0 ∈ X, σ ∈ [0, 1), set t← 0 and ε0(σ)← +∞.

Loop: for t = 0, . . . , T (simulation ends) do

1: Solve the m-econ MPC optimization in (24)-(29) for

the state xt and εt(σ), evaluate V trt , and set ut ← v0.

2: Implement ut to the plant and obtain the state

variables xt+1 = f(xt, ut) + ζt.

3: Solve tr MPC in (14) for the state xt+1, and evaluate

V̄ trt+1.

5: Solve MHE in (8)-(11) to get the estimates [z̃0, · · · , z̃Nmhe ].

6: Set εt+1(σ)← V̄ trt+1 + σ(V trt − V̄ trt+1) and xt+1 ← z̃Nmhe .

7: end loop

For the specific MP process considered in this work, the tracking and economic objective functions are

defined as

V trt =

t+Nmpc−1∑
k=t

||x̂k − xss||2Qx + ||uk − uss||2Qu ,

V ect =

t+Nmpc−1∑
k=t

TSEk,

where Nmpc is the prediction horizon and Qx, Qu are positive-definite weighting matrices for the state

and input variables, respectively. TSEk is the total energy as defined in (2) and given by ([0, 1, 0, 0] x̂k +

[0, 0, 0, 1] x̂k) / [1, 0, 0, 0] x̂k for the specific MP process under study. The m-econ MPC optimization problem200

for the MP process can be formulated as follows,

min
vk

t+Nmpc−1∑
k=t

TSEk, (24)

s.t. z0 = x̂t+1, zNmpc ∈ Xf , (25)

zk+1 = f(zk, vk), k = 0, . . . , Nmpc, (26)

xmin ≤ zk ≤ xmax, k = 0, . . . , Nmpc, (27)

umin ≤ vk ≤ umax, k = 0, . . . , Nmpc − 1, (28)

t+Nmpc−1∑
k=t

||zk − xss||2Qx + ||vk − uss||2Qu ≤ εt+1(σ), (29)

where σ ∈ [0, 1) and εt+1(σ) is defined in (21). Here, we note that the stabilizing constraint takes the form of

a ball centered around the equilibrium point (xss, uss) and with radius εt+1(σ). Consequently, the stabilizing

constraint can be interpreted as a trust-region that the MPC controller can visit to optimize economics while

preserving stability.205
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At each time instant, the optimal input sequence can be obtained by solving the m-econ MPC (24)–(29)

4. Only the first input of the optimal input sequence will be injected to the MP plant. Given the newest

measurements and past Nmhe-step of input and measurement data, the constraint MHE (8)-(11) will be

incorporated to the system to eliminate the noises on measured states and estimate the unmeasured states.

For the MHE, we only consider the case where the model uncertainty ζt and measurement noises ηt are210

normally distributed with zero mean and constant covariance Pζ and Pη, respectively (6). The detailed

algorithm of implementing the simultaneous m-econ MPC and MHE is provided in Table 2.

4.2. Simulation Results

We now demonstrate the effectiveness and economical benefits of using the m-econ MPC algorithm and

MHE in a two-stage HC MP process through simulation examples. To be specific, in the first example, we215

apply the proposed m-econ MPC algorithm with different values of σ ∈ [0, 1) under the assumption that

state variables are directly available for the on-line m-econ MPC design. Note that with such assumption x̂k

shall be replaced by xk in previous formulations regarding m-econ MPC. From this simulation, we show that

the proposed m-econ MPC can not only reduce the energy consumption, but also guarantee the closed-loop

stability. This algorithm also allows the user to tune the controller in such a way that a desired trade-off220

between the economic and tracking performances is achieved based on practical demands. In the second

example, we provide results for the simultaneous implementation of state estimation and m-econ MPC with

fixed tuning parameter σ. Moreover, the measurement noise and model uncertainty are considered in the

second example.

4.2.1. Example I225

In this example, the prediction and control horizons are selected to be equal and set to be Nmpc = 30.

The sampling interval is 2s, and the simulation length is T = 160 samples. The weighting matrices Qx =

diag{0.01, 10, 0.1, 10, 0.1} and Qu = diag{0.1, 100, 0.01, 100, 0.01}. Note that the tuning parameter σ has to

be in the range [0, 1) for the sake of closed-loop stability. However, to more clearly demonstrate the effect

of σ on the tracking performance and the economics, here we allow σ = 1 and will examine the control230

performance under the following four different values of σ: σ = 0, σ = 0.5, σ = 0.75, and σ = 1. Note that

for σ = 0, the m-econ MPC is reduced to the standard tracking MPC. On the other hand, when σ = 1, it

will be equivalent to econ MPC without regulations. σ = 0.5 and σ = 0.75 are the two cases where we have

the standard m-econ MPC. The state estimator will not be considered in this example, thus we assume ζk

and ηk are zeros in formulation (24)–(29). In the closed-loop simulation, the variations in raw materials such235

as the chip bulk density dc and the chip solid content sc are considered as the disturbances (see Table 3). To

address the computational complexity, the nonlinear MP process model is built in AMPL (A Mathematical

4Note that model mismatches are not considered in the simulation of the m-econ MPC design, otherwise, a static error would

persist in presence of non-zero mean disturbances.
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Table 3: Variations of dc and sc from their nominal values

Time (s) 0-50s 50-110s 110-160s

Chip bulk density (dc) 80% 115% 90%

Chip solid content (sc) 90% 100% 110%
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Figure 4: Pulp qualities after secondary HC refining for Ex-
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Figure 5: Comparison of the energy reduction for Example I

Programming Language), and the nonlinear optimization problem is solved using IPOPT (Interior Point

Optimizer) [34].

The simulation results are shown in Figure 4 – 7. From Figure 4, we can see that for these four situations240

all pulp qualities after the secondary refining remain within their respective acceptable ranges: 50− 400 ml,

50 − 80%, and 0 − 2% 5. However, by using the econ MPC (σ = 1), these pulp qualities are more likely to

hit the operating limits compared with the other three MPC schemes. This is obviously not desirable from

the perspective of practical operations for mechanical pulping mills. For the case of tracking MPC (σ = 0),

these outputs can rapidly converge to steady-state setpoints. The other two cases can gradually settle down245

the outputs to steady state with a slower rate compared with tracking MPC. The comparison between the

specific energy consumptions of these four situations is illustrated in Figure 5. From Figure 5, one can readily

find that the fast convergence speed achieved by tracking MPC is at the price of large energy consumption

during the transient stage. Also, the pure econ MPC yields the best performance on energy reduction (saves

about 73.12% relative to the tracking MPC) possibly because the manipulated variables exert almost all250

actuations to save energy and thus the resultant tracking performance is the worst according to Figure 4.

However, for m-econ MPC, it takes account of both the tracking performance and energy reduction. From

Figure 5, the m-econ MPC with σ = 0.5 and σ = 0.75 can save about 10% and 27% of the specific energy,

5Detailed nonlinear relationships between state variables and pulp properties can be found in Appendix B.
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Figure 6: The state variables of the MP process for Example I

Table 4: Energy reduction rate for different σ values of the m-econ MPC compared with tracking MPC (σ = 0)

σ σ = 0 σ = 0.5 σ = 0.75 σ = 1

Energy reduction rate N/A 10% 27% 73%

respectively, compared with the tracking MPC when σ = 0. Please see Table 4 for detailed energy reduction

rate for different σ values of of m-econ MPC compared with tracking MPC (σ = 0).255

These conjectures and observations can be more clearly verified by Figure 6 and Figure 7, which illustrate

the tracking performance of the state variables and manipulated variables, respectively. It can be seen that for

σ = 0, σ = 0.5, and σ = 0.75, the state variables and the manipulated variables converge to the steady-state

values but with different convergence speeds. Specifically, as σ decreases, the tracking speed of m-econ MPC

improves, which is consistent with our analysis since smaller σ values imply more emphasis on the tracking260

performance. For the extreme case where σ = 1, the convergence and stability cannot be guaranteed since

the target in this case will be merely achieving the optimal economic performance regardless of the tracking

performance or even the stability.
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Figure 7: The manipulated variables of the MP process for Example I

4.2.2. Example II

In this example, the MHE is incorporated in the two-stage refining system as part of the feedback control of265

the m-econ MPC. The model uncertainty and measurement noise are considered in the closed-loop simulation.

The measured (but noisy) state variables in the HC MP process are production rate, primary motor load

and secondary motor load. The unmeasured state variables, which are the consistencies for the primary

and secondary refiners, are estimated by MHE from the noisy measurements and past input data. In this

example, the simulation duration is T = 450 samples. The estimation horizon Nmhe = 15 with arrival cost270

weighting vector selected to be µ = [0.5, 1, 0.1]. It is assumed that the simulation and real MP process share

the same disturbance and measurement noise covariance Pζ = [1, 0.1, 1, 0.1, 0.5], Pη = [0.1, 0.1, 0.1, 0.1, 0.1],

respectively. The tuning parameter σ is fixed and chosen to be 0.8. The other parameters are set the same

as those in the previous simulation. Note that in this example the computational time by using IPOPT is

fast enough to ensure that both MHE and m-econ MPC can be solved within each sampling interval.275
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Figure 8: The manipulated variables of the MP process for Example II

The simulation results are shown in Figure 8 – 10. The manipulated variables for the closed-loop two-

stage HC refining process are given in Figure 8. From Figure 8, we can find that all manipulated variables

in the two-stage HC process are able to track the setpoints within 50 samples. Besides, the output variables,

which are actually states x1, x2 and x3 (plus noise), can approach the respective setpoints quickly under

the proposed integrated MHE and m-econ MPC framework. The tracking performance of all five states are280

illustrated in Figure 9. It is apparent from Figure 9 that MHE can yield precise estimates for both measured

and unmeasured states, which is evidenced by the large overlapping between the actual and estimates states.

The specific energy consumption in this example is shown in Figure 10, and the energy saving rate with

σ = 0.8 is about 30% compared with the tracking MPC from the previous example.

5. Conclusion285

This paper presents an integrated framework consisting of m-econ MPC and MHE for a nonlinear two-

stage HC MP process. The m-econ MPC inherits the merits of economic MPC in reducing energy consumption

and that of tr MPC in ensuring the closed-loop stability. It is shown that the m-econ MPC enables the user
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Figure 9: The state variables of the MP process for Example II

to make an informed trade-off between production economics and the convergence speed of process variables

to the setpoints. For industrial processes with unmeasured states, including the MP processes, we propose to290

combine online MHE together with the m-econ MPC into an integrated framework that can be implemented

in practice. Two simulation examples from MP processes are provided to demonstrate the advantages of

using m-econ MPC and the effectiveness of the entire m-econ MPC and MHE scheme.
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Appendix A. Two-stage HC MP Process Model

MP processes are inherently MIMO processes with complex dynamics and interactions among process

variables. Modeling of MP process is challenging due to the complex mechanism inside of the pulp refiners.

In this section, the two-stage HC MP process model is presented. The mathematical model is developed305

by using a combination of mechanistic and empirical methods, which will not only give some insights into

mechanism, interactions, and nonlinearity of the MP refining process, but also characterize the feature of MP

process dynamics. In this paper, the following process variables are used to develop a discrete-time nonlinear

model for the MP process [20, 27].

Production rate310

P = ka · kp · sc · dc ·R, (A.1)

where P (tonnes/day) is the production rate. ka and kp (m3/rev) are constant parameters which can be

obtained from the industrial data and their values depend on the particular production lines. sc(%) is the

chip solid content. dc (kg/m3) is the chip bulk density. R (rpm) is the chip-transfer screw speed.

Motor load

Mi =
kmi · P
Di

(1− e(−10Gi))(ci − ei ·Gi), i = p, s, (A.2)
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where Mi (MW ) is the motor load for the i-th refiner, i = p, s. Di (l/min) is the dilution water flow rate.315

Gi (mm) is the gap distance. ci, ei, and kmi are the parameters of each refiner.

Consistency

Cp =
100P

P + ka ·Dp − kep ·Mp
, (A.3)

Cs =
100P

P/(0.01Cp) + ka ·Ds − kes ·Ms
, (A.4)

where Cp and Cs are the consistency for the primary and secondary refiner, respectively. ka, kep and kes are

the refiner parameters.

By introducing linear dynamics for the discretized differential state variables and superimposing it on320

the steady-state relationships (A.1)–(A.4), a Wiener type discrete-time nonlinear model for the MP process

can be formulated at sample time t as in (3)–(4) with the state variables and manipulated input variables

defined in Table 1. One can use the time constant and time delay information of each subprocesses to form

the dynamic matrix A as follows [35],

Ā(z) =



g1(z) 0 0 0 0

0 g2(z) 0 0 0

0 0 g3(z) 0 0

0 0 0 g4(z) 0

0 0 0 0 g5(z)


, (A.5)

where Ā(z) is the dynamic transfer function matrix of the MP process. g1(z) is the transfer function between

the production rate and the chip-transfer screw speed. g2(z) is the transfer function between the primary

motor load and the primary refiner gap. g3(z) is the transfer function between the primary consistency and

the primary dilution flow rate. g4(z) is the transfer function between the secondary refiner motor load and

the secondary refiner plate gap. g5(z) is the transfer function between the secondary consistency and the

secondary dilution flow rate. The transfer functions gi(z), i = 1, · · · , 5 have the following forms,

gi(z) =
biz
−di

z − ai
, , i = 1, · · · , 5, (A.6)

where ai and di, i = 1, · · · , 5, are the poles and time delays of the subprocess, respectively. bi = 1 − ai,

i = 1, · · · , 5, are parameters for unity dynamic gains of each subprocess. Note that the parameters ai, di,

and bi will vary with the different refiners in each pulp mill. Then the dynamic matrix can be expressed as,

A = diag{a1, a2, a3, a4, a5}. (A.7)

The nonlinear state function h(·) : Rnx ×Rnu 7→ Rnx in (3) is then defined as h = (I −A)H, where H maps325

steady-state control input variables to steady-state differential state variables of the MP process model.
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By superimposing the nonlinear steady-state functions (A.1)–(A.4) to the linear dynamics of the two-stage

HC MP process (A.5)–(A.7), the nonlinear two-stage HC MP process can be described as follows,

x1t+1 = a1x
1
t + b1ka · kp · sc · dc · u1t , (A.8)

x2t+1 = a2x
2
t + b2

km1 · x1t
u3t

(1− e(−10u
2
t ))(c1 − e1 · u3t ), (A.9)

x3t+1 = a3x
3
t + b3

100x1t
x1t + ka · u3t − kep · x2t

, (A.10)

x4t+1 = a4x
4
t + b4

km2
· x1t

u5t
(1− e(−10u

t
4))(c2 − e2 · ut4), (A.11)

x5t+1 = a5x
5
t + b5

100x1t
x1t/(0.01x3t ) + ka · u5t − kes · x4t

. (A.12)

where the notation xit, u
i
t, i = 1, · · · , 5, are the i-th state or manipulated variables (defined in Table 1) at

sampling time t, respectively.

Appendix B. Pulp quality modeling

In this work, we use the nonlinear model developed in [5, 11] to predict the pulp properties of CSF, LFC,330

and SC. The following declinations are introduced before we establish the nonlinear pulp property models.

Refining intensity

The refining intensity (RI) has been suggested as an important variable in all types of refining [15]. For

a given SE, different RI will produce the pulp with quite different quality.

RIi =
SEi
Ni

, i = p, s, (B.1)

where SEi is the specific energy as defined in (1). Ni is the total number of impacts and is given by,

Ni = nihiωi[(r1i + r2i)/2]τi, i = p, s, (B.2)

where ni is the number of bars per unit length of arc of a refiner disc. hi = 1 for a single disc refiner, and

hi = 2 for a double disc refiner. ωi(radians/s) is the refiner rotational speed. r1i, r2i(m) are the inlet and

outlet radius of plates’ refining zone. τi(s) is the residence time of the wood chips in the i-th refiner.335

Specific refining power

The specific refining power (SRP ) describes the energy-transfer rate. For the i-th refiner, it is defined as,

SRP i =
SEi
τi

, i = p, s (B.3)
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The empirical relationships between pulp properties of CSF , LFC, and SC and the intermediate variables

SEi, RIi, and SRPi can be expressed as [11],

CSFi = [CSFi0 − kcsf1i (SEi − SEi0)] · 10−k
csf2
i (RIi−RIi0), (B.4)

LFCi = LFCi0 − klfc1i (SRPi − SRPi0)− klfc2i (SEi − SEi0), (B.5)

SCi = SCi0 · 10−[k
sc1
i (SEi−SEi0)+K

sc2
i (SRPi−SRPi0)], i = p, s (B.6)

where CSFi0, LFCi0, and SCi0 are the initial values of pulp properties. SEi0, RIi0, and SRPi0 are the

initial values of the SEi, RIi, and SRPi, respectively. kcsf1i , kcsf2i , klfc1i , klfc2i , ksc1i , and ksc2i are parameters

of the primary and secondary refiners and may vary with the different refiners in each pulp mills .
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