
1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2018.2880968, IEEE
Transactions on Industrial Informatics

1 

Deep Learning of Complex Batch Process Data and Its Application on 
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Abstract─Batch process quality prediction is an important 
application in manufacturing and chemical industries. The 
complexity of batch processes is characterized by multiphase, 
nonlinearity, dynamics and uneven durations so that modeling 
of these batch processes is rather difficult. Moreover, there are 
other challenges in face of quality prediction. Specifically, the 
process trajectories over the whole running duration 
potentially make specific contributions to the final targets so 
that the prediction issue embraces tremendously 
high-dimensional inputs but very low-dimensional outputs. 
This means that the prediction suffers from a severe 
dimensional imbalance between inputs and outputs. Motivated 
by these difficulties, this paper proposes a new deep 
learning-based framework for complex feature representative 
and quality prediction. Long short-term memory is used to 
extract comprehensive quality-relevant hidden features from a 
long-time sequence in each phase, significantly reducing the 
predictor dimensions. And these features from different phases 
are further integrated and compressed by a stacked 
auto-encoder. A practical industrial example testifies to the 
efficacy of the proposed framework.  

Index Terms ─ batch process, quality prediction, long 
short-term memory, stacked auto-encoder. 

I. INTRODUCTION 
Batch processes play an important role in producing low 

volume and high value-added products, such as polymers, 
semiconductors, chemicals, and pharmaceuticals. Because of 
the complexity of the processes, unforeseen disturbances, 
equipment faults, and changed raw material components, the 
product quality at the termination of one batch can be far 
different from the specifications [1, 2]. Moreover, batch 
processes lack online measurements of quality variables. To 
obtain the quality measurements takes a long time after one 
batch is ended, so a well-constructed prediction model is 
invaluable for tasks such as quality control [2, 3] and 
quality-relevant batch monitoring [4]. 
  Several research papers have been done to develop quality 
prediction models for batch processes. Multiway partial 
least squares (MPLS) [5] and its different extensions [1, 6] 
are the most widely used batch quality prediction techniques. 
As MPLS-based methods consider the overall batch duration 

and build a global model for quality prediction, they ignore 
the multistage or multiphase feature of batches with staged 
operations [7]. A separate model of each phase is able to 
adapt itself to the multiphase batch process [6, 8-10]. Most 
of the methods have assumed the data are independent and 
identically distributed (i.i.d.) within a phase so that a static 
linear statistical model can be used to delineate local-phase 
characteristics. From this perspective, a phase refers to 
samples with the identical statistical properties in a 
continuous time interval. But this rationale is not necessarily 
beneficial to modeling a quality prediction model when it 
comes to significant nonlinear dynamic correlations. 
Typically, the particle filter is used to estimate the 
parameters for nonlinear state space models in batch 
processes [11]. But the nonlinear model structure is required 
in advance. In addition, Kernel-based multiway 
non-Gaussian latent subspace projection approach was 
developed for process monitoring [12], but it did not 
consider multiphase batch processes. For the purpose of 
improving the prediction performance, nonlinear 
descriptions for phase behaviors and nonlinear regression 
modeling have received lots of attention, represented by 
support vector regression [13, 14], relevant vector machine 
[15, 16] and Gaussian process regression [17]. However, 
they are limited in their shallow feature known as single 
hidden layer features. They are effective in dealing with 
simple nonlinearities but they may be insufficient when 
dealing with complex processes. Deep learning recently 
received a lot of attention owing to its deep structure and 
deep feature extraction. Especially, since Hinton et al. 
proposed the greedy layer-wise unsupervised pre-training 
and supervised fine-tuning technique [18], deep learning has 
succeeded in many applications because the vanishing and 
exploding gradient problems of deep network 
backpropagation have been effectively solved.  
  So far many techniques associated with deep learning 
which are known as soft sensors in industrial systems have 
been applied to important indices prediction [19-22]. 
Typically, Shang et al. first exploited deep belief network to 
build soft sensors for a crude distillation unit [19]. Later, an 
integration of a de-noising auto-encoder with a neural 
network was utilized to improve the prediction performance 
and the robustness of soft sensors [20]. Yao et al. used a 
hierarchical extreme learning machine for semi-supervised 
soft sensors [21]. Recently, to enhance the function of deep 
learning in soft sensors, the variable-wise weighted stacked 
auto-encoder was proposed. It selected the input variables 
which are the most relevant to the output variables [22]. 
However, the weight coefficient is simply determined by 
Pearson correlation, which cannot effectively delineate 
nonlinear correlation. Besides, these soft sensors were 
developed for continuous processes only. Because many 
specific characteristics of batch processes are quite different 
from those of continuous processes, these existing deep 
approaches of soft sensors in continuous processes cannot 
be directly applied to the quality prediction of batch 
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processes. The main challenges of the quality prediction of 
batch processes are as follows:  
(1) A single model is not applicable to multiphase features 

of batch processes mentioned above. That means 
multiple nonlinear deep networks are required for 
batch processes.  

(2) There is an extreme imbalance between the high 
dimensional input space and the low dimensional 
output space because the overall durations in process 
variables are potential predictors for the terminal 
qualities. Hence, implementing an effective dimension 
reduction and simultaneously guaranteeing desired 
prediction performance is crucial.  

(3) Unlike continuous processes, in which long-term 
steady state and short-term transient state appear 
alternately, batch processes are often dominated by 
continuously varying dynamics in each phase because 
of continuous physical operations and complex 
chemical reaction. Therefore, complex dynamic 
behavior should be paid lots of attention to.  

(4) The uneven-length duration between batches should 
be aligned into the same length before these existing 
methods are applied. Even though many methods, 
such as indicator variable based alignment [23], 
correlation optimization warping (COW) [24] and 
dynamic time warping (DTW) [25], were proposed to 
synchronize the uneven-length batches, the drawbacks 
and application restrictions are also apparent [26]. 
That implies using a prediction model to directly deal 
with the uneven-length issue is promising.   
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Fig. 1 Schematic of the data structure of multiphase batch processes 

 
  Because of the limitations of the existing methods, a new 
framework based on deep learning feature extraction is 
proposed to solve these important challenges in batch 
process quality prediction. In this paper, a special recurrent 
neural network (RNN), known as long short-term memory 
(LSTM), [27, 28] is utilized to extract phase features 
relevant to quality variables. LSTM inherits the recursive 
structure of RNN for time sequences so that the data of the 
uneven-length batches can be directly inputted into the 
network. Simultaneously, LSTM uses special units in hidden 
layers to remember some inputs at important time instances 
which are strongly relevant to the outputs. Moreover, the 
dimension would be sharply reduced by compressing the 
overall sequences in each phase into the hidden variables at 
the end of the phase. Then, these features represented by 
LSTM in each phase are concatenated and instilled into a 
stacked auto-encoder (SAE), as each phase is indispensable 
in predicting final targets. By layer-wise pre-training, the 
dimension-reduced, deep features can be obtained with SAE. 
And the supervised refining is able to adjust these features 
toward the direction of the quality prediction. In our 
proposed strategy, LSTM together with SAE produces an 

accurate prediction model. The “deep” means the original 
inputs are mapped into hidden features through the 
hierarchical structure defined by LSTM cascaded with SAE. 
The remaining parts are organized as follows: Section II 
gives a description of batch process data. Section III 
illustrates how to use LSTM to extract phase features. Then 
in Section IV, deep extraction of these phase features is 
introduced using SAE. An industrial example is tested to 
evaluate and compare the proposed method with other 
methods in Section V. And the final section draws 
conclusions. 
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Fig. 2 Endpoint output structure of RNN  

 

tanh
,

1
i p
th

,i p
tx

,i p
ti

,i p
tx ,

1
i p
th ,i p

tx ,
1

i p
th

,i p
tx ,

1
i p
th

,
1

i p
tc

,i p
tc ,i p

th

,i p
tf

,i p
tg ,i p

to

 
Fig. 3 Schematic of LSTM cell 

 
II. MULTIPHASE BATCH DATA DESCRIPTION 

  Data in batch processes are generally categorized into 
three types: initial conditions, online measured process 
trajectories, and the endpoint qualities. Initial conditions 
generally refer to the properties of raw materials and 
feedstocks that can be measured before a batch starts up. Let 

the matrix 1 2

T I M
I R    Z z z z  denote M initial 

conditions of I batches. Online measured process trajectories 
are the process measured variables which are measured at 
the regular time interval varying from a second to several 
minutes and the variables are provided for control systems 
to adjust manipulated variables and maintain the desired 
operation trajectories.  The dataset for the measured 
process trajectories  1 2, ,..., IX X X X  records I 

trajectories of J process variables and each batch, denoted as 
iK J

i R X , has an unfixed batch length iK . Regarding 

endpoint qualities, the one-dimensional quality variable is 
considered without loss of generality in this paper. If there 
are more than one quality variables, a separate prediction 
model can be built for each kind of quality. The 
corresponding endpoint quality dataset is represented by a 

vector  1 2

T

Iy y y y . In multiphase batch processes, 

batch trajectory comprises several sequentially divisible 
phases with different characteristics. Suppose the phase in 
each batch has been partitioned in advance [7-9]; Fig. 1 
shows the batch data structure with one kind of color 
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representing a specific phase in each batch. Hence, process 
variable trajectories in the i-th batch can be further divided 

into phase data blocks, i.e.,  ,1 ,2 ,, , ,i i i P
i  X X X X  

where P represents the number of phases. And each sample 
in the p-th phase of the i-th batch is denoted as 

, ,, 1, 2,...,i p i p
t t Tx , where ,i pT  is the corresponding phase 

length and ,

1

P
i p

i
p

T K


 . In Fig. 1, the length of a phase in 

one batch is not necessarily identical with its counterparts in 
other batches because the operation duration in each stage 
can vary from batch to batch. One wishes to understand how 
the quality variable is influenced by the batch evolution and 
how different phases contribute to the final target. 
 
III. LSTM BASED PHASE-WISE FEATURE REPRESENTATION 

  The terminal target is jointly influenced by initial 
conditions and process trajectories in different phases in 
process trajectories. A complete predictor consists of both 
different phases and initial conditions. There would be a 
very high-dimensional predictor in each phase and complex 
nonlinear dynamic correlations generally exist in the phase 
data. The final product quality depends on different initial 
conditions and a long time sequence of different phases. 
Hence, phase feature extraction would summarize the most 
quality-relevant and dimension-reduced features by 
modeling a nonlinear dynamic behavior contained in each 
phase.  
  In order to solve these challenges, an endpoint prediction 
structure of RNN in each phase ( p ) is adopted (Fig. 2). As 

one can see, there is a time-unfolded RNN driven by 
external inputs , ,, 1, 2,...,i p i p

t t Tx . Each black node in Fig. 

2 denotes an RNN cell, describing how the hidden states 
, pni p

t Rh , where pn  is the number of hidden units, are 

updated based on the previous hidden states ,
1

i p
th  and the 

current inputs ,i p
tx ; i.e., 

                 , , ,
1 ,i p i p i p

t t tf h h x             (1) 

where f  is a nonlinear function to approximate the 

nonlinear dynamics. Because each phase is indispensable for 
a successful batch, they make different contributions to the 
final target. To learn the quality-relevant features, it is 
important to use the quality variables to train the RNN in a 
supervised way, i.e., there is an output layer in the RNN 
terminal, marked in a red node in Fig. 2, to output the 
predict ˆ p

iy  with respect to this phase ( p ) given by  

                  ,

,ˆ i p

p i p
i T

y g h                (2) 

where g  is an affine function in the prediction issue. From 

Eq.(2), the terminal hidden states ,

,
i p

i p

T
h  summarize the 

phase features relevant to the quality because ,

,
i p

i p

T
h  

contains the information of the whole phase sequence and it 
is also a link from the phase sequence to the final target 

through the RNN structure. It can be seen that ,

,
i p

i p

T
h  is the 

learned quality-relevant feature in the corresponding phase. 
To optimize the network, the loss function for training this 
type of RNN is given by 

       2

1

1
ˆ

2

I
p

p i i
i

L y y
I 

  ,  1, ,p P         (3) 

An ordinary RNN often uses a squashing function on the 
affine transformation of inputs and hidden variables to 
approximate the representation in Eq.(1). The optimization 
of an ordinary RNN using back-propagation through the 
time algorithm will cause gradient vanishing or exploding 
when the time sequence is very long. That is because one 
iteration is finished only if the gradient has been propagated 
back from the endpoint to the start point in each phase. Thus, 
the weights and biases close to the end point of each phase 
can be adjusted. It is the so-called gradient vanishing or 
exploding occurrence. It causes the loss of a lot of previous 
useful information. To improve the ability to learn long-term 
memory, LSTM reforms the ordinary RNN cell in a feasible 
memorizing and forgetting way, alleviating the vanishing 
and exploding gradient problems. The schematic diagram of 
an LSTM cell is shown in Fig. 3. The key idea behind 
LSTM is that the new defined cell states ,i p

tc  adaptively 

memorize important information and forget the redundant 
information. Specifically, LSTM uses an input gate ,i p

ti , a 

forget gate ,i p
tf  and an output gate ,i p

to  to control the flow 

of information. At each time instance, LSTM determines 
what old information should be discarded through the 
following forget gate leaking some information in the 
previous cell states ,

1
i p
tc  

            , , ,
1

i p p i p p i p p
t f t f t f   f W x U h b        (4) 

where   is an element-wise sigmoid function, p
fW  and 

p
fU  are weight matrices related to forget gates and p

fb  are 

the corresponding biases in this phase. Since the range of 
  is from zero to one, a lot of previous information will be 

removed when most of the elements in ,i p
tf  are close to 

zero.  
  Simultaneously, it needs to be determined what new 
information should be stored. The new information is 
represented by ,i p

tg , which is an activation of the current 

value ,i p
tx  and the hidden variable ,

1
i p
th  given by,  

           , , ,
1

i p p i p p i p p
t g t g t gtanh   g W x U h b      (5) 

where tanh  denotes the hyperbolic tangent function. Then, 

an input gate  ,i p
ti   is designed as 

             , , ,
1

i p p i p p i p p
t i t i t i   i W x U h b       (6) 

to keep the output range within (0,1) using a sigmoid 
function for filtering .. (Fig. 3). In Eqs.(5) and (6), there are 

corresponding weights and biases to be estimated in 
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Fig. 4 The training structure of multiphase processes by LSTM with initial conditions. 

this gate. Then the new cell states ,i p
tc  are updated by the 

partial forgetting and partial storing information. 
            , , , , ,

1
i p i p i p i p i p
t t t t t   c f c g i          (7) 

where   denotes the element-wise product. Lastly, the 

new hidden states ,i p
th  are obtained by the output gate ,i p

to  

and the new cell states ,i p
tc  

          , , ,
1

i p p i p p i p p
t o t o t o   o W x U h b          (8) 

             , , ,i p i p i p
t t ttanh h o c              (9) 

  Unlike the general variable selection, which can just 
extract information of a superficial or shallow layer, LSTM 
effectively filters information of the feature layer based on 
the forgetting and storing mechanism. By this means, there 
will be more chance to discover nonlinear quality-relevant 
features. Moreover, the recurrent network structure is able to 
compress a long time sequence into a comprehensive feature 

,

,
i p

i p

T
h , implementing a sharp predictor dimension reduction. 

Besides, LSTM just builds a structured dynamic model 
rather than any statistical models so that the phase length is 
not required to be identical in different batches. One 
potential introduced by LSTM is the simplification of the 
phase division. As it has been mentioned, sequential 
statistical models along the time direction generally need to 
be constructed to analyze the variation of batch trajectories. 
The samples with close statistical properties in a continuous 
time interval will be grouped into a phase. This kind of 
phase division procedure has the risk of causing an undue 
partition and produces overloaded sub-models than the true 
physical operation stages for obtaining a sufficient 
approximation to a nonlinear batch running. In contrast, the 
universal approximation theorem [29] theoretically implies 
that LSTM has a high capacity to approximate any complex 
nonlinear continuous function governing a nonlinear 
dynamic sequence. From this perspective, the phase division 
is reduced to find out a few switched process operations 
which possibly produce discontinuous batch trajectories. 
These operations are easy to obtain by finding out some 
indicator variables with piecewise linear characteristics. For 
the case that the indicator variables are unavailable, one way 
with LSTM for locating phase switching points is to extract 
quality-relevant hidden features for the whole length and 
measure the difference of the hidden features between two 
adjacent times. The significant changes of the hidden 
features can be the indicators of phase switching. 
  Taking LSTM as the core, a complete phase-wise feature 
representation framework is drawn in Fig. 4. To achieve the 
optimal generalized performance, each phase is governed by 
a specific LSTM with the best match to the phase 
characteristics. Each LSTM in a specific phase is separately 

optimized using the corresponding phase dataset. Before the 
optimization procedure starts, each LSTM needs to set up 
initial hidden states to configure the network. If the initial 
conditions are unavailable, the initial hidden states can be 
tentatively assumed to be zero. Otherwise, the information 
in the initial conditions will be directly related to the initial 
hidden states ,1

0
ih  in the first phase. It can be obtained by 

activating the initial conditions iz  shown in Fig. 4, i.e., 

               ,1
0 0 0
i

itanh h W z b           (10) 

where the parameters 0W  and 0b  as well as the 

parameters in LSTM are trained for maximizing the 
predictability of the quality by gradient backpropagation 
supervised by the quality variable shown in Fig. 4. For the 
other phases, the endpoint hidden states in the last phase can 
be fed into the next phase as the initial hidden states to 
represent the time link between two adjacent phases. When 
LSTM in the p-th phase is trained, the endpoint hidden 
states in the last phase are regarded as a known condition so 
that the cause-and-effect relationship is a one-way path, not 
a two-way path. The downstream info is always caused by 
info of the upper stream in the whole batch operation. 

 
 

Fig. 5 The structure of the single layer auto-encoder. 
 

 
Fig. 6 The structure of SAE with an output. 

 
 

IV. DEEP FEATURE REPRESENTATION AND QUALITY 

PREDICTION 
A. Preliminaries of SAE 
  The phase-wise training with LSTMs helps to extract 
complex and abstract quality-relevant features from different 
phases. These features are extracted from different phases 
separately while these features would concurrently influence 
the final target in a complex fashion. On the other hand, the 
dimension of accumulated features over all the phases, 
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which is 
1

P

p
p

n

 , is still sizable for the quality prediction 

application. These concerns motivate the phase features to 
be further deeply and interactively integrated and 
compressed. 
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Fig. 7 The flow chart of quality prediction for a batch process. 
 
  SAE consists of a multi-layer auto-encoder. The network 
depth allows SAE to extract deep features and express 
complex input-output relationships hierarchically. A basic 
auto-encoder (AE) is a single hidden layer network 
composed of an encoder and a decoder illustrated in Fig. 5. 
Suppose the input vector of an AE is the concatenated phase 

features as      ,1 ,2 ,

,1 ,2 ,
i i i P

TT T T di i i P
i T T T

R     
φ h h h and 

the hidden layer is denoted as      1 2 s

T
i i i

i ds s s   s . 

Generally, the dimension of the hidden layer sd  is less than 

that of the input layer d  for the effective feature 

extraction and dimension reduction because a larger hidden 
space dimension will possibly learn an identity function for 
an autoencoder, causing overfitting. The encoder maps the 
input vector into the hidden features by a nonlinear 
activation function. Thus, there is  
               i ae ae i aef s W φ b            (11) 

where aef  is the selected activation function in the encoder 

layer while aeW  and aeb  are the weights and the biases 

for this encoder. In this paper, the activation function is set 
to be tanh function in the encoder. And the decoder 
reconstructs the hidden variables s  into the original input 
space as follows. 

              ˆ
i ae ae ai ef   φ W bs            (12) 

where aef  is the selected activation function in the decoder 

layer while ae
W  and ae

b  are the corresponding weights 

and biases. Since the objective is to reconstruct iφ , aef  is 

generally an element-wise linear unit. For I batches, the loss 
function can minimize the reconstruction error, given by 

              
2

1

1
ˆ

2

I

ae i i
i

L
I 

  φ φ            (13) 

 

 

  The gradient backpropagation is used to optimize the 

parameters  , , ,ae ae ae ae
 W b W b . The structure of SAE for 

predictions is illustrated in Fig. 6. There are l cascaded AEs 
stacking hierarchically. The first AE accepts the original 
input variables iφ  and other AEs take the hidden 

representation in the previous AE as the encoder inputs. 
Each AE is firstly pre-training separately in an unsupervised 
layer-wise fashion. Then, the output layer is added to the top 
of SAE to fine-tune the weights and biases. In other words, 
the parameters in each AE obtained by pre-training are set 
up as the initial values in the fine-tuning step. The purpose 
of prediction is to guarantee the output scope to be the 
whole real number field, so the activation function in the 
output layer is chosen to be an affine function, given by 

 ˆ lT
i y i yy b w s where yw  and yb are weights vector and 

bias in the output layer. The loss function 

 2

1

1
ˆ

2

I

i i
i

L y y
I 

   can minimize the prediction error in 

the training data.   

 
Fig. 8 The illustration of the MMA-VA process. 

 
Fig. 9 The histogram of batch durations 

B. SAE based quality prediction 
  Because SAE has a high capacity to learn abstract 
complex features, it is able to deeply integrate the phase 
features. Fig. 7 illustrates the whole framework of the 
quality prediction of multiphase batch processes. In the 
training stage, a feature representation model based on deep 
learning is designed. The detail in each step shown in Fig. 7 
is as follows: 

th
e 

to
ta

l n
um

b
er
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Fig. 10 The indicator variables in this example. 

 
Step 1. Collect the training data from a specific batch 

process. Initial conditions, process variables and the 
quality in each batch are normalized using 
corresponding variable means and variable standard 
deviations. Divide each batch into several phases. 

Step 2. Train the LSTM models for phase feature 
extraction shown in Fig. 4 in a phase-wise way 
supervised by the quality variable. The initial 
conditions are fed to the first phase through a single 
hidden layer with a compatible dimension. When 
the training is completed, collect the hidden 
endpoint states in each phase ,

, , 1, 2,...,i p

i p

T
p Ph .  

Step 3. Let iφ  be the concatenated hidden endpoint states 

in each phase obtained in Step 2. Then the SAE 
regression model is trained with the unsupervised 
layer-wise pre-training and the supervised 
fine-tuning given by the quality variable.  

 
(a) 

 
(b) 

Fig. 11 The MSE of the first phase 

 
  The mean squared error (MSE) index is used to validate 
the prediction performance. It is defined as 

               2

1

1
ˆ

1

I

i i
i

MSE y y
I 

 
          (14) 

A smaller MSE indicates a better prediction result. Besides 

MSE, another commonly used index is R2, defined as  

             2 22

1 1

ˆ1 /
I I

i i i
i i

R y y y y
 

         (15) 

where y  is the mean of the true quality. R2 is an index 

evaluating the reliability of the model because it can give 
information about how much of the total variance in the 
output variable data can be explained by the model. The 
model is more reliable when R2 is closer to 1. 
 

V. INDUSTRIAL APPLICATIONS 
  A practical chain growth copolymerization batch process 
of methyl methacrylate and vinyl acetate (MMA-VA) is 
tested in this paper. The MMA-VA copolymerization process 
consists of a well-mixed reactor followed by a product 
separator, both shown in Fig. 8.  The feed to the reactor 
consists of the monomers (MMA and VA), the initiator 
(AIBN), the transfer agent (acetaldehyde) and the inhibitor 
(m-dinitrobenzene) dissolved in a solvent (benzene). A 
coolant is employed for the removal of heat released 
because of polymerization. The polymer product is 
separated from the unreacted hydrocarbons in a downstream 
separator. There are 11 process variables measured from 
different operating units. And one of the crucial indices 
tested in the lab is the intrinsic viscosity of the copolymer 
product. It varies for each grade of copolymer depending 
upon market requirements.  
 
TABLE I. The optimal selection for hidden neuron numbers and epochs of 

the four phases 

Phase No. Minimum MSE
Optimal 
epoch 

Optimal number of 
hidden neurons 

1 0.9808 165 35 
2 1.1487 23 15 
3 1.0788 40 40 
4 0.8909 141 10 

 

  In this industrial example, there are a total of 139 batches. 
About 90 batches of them are randomly chosen as the 
training dataset and the remaining are detracted into a 
validation dataset with 20 batches and a testing dataset with 
29 batches. Among them, the validation dataset is used to 
determine suitable hyperparameters for network training. 
The 139 batches have different durations and the 
corresponding histogram with respect to batch duration 
distribution is shown in Fig. 9. The variable in each batch is 
firstly normalized by the sample mean and the sample 
variance calculated from the first batch, avoiding the inputs 
stuck in the saturation area of 
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                     (a)                                        (b)                                      (c) 

 
                                          (d)                                       (e) 

Fig. 12 Prediction results of the testing batch data. (a) LSTM-SAE; (b) LSTM-NN (c) RNN; (d) LSTM; (e) MPLS-RVM  
 

the activation function. And this kind of preprocessing 
procedure is also well-suited to online learning by 
normalizing the newest batch with the first batch. Next, each 
batch should be divided into several phases. As the phase is 
divided because of different operations over a batch, the 
phase division is performed by locating the operation 
switching points in this example. Note that for a specific 
batch process, the operation mode and operating procedure 
are usually fixed for producing stable and identical products, 
so the number of phases among the batch data would be the 
same. In this application, there are several indicator 
variables which are piecewise stationarity or piecewise 
monotony so that they can be used to locate the phase 
switching points. The profiles of three selected variables are 
shown in Fig. 10. It can be clearly seen that the phase 
division points  

for these three variables are separately located around k = 
300, 500 and 500. Fig. 10 shows the true industrial data used 
in our case study. For enterprise’s confidentiality, the 
variables shown in Fig. 10 are normalized and the variable 
names are hidden. For a specific batch, the first-order 
difference of these indicator variables is used to detect the 
concrete change points. Then, all the batches are divided 
into 4 phases along the time direction. For each phase, an 
LSTM-based supervised learning with the quality label is 
carried out. The stochastic mini-batch gradient descent 
algorithm with the momentum is used to search for the 
optimal parameters. There are 20 mini-batches, and the 
learning rate and the momentum are 0.03 and 0.9, 
respectively. There are two crucial hyperparameters to be 
determined for suppressing overfitting: the hidden neuron 
number, also known as the cell number in LSTM, and the 
number of epochs defined as updating the network 
parameters using all the training samples in the deep 
learning community. Both of the two hyperparameters are 
determined by the early stopping strategy based on MSE 
(the mean squared error) of the validation dataset. 
Specifically, the network is iteratively optimized untilthe 

error of the validation dataset has not been improved for a 
period of time. And the number of the optimal hidden 
neurons is determined by comparing MSE at the final epoch 
in the validation dataset. 
  Take the first phase with 25 hidden neurons, for example. 
Fig. 11(a) shows the progress of the training and validation 
performance indices during training. The training error 
continues to go down through the training process, but the 
minimum validation error occurs at the point, which 
corresponds to the training epoch 110. This means the 
iteration can stop early at this epoch given 25 hidden 
neurons. By incrementing or decreasing the hidden neuron 
number and conducting the early stopping strategy, the 
optimal number of hidden neurons is 35 at the first phase 
(Fig. 11(b)) because it has the smallest MSE on the 
validation dataset.  
  TABLE I further summarizes the selected optimal hidden 
neuron numbers in the four phases and the corresponding 
MSE on the validation dataset. Obtaining the suitable 
stopping epoch and the number of hidden neurons, the 
validation dataset will be merged into the training dataset to 
retrain the final network parameters for making full use of 
data. After condensing the data with respect to each phase 
into the corresponding terminal hidden states, All features 
extracted by LSTM in all phases are concatenated together 
and then are transferred into SAE. The SAE is used to 
reduce the dimension and extract features. So the level of 
SAE is uncorrelated with the number of phases. The 
structure of SAE is determined by the trial and error 
technique. Thus, the constructed SAE in this example 
consists of two AEs with 20 and 15 neurons, respectively. 
After these AEs are pre-trained in a layer-wise manner, they 
are further stacked into SAE and the output layer is added to 
the top of SAE for weight and bias refining and quality 
prediction. MSE and R2 of the testing dataset are 0.32 and 
0.69, respectively. The predicted quality and the true quality 
in each testing batch are shown in Fig. 12(a). In most 
batches, the predicted values fit the real values well. Some 
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batches also have large prediction errors, probably because a 
new data pattern which is not similar to the training dataset 
is included in the testing dataset or the corresponding quality 
in this batch is close to an outlier.  

TABLE II. MSE and R2 of different methods 

Approach MSE R2 
LSTM-SAE 
LSTM-NN 

0.32 
0.54 

0.69 
0.47 

RNN 0.86 0.15 
LSTM 0.75 0.26 

MPLS-RVM 0.79 0.28 

 
  To further testify the effectiveness of the new strategy, it 
is compared to other methods. Firstly, a phase-wise LSTM 
followed by a single hidden layer neural network 
(LSTM-NN) is trained. The number of hidden units is 20, 
which is the same as the first autoencoder in LSTM-SAE. 
Then, an ordinary RNN shown in Fig. 2 is trained by full 
lengths without any phase division to predict qualities. 
Likewise, without any phase division, an LSTM cell in place 
of the ordinary RNN cell is applied to carry out quality 
prediction. Note that the state transition structure in Fig. 2 
does not require the same length in each batch. The original 
data can be directly used to train model parameters. For the 
LSTM network and the ordinary RNN network with 
full-length training, the parameters are initialized randomly. 
The learning rate of the learning algorithm is set as the same 
as that of the proposed scheme. In addition, a shallow model 
for nonlinearity quality prediction is also applied using 
MPLS for feature extraction in each phase and RVM for 
regressing these features into the ending quality[15]. The 
phase division points of this shallow model are the same as 
those of the proposed method. Note that the shallow model 
requires the same length for all the training batches in each 
phase. To satisfy such a requirement, DTW aligns those 
uneven batches for obtaining a compatible batch data. 
Fig.12 and Table II show the comparative results of the three 
methods with the proposed strategy. LSTM-NN produces a 
bit better prediction than the other comparative methods. 
That implies the importance of SAE in terms of extracting 
abstract representations. LSTM is better than RNN because 
LSTM has a stronger ability to learn a long-term memory. 
However, all of the three methods cannot be put into 
practice because the predictions in many batches contain 
significant prediction errors. In comparison, the prediction 
efficacy of LSTM-SAE has been significantly improved. 
The reason behind the improved performance is that the 
parameters governing the state transition are shared within a 
phase instead of the whole batch and LSTM-SAE has a 
higher model capacity to adapt to very complex batch 
processes. In this way, a more precise quality-relevant 
feature extraction is included for the challenging industrial 
example.  
 

VI. CONCLUSIONS 
  This paper proposes a new strategy for batch process 
quality prediction based on deep learning, which means the 
deep hierarchical structure with LSTM cascaded by SAE is 
used to extract quality-relevant phase features. And then 
these phase features are concatenated together and are 
finally fed into an SAE network for learning a deep 
representation of batch trajectories. They are the 
comprehensive features for quality prediction. In this way, 

the new method has the following advantages. 
 The endpoint prediction structure of LSTM and gates 

in LSTM help summarize a long phase sequence into 
several endpoint hidden states and bring about a 
large-scale reduction of predictor dimension. 

 As a strong nonlinear dynamic model, LSTM makes 
phase division easier than linear statistical methods. In 
the framework of LSTM, the phase is determined by 
simply locating discontinuous points. 

 Because of the recurrent structure, LSTM can directly 
deal with uneven-length sequences instead of using 
any sequence alignment methods to avoid the risk of 
distorting the original sequence structure. 

 With the high capacity of SAE, LSTM-SAE is able to 
integrate phase features and further learn deep 
nonlinear features rather than simple or shallow 
features. 

  Based on these merits, LSTM-SAE can yield prediction 
results after effective modeling training; it can also be 
directly applied to real plants with little compromise on data 
preprocessing. The practical MMA-VA process has validated 
the effectiveness of the proposed framework. Since the 
proposed method makes a significant improvement in 
predicting the quality of complex batch processes, the 
quality-relevant process optimization, process monitoring 
and control are worthy of further study under the proposed 
framework. 
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