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Abstract

We propose a maximum likelihood estimation approach for the identification of symmetric noncausal models. Such models are
used to represent the cross-directional dynamic response of many industrial processes that are generally modeled with a high-
dimensional gain matrix. Reducing the number of parameters in a noncausal model can significantly reduce the uncertainty
associated with parameter estimates. We adapt the maximum likelihood method to treat symmetric noncausal models by
showing that every symmetric noncausal process admits a spectrally equivalent causal model. It is then proved that the
maximum likelihood estimate of this causal model converges to that of the original noncausal model. We present an iterative
identification algorithm to efficiently estimate the parameters in noncausal models. Finally, we show that the parameter
covariance estimate obtained from the causal model also converges to that of the noncausal model, which lays a foundation for
optimal input design in noncausal processes. Several numerical examples illustrate the effectiveness of the proposed algorithm.
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1 Introduction

Over the last few decades system identification of causal
models has received extensive attention and a number of
classical methods such as the prediction-error method,
maximum likelihood estimation and subspace identifica-
tion have been available in the literature [1,2,3]. Identi-
fication of noncausal models has not attracted the same
amount of research focus in the system identification com-
munity, possibly due to the rarity of noncausal processes
in the process industry. However, in applications where
the independent variable indexes space rather than time,
noncausal behavior is both physically realizable and rel-
evant. An example is the cross-directional (CD) process
of a paper machine, where a bumped actuator generates
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responses on both sides (cf. Fig. 1). If we treat this cross
direction as an axis that is analogous to the conventional
time axis, then the actuator response on both sides would
correspond to ‘past’ and ‘future’—essentially a noncausal
behavior. Performing noncausal identification, preferably
by adapting currently accessible techniques for causal
models, forms the motivation of this work.

In the areas of image processing and astronomical data pro-
cessing there have been efforts devoted to noncausal identi-
fication of autoregressive models [4,5,6]. A primary issue is
the identifiability of noncausal models when the white noise
is Gaussian. Specifically, given a noncausal AR process 1

{Xx} of order p driven by independent and identically dis-
tributed white noisewx, it is possible to find a purely causal
(or a purely noncausal) AR model of order p that fits the
spectrum of the original process {Xx} and is driven by
some other white noise ŵx [7]. Since a Gaussian process is
completely characterized by its second order properties, a
noncausal system driven by Gaussian disturbances is not
identifiable [4]. If a transfer function, G(q), is purely causal

1 We will use the variable ‘x’ (not ‘t’) in this paper to highlight
the fact that the processes we consider are noncausal in space
(not time).
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Fig. 1. Typical noncausal CD response in a paper machine to
a step change in an actuator.

or purely anticausal, then |G(eiω)| can be uniquely deter-
mined given the order of G(q). On the other hand, if G(q)
is noncausal, then it is not possible to uniquely determine
G(q) from the second order properties of the process even
if the correct order is known. This is due to the fact that

|eiω − z0|= |e−iω − z̄0|. (1)

In other words, if z0 is a pole/zero of G(q), then G(q) and
a transfer function with the conjugate inverse of z0 as its
pole/zero will have the same spectrum. The phase infor-
mation is lost due to the above equality. Traditionally, this
ambiguity is overcome by restricting the model search to
the set of causal models when the process is driven by Gaus-
sian noise.

Due to the non-identifiability of noncausal processes driven
by Gaussian noise, most research on identification of non-
causal processes is focused on identification of models
driven by non-Gaussian noise [8]. Symmetric noncausal
impulse response identification of ARMA models was
considered in [5]. In that paper, the idea was to find a
spectrally equivalent causal model and extract the non-
causal model based on assumptions on the set of possible
models. A maximum-likelihood method for estimating a
noncausal ARMA model and the Cramer-Rao lower bound
are derived in [9]. There is also literature on identification
of noncausal ARMA models using higher order spectral
analysis [10] to deal with non-Gaussian noise. Recent ad-
vances on noncausal identification are more focused on
non-Gaussian univariate and multivariate autoregressive
processes [11,12]. In the realm of system identification,
the noncausal model is more often utilized as a tool to
address the nonlinearity in the feedback or identification
of unstable systems in closed-loop [13,14,15]. Moreover,
noncausal models have a close connection with causal un-
stable models, as pointed out in [16,17]. Therefore, the
available techniques for identifying causal unstable mod-
els, e.g., noncausal filtering in [17] and modifying noise
model with an all-pass filter to make the predictor stable
in [16], are applicable in theory to identify noncausal mod-
els. In principle, the noncausal filtering technique in [17]
developed for unstable causal models can be implemented
to handle the identification of noncausal models. However,
with this method the user has to provide the gradient for
the solvers, which may require extensive efforts in com-
puting the gradient for noncausal models. For the method

in [16], when converting a noncausal model into a causal
unstable model, a new sequence of driving noise is pro-
duced which usually has a much higher variance than the
original noise. This can significantly reduce the signal-to-
noise ratio (SNR), and thus one has to pay extra attention
when implementing this approach. In the current work,
we present a novel iterative identification scheme for unbi-
ased estimation of symmetric noncausal ARMAX models
subject to Gaussian noise, and this method can avoid the
above issues. We handle the identifiability issue by search-
ing for model parameters in a set of causal models that are
spectrally equivalent to the original noncausal models.

As mentioned above, our work is motivated by the control
of paper machines. We are interested in controlling paper
quality variables such as moisture, basis weight and caliper
across the width of the emerging paper sheet, known as the
Cross Direction (CD). This requires for a good model of the
response of the CD process to actuator moves. A typical
noncausal CD response is shown in Fig. 1. Current indus-
trial practice is to measure such responses empirically, us-
ing bump tests on the actuators. In this work, we develop a
general framework for noncausal process identification with
CD modeling of paper machines as the target application.

System identification for sheet and film processes has
gained considerable interest in the literature. The state-of-
the-art on this topic has been covered thoroughly in [18]
and [19]. The mainstream work on identification treats
the CD process as a large-scale multi-input-multi-output
(MIMO) system by discretizing the process model along
the cross direction [20,21]. This is equivalent to using an
FIR model for the CD response. As a consequence, the
estimated model parameters have large uncertainty due to
the large number of free parameters [19]. However, to the
best knowledge of the authors, reports on treating the CD
process as a low-order parametric noncausal model still re-
main scarce. In this paper, our central goal is to establish a
framework for identifying noncausal ARMAX models with
currently available results on causal system identification.
This framework can easily be extended to situations with
more complex model structures, such as Box-Jenkins mod-
els. Specifically, in this work we use a low order noncausal
model in the cross direction to minimize the variance of
parameter estimates. The method proposed in this paper
provides an asymptotically efficient estimate of the CD
model using a maximum likelihood approach. In [20] also,
a maximum likelihood approach was used, however, our
work is different due to the utilization of a parsimonious
noncausal model instead of an FIR type model. In [18],
a method for designing optimal inputs (for the actuator
profile) has been developed. The optimal input is designed
by minimizing a measure of the confidence region around a
steady-state process model, using least squares. However,
for robust control, a good description of the uncertainty in
the frequency domain is useful. There is extensive litera-
ture on input design for robust control [22]. Unfortunately,
all of these methods deal only with causal models. The
other objective of this paper is to present an optimal in-
put design algorithm for noncausal models based on the
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covariance formulation from our noncausal identification
method. We have presented some preliminary results in
[23]. Based on our previous results, in this work, we pro-
pose a framework for identification of symmetric noncausal
processes. It includes rigorous proofs for all theorems, con-
vergence analysis of our iterative identification algorithm
and an optimal input design algorithm for noncausal mod-
els. The focus of this paper is on open-loop noncausal
identification, however, the proposed results can easily be
extended to closed-loop identification.

This paper is organized as follows: In Section 2, we pre-
pare the stage for a rigorous description of the problem
by presenting the assumptions and definitions used in this
work and deriving an important result showing the spectral
equivalence of any symmetric noncausal model to a causal
model. In Section 3, we prove that the maximum likelihood
estimate of the noncausal process and its causal-equivalent
model asymptotically converge to the same value. In Sec-
tion 4, we propose a new identification algorithm for sym-
metric noncausal processes. In Section 5, we prove that
the covariance estimates of the original noncausal process
and the causal-equivalent model asymptotically converge
to the same value. In that section, we also briefly outline a
method for designing inputs. In Section 6, a few simulation
examples are presented. The paper concludes in Section 7.

2 Preliminaries

2.1 Assumptions & Notation

Suppose that the process measurements yx are related to
inputs ux and noise ex according to the following “true
system”

S : A(q, θ0)yx = B(q, θ0)ux + C(q, θ0)ex, (2)

where A, B and C are polynomials in q, the forward shift
operator with respect to x. The analysis presented in this
paper requires all the polynomial coefficients to be real.

2.1.1 Notation

We index discrete stochastic processes with the indepen-
dent variable x. N denotes the size of a collected data set.
We use {sx} to represent a sequence of values for a signal
s, where sx stands for the signal s evaluated at x in space.
Usually the range of x will be obvious from the context. By
default we assume x ∈ {1, · · · , N}. yx ∈ R, ux ∈ R, ex ∈ R
represent output (CD profile), input (actuator profile) and
Gaussian white noise respectively. Noise variance is repre-
sented by σ2. Causal-equivalent signal of sx is represented
by s̃x. For brevity we represent the data set {yx} by y and
{ỹx} by ỹ. θ0 is the true parameter vector containing the
coefficients of the polynomials in (2). We replace θ0 with θ
to emphasize that the parameter is unknown wherever nec-
essary. θi represents the parameter estimate after iteration
i. n represents the number of unknown scalar parameters in
θ. E is reserved for expectation over the probability space

(X ,F , P ), where X is the event space, F is a σ-algebra on
X and P is a complete measure defined on F . Hence, any
random variable, sx, should be written as sx(ξ) for some
ξ ∈ X . However, for the sake of brevity we ignore the ar-
gument, ξ, whenever it is obvious. The spectrum of a sig-
nal sx is denoted by Φs(ω), where ω is the frequency. ‖.‖
is used to denote the vector 2-norm in Euclidean space or
the Frobenius norm for matrices.

2.1.2 Assumptions

(A1) The true parameter vector θ0 lies in a compact and
convex subset Ω of Rn.

(A2) For any signal sx, E[sx] = ms(x), |ms(x)| ≤ Cs,∀x.
(A3) For any signal sx, E[sxsx+τ ] = Rs(x, x + τ),

|Rs(x, x+τ)| ≤ Cs,∀ x, τ , limN→∞
1
N

∑N
x=1Rs(x, x−

τ) = Rs(τ), ∀ τ.
(A4) For each θ ∈ Ω, the model polynomials A(q, θ),

B(q, θ), C(q, θ) have no zeros on the unit circle and
all zeros are stable.

(A5) For each θ ∈ Ω, each polynomials T = A,B,C admits
a factorization of the form T (q, θ) = T+(q, θ)T−(q, θ),
involving a strictly causal polynomial, T−(q, θ) =∑nT

i=0 tiq
−i, and a strictly anticausal polynomial, with

T+(q, θ) = T−(q−1, θ) on account of symmetry. Here
ti = ai, bi, ci when T = A,B,C, respectively.

(A6) a0 = c0 = 1.
(A7) ex, ẽx and their respective derivatives with respect to

the parameter vector θ can be represented using fam-
ilies of uniformly stable filters (see definition below)
acting on the known data {yx} and {ux}.

Note that assumption (A5) implies that the model (2) pos-
sesses a symmetric response. Further, since each of the
polynomials generically denoted T has real coefficients, the
values of T− and T+ at q = eiω form a complex-conjugate

pair, so T (eiω, θ) =
∣∣T−(eiω, θ)

∣∣2 is real and positive for
all ω, θ. As we will show, the symmetry property makes it
possible to find a causal-equivalent representation for this
class of noncausal models. Note that most CD responses in
paper machines can be modeled using (2) [24].

2.2 Spectral Equivalence of Causal and Noncausal Models

In order to prove certain convergence results in a later sec-
tion, we adapt a key causal definition in Ljung [1, p. 27] as
follows.

Definition 1 Let G(q, θ) =
∑∞
k=−∞ gk(θ)q−k be a

transfer function depending on a parameter θ. Given
a parameter set Ω, call G uniformly stable on Ω when∑∞
k=−∞ supθ∈Ω

∣∣gk(θ)
∣∣ < +∞.

We now present a lemma on the uniform stability of sum
and product of uniformly stable transfer functions belong-
ing to the same model set.

Lemma 1 If the given noncausal filtersG(q, θ) andH(q, θ)
depending on θ ∈ Ω are both uniformly stable on Ω, then
the following filters are also uniformly stable on Ω:
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(i) G(q, θ) +H(q, θ),
(ii) G(q, θ)H(q, θ).

Proof. The sequences of impulse-response coefficients for
G + H and GH are, respectively, the sum and the convo-
lution of the individual coefficient sequences for G and H.
Both these operations produce an absolutely summable re-
sult when applied to a pair of absolutely summable inputs.
The result follows. �

A signal that satisfies assumptions A2 and A3 is said to be
quasi-stationary—see Ljung [1, p. 34]. The following result
shows that a signal filtered by a stable noncausal model is
quasi-stationary.

Theorem 1 Let {wx} be a quasi-stationary process and let
G(q) be a symmetric stable noncausal model of the form
G(q) =

∑∞
k=−∞ gkq

−k, where gk = g(−k). Then the fil-

tered signal sx = G(q)wx = G+(q)G−(q)wx, is also quasi-
stationary. Moreover, its spectrum is related to the spectrum
of wx by Φs(ω) = |G−(eiω)|4Φw(ω) = |G+(eiω)|4Φw(ω).

Proof. The proof of quasi-stationarity of sx follows the
lines of Theorem 2.2 in Ljung [1] and hence it is not repeated
here. From the same theorem in Ljung [1], we have

Φs(ω) = [G+(eiω)G−(eiω)]Φw[G+(eiω)G−(eiω)]∗

= |G−(eiω)|4Φw(ω). (3)

The final equation follows due to the symmetry in G(q). �

Corollary 1 For the model in (2), the output spectrum is

given by Φy(ω) = |B(eiω,θ0)|2
|A(eiω,θ0)|2 Φu + |C(eiω,θ0)|2

|A(eiω,θ0)|2 Φe, under the

assumption that input ux is not correlated with the noise ex.

This theorem is useful in studying the frequency domain
properties of estimated models.

Traditionally, causal models have been identified by mini-
mizing prediction errors (prediction-error methods). In the
case of noncausal models, it is not possible to define a pre-
diction error. However, there has been some work reported
on using a “two-sided prediction error” [25,26]. The idea in
these methods is to use a weighted average of the “past” and
“future” values to find the current prediction error. Most
of the reported work along these lines focuses on ARMA
models. In this paper, our aim is to make identification
of noncausal models accessible to the wealth of methods
available for identification of causal models. We first show
that a causal equivalent of the noncausal sequence {yx}
can be generated by a causal model and a possibly differ-
ent realization of noise. By equivalent time series, we mean
a time series with the same spectrum as {yx}. We then
show that the maximum likelihood estimates produced us-
ing data generated from the causal model and the original
noncausal model are the same in the probabilistic sense.

In order to estimate the causal-equivalent time series, we
need to know the true model itself. Hence, the algorithm

Non-causal 
Model

Causal 
Model

MLE MLE

Initial Guess

Equivalent

Models

Fig. 2. The main idea of this paper showing equivalence of non-
causal model and a corresponding causal model along with the
equivalence of their respective maximum likelihood estimates
(MLE).

proposed in this paper takes an iterative approach. We
make an initial guess for the model parameters and use that
to estimate the causal-equivalent time series, which in turn
is used in identifying a causal-equivalent model. The idea
behind the proposed method is shown in Fig. 2.

The following result shows that there exists a causal-
equivalent model.

Proposition 1 Consider the noncausal ARMAX model

A(q)yx =B(q)ux + C(q)ex, (4)

where

A(q) =A+(q)A−(q), such that A+(q−1) = A−(q),

B(q) =B+(q)B−(q), such that B+(q−1) = B−(q),

C(q) =C+(q)C−(q), such that C+(q−1) = C−(q),

and ex is Gaussian white noise with variance σ2. Assume
that there are no zeros ofA(q), B(q), C(q) on the unit circle.

Then there exist causal polynomials Ã(q), B̃(q), C̃(q), a
Gaussian white noise sequence ẽx, and a sequence {ỹx} with
same spectral characteristics as {yx}, satisfying the causal
invertible equation

Ã(q)ỹx = B̃(q)ux + C̃(q)ẽx. (5)

Moreover, if ux and ex are independent, then ux and ẽx are
also independent.

Proof. After enumerating the anti-causal zeros of the re-
spective polynomials A,B,C by αj , βj , γj , we define the
causal, minimum-phase polynomials

Ã(q) =A(q)
∏

1≤j≤na

(
q−1 − αj
q − αj

)
:= A(q)πA(q),

B̃(q) =B(q)
∏

1≤j≤nb

(
q−1 − βj
q − βj

)
:= B(q)πB(q),

C̃(q) =C(q)
∏

1≤j≤nc

(
q−1 − γj
q − γj

)
:= C(q)πC(q).
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Each of πA, πB , πC is an all-pass filter. Consider

ỹx =
πB
πA

yx. (6)

From the definition of πB and πA, we know that Φ
ỹ
(ω) =

Φy(ω),∀ω. Multiplying both sides of (4) by πB

πA
, after some

manipulations, we arrive at ỹx = B̃

Ã
ux + C̃

Ã
ẽx, where ẽx =

πB

πC
ex. Note that ẽx is a Gaussian white noise sequence with

variance σ2. We can see that there exist a Gaussian white
noise sequence, {ẽx}, and a sequence {ỹx}, defined by (6),
such that the original noncausal model (4) admits a causal-
equivalent representation (5) in the sense that the two have
identical output spectra. �

The above proposition associates a spectrally equivalent
causal system with any symmetric noncausal model. We
propose to estimate the parameters of the noncausal sys-
tem using maximum likelihood estimates from the causal-
equivalent model. The text below provides both theoretical
and empirical justification for this approach.

Example 1 Consider this noncausal ARX model:

(1− θ1q
−1)(1− θ1q)yx = (1− θ2q

−1)(1− θ2q)ux + ex,

with reference parameter values θ0
1 = 0.5, θ0

2 = 0.2. The ref-
erence model is excited with a white signal (ux) of unit vari-
ance; the noise variance is 0.09. In order to minimize vari-
ance errors, we use a very large data set with N = 1280000
data points. We first identify the above model with the col-
lected noncausal data using ordinary least squares, as is
common with causal ARX models. The results, θ1 = 0.5880
and θ2 = 0.3143, are grossly inaccurate. This is to be ex-
pected, because the “current” noise is correlated with both
“past” and “future” outputs due to noncausality (please
refer to [1], p. 205 for a discussion on reasons for bias 2 ).
Using the same data set but with the causal-equivalent in-
put and output data, the estimated model parameters are
much more accurate: θ1 = 0.4998 and θ2 = 0.1996.

Example 2 Consider the noncausal ARMAX model (2)
with coefficients A(q) = (1 − 0.5q−1)(1 − 0.5q), B(q) =
(1 − 0.2q−1)(1 − 0.2q), C(q) = (1 − 0.4q−1)(1 − 0.4q).

Then we have Ã(q) = (1 − 0.5q−1)(1 − 0.5q−1), B̃(q) =

(1− 0.2q−1)(1− 0.2q−1), C̃(q) = (1− 0.4q−1)(1− 0.4q−1).
This model is simulated using Gaussian white noise of
unit variance for ex and a random binary input in the
Nyquist frequency range of 0 to 1 for ux. The data length
N = 100000. A plot showing the original noncausal out-
put and the causal-equivalent output is shown in Fig. 3(a).
Their spectra are shown in Fig. 3(b). It is clear that even
though the two stochastic processes are different they have
the same spectrum and moreover, as shown in Fig. 3(c),
there is no correlation between ỹx and future ẽx.

2 It is important to note that the amount of bias depends on the
pole/zero locations of the process and noise transfer functions
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2.3 Open-loop Noncausal Filtering Approach

For the open-loop noncausal ARX system (4), a more in-
tuitive identification approach can be used when the input
signal ux is deterministic. Specifically, system (4) can be
equivalently written as

yx = sx +
(C−(q))2

(A−(q))2
ēx, (7)

where sx = B+(q)B−(q)
A+(q)A−(q)ux, ēx = C+(q)A−(q)

C−(q)A+(q)ex. Note that ēx
is also Gaussian and white with same spectrum as ex, but
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perhaps a different realization. Since sx is deterministic,
the predictor form of (7) is

ŷx =
(A−(q))2

(C−(q))2
sx +

(C−(q))2 − (A−(q))2

(C−(q))2
yx. (8)

The prediction error for the noncausal filtering approach
arising from (7)-(8) is

ε̄x =
(A−(q))2

(C−(q))2
(yx − sx) , (9)

whereas the prediction error ε̃x from (5) is an all-pass ver-
sion of ε̄x, i.e., ε̄x = πB

πA
ε̃x. Thus, asymptotically in sam-

ple size, for open-loop identification, the noncausal filtering
approach shown here yields identical estimates (also with
the same asymptotic properties) as the method proposed
in previous section.

Although the noncausal filtering approach in this section
seems more straightforward, it is not applicable when ux
is stochastic or generated in closed-loop. In contrast, our
method in previous sections can be easily extended to
closed-loop case. Moreover, from the implementation per-
spective, for the noncausal filtering approach, the compu-
tation of the prediction error and its gradient with respect
to parameters still involve extensive noncausal parts. This
requires a special treatment. In particular, the transient
effects due to noncausal filtering may not be negligible
when the sample size is small. In contrast, our approach
relies only on causal identification methods that are readily
available in current system identification solvers. For sim-
plicity, in the following sections, we focus on exploring the
statistical properties of our approach for open-loop data.

3 Maximum Likelihood Estimation

In this section we demonstrate the asymptotic convergence
of a prediction-error type objective function to the log-
likelihood function for both causal and noncausal models.
We further show that the log-likelihood function of a non-
causal model converges asymptotically to that of its causal-
equivalent model. Moreover, the maximum likelihood esti-
mates of a noncausal model and its causal-equivalent model
coincide if there is a unique maximum associated with the
log-likelihood functions. This observation allows us to iden-
tify a noncausal model by identifying its causal-equivalent
model. The expression for the asymptotic log-likelihood
function of stable, causal models was derived in [1] and the
expression for nongaussian, noncausal autoregressive mod-
els was derived in [9]. We generalize the result in [9] to uni-
formly stable noncausal ARMAX models.

3.1 Likelihood Function

We consider the following standard objective function in
prediction-error methods

V N (θ) = − 1

N

N∑
x=1

1

2
e2
x(θ), (10)

where ex(θ) = A(q,θ)
C(q,θ)

(
yx − B(q,θ)

A(q,θ)ux

)
. From (2), we can see

that there is a one-to-one correspondence between yx and
ex. Maximum likelihood estimation theory [2], ensures that
maximizing the log-likelihood function of the output data is
equivalent to maximizing the log-likelihood function of the
noise, ex. Recall that the (averaged) log-likelihood function
of the data given inputs can be expressed as follows (see
Appendix A):

LN =
1

N

N∑
x=1

log fe(ex|u1, · · · , uN , θ),

where fy(·) and fe(·) denote the density functions of yx and
ex respectively. Noting the availability of similar results for
the causal situation [1,2], we now show that the objective
function in (10) is uniformly close to the true log-likelihood
function for both causal and noncausal models, provided
that they are uniformly stable and the noise is Gaussian.

Proposition 2 LetLNc (ỹ, θ) andLN (y, θ) denote the aver-
age log-likelihood functions of the data sets {ỹ1, ỹ2, · · · , ỹN}
and {y1, y2, · · · , yN} generated respectively by the causal

and noncausal models in (5) and (4). Let KV = log σ
√

2π.
If the filters generating both the causal and noncausal data
sets are uniformly stable, then, as N →∞,

sup
θ∈Ω

∣∣∣∣ 1

σ2
V Nc (θ)− LNc (ỹ, θ)−KV

∣∣∣∣→ 0, w.p.1,

sup
θ∈Ω

∣∣∣∣ 1

σ2
V N (θ)− LN (y, θ)−KV

∣∣∣∣→ 0, w.p.1.

Here V N is as defined in (10) and V Nc is defined analogously
for the model in (5).

Proof. We generalize the proof in [9] to uniformly stable
noncausal ARMAX models. See Appendix A for details. �

The above proposition suggests using the sum of squared
errors, ẽx(θ), as our objective function for finding the max-
imum likelihood estimate. As we show in the next section,
the uniform convergence established above is the key to
convergence of the corresponding parameter estimates.

3.2 Convergence of Causal and Noncausal Parameter Es-
timates

We now prove our main theoretical result. It shows that
the likelihood function of the original noncausal model is
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uniformly close to the likelihood function of the causal-
equivalent model, with the gap closing as the data set
grows. This result makes use of the following extension of
Theorem 2B.1 in Ljung [1], which states that a signal gen-
erated by a uniformly stable family of systems is ‘uniformly
ergodic’.

Theorem 2 Consider two uniformly stable families of
(possibly noncausal) filters G(q, θ) and H(q, θ), θ ∈ Ω. Let
ux be a bounded signal, i.e., supx |ux| < +∞, and define
signals sx(θ) = G(q, θ)ux + H(q, θ)ex for each θ, where
ex is Gaussian white noise with variance σ2. Then the
following statement holds with probability 1 : as N →∞,

sup
θ∈Ω

∥∥∥∥∥ 1

N

N∑
x=1

[
sx(θ)sx(θ)T − Esx(θ)sx(θ)T

]∥∥∥∥∥→ 0.

Proof. The proof is very similar to that of Theorem 2B.1
in Ljung [1] and hence omitted. The only difference is in
making use of the noncausal Definition 1 in this paper. �

The above theorem will be used many times in the rest of
this paper. It shows that for a signal generated by any set
of uniformly stable filters, the sample covariance converges
uniformly to the ensemble covariance as the data length
tends to infinity.

Proposition 3 Assume that the following filters are uni-
formly stable on Ω:

B(q, θ)

C(q, θ)
,

A(q, θ)

C(q, θ)
,

πB(q, θ)

πC(q, θ)
. (11)

Define L(θ) = σ2(θ)− σ
√

2π, where

σ2(θ) =
1

2π

∫ π

−π

(∣∣∣∣A(eiω, θ)B(eiω, θ0)

C(eiω, θ)A(eiω, θ0)
− B(eiω, θ)

C(eiω, θ)

∣∣∣∣2 Φu

+

∣∣∣∣A(eiω, θ)C(eiω, θ0)

C(eiω, θ)A(eiω, θ0)

∣∣∣∣2 Φe

)
dω. (12)

Then as N →∞,

sup
θ∈Ω

∣∣LN (y, θ)− L(θ)
∣∣ w.p.1→ 0, (13)

sup
θ∈Ω

∣∣LNc (ỹ, θ)− L(θ)
∣∣ w.p.1→ 0, (14)

sup
θ∈Ω

∣∣LNc (ỹ, θ)− LN (y, θ)
∣∣ w.p.1→ 0. (15)

Proof. We begin with (15). Recall that θ0 ∈ Ω by assump-

tion. For any given θ ∈ Ω, the error ex(θ) satisfies

ex(θ) =

(
A(q, θ)B(q, θ0)

C(q, θ)A(q, θ0)
− B(q, θ)

C(q, θ)

)
ux

+

(
A(q, θ)C(q, θ0)

C(q, θ)A(q, θ0)

)
ex(θ0). (16)

Similarly, the error for the causal-equivalent model is

ẽx(θ) =
πB(q, θ)

πC(q, θ)

(
A(q, θ)B(q, θ0)

C(q, θ)A(q, θ0)
− B(q, θ)

C(q, θ)

)
ux

+
πB(q, θ)

πC(q, θ)

(
A(q, θ)C(q, θ0)

C(q, θ)A(q, θ0)

)
ex(θ0). (17)

Now consider the function σ2(θ) defined in (12). Combining
Parseval’s theorem, Theorem 2, and Lemma 1, we have, as
N →∞,

sup
θ∈Ω

∣∣∣∣∣− 1

N

N∑
x=1

e2
x(θ) + σ2(θ)

∣∣∣∣∣ w.p.1→ 0, (18)

sup
θ∈Ω

∣∣∣∣∣− 1

N

N∑
t=1

ẽ2
x(θ) + σ2(θ)

∣∣∣∣∣ w.p.1→ 0. (19)

Since (for each θ ∈ Ω and ω ∈ R) |A(eiω)| = |Ã(eiω)|,
|B(eiω)| = |B̃(eiω)| and |C(eiω)| = |C̃(eiω)|, the variances
of ex(θ) and ẽx(θ) uniformly converge to σ2. From the tri-
angle inequality, for any given N , we have

sup
θ∈Ω

∣∣V Nc (θ)− V N (θ)
∣∣ ≤ sup

θ∈Ω

∣∣∣∣V Nc (θ) +
1

2
σ2(θ)

∣∣∣∣
+ sup
θ∈Ω

∣∣∣∣V N (θ) +
1

2
σ2(θ)

∣∣∣∣ . (20)

From (18) and (19), it follows that the probability space X
contains two subsets Γc and Γ (possibly empty) such that
P(Γ) = P(Γc) = 0 and

sup
θ∈Ω

∣∣∣∣∣− 1

N

N∑
x=1

e2
x(ξ, θ) + σ2(θ)

∣∣∣∣∣→ 0 ∀ ξ 6∈ Γ,

sup
θ∈Ω

∣∣∣∣∣− 1

N

N∑
x=1

ẽ2
x(ξ, θ) + σ2(θ)

∣∣∣∣∣→ 0 ∀ξ 6∈ Γc.

(Note that ỹ and y also depend on the random parameter
ξ ∈ X through the noise term.) For each ξ in X − (Γ∪Γc),
sending N →∞ in (20) and using Proposition 2 gives

lim
N→∞

sup
θ∈Ω

∣∣LNc (ỹ(ξ), θ)− LN (y(ξ), θ)
∣∣ = 0. (21)

Of course P(Γc ∪ Γ) ≤ P(Γc) + P(Γ) = 0, so (15) follows.

Turning to (13), we use Appendix A and Proposition 2 to
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get

sup
θ∈Ω

∣∣V N (θ)/σ2 −KV − LN (y, θ)
∣∣ w.p.1→ 0. (22)

Then, from the triangle inequality,

sup
θ∈Ω

∣∣−σ2(θ)/σ2 −KV − LN (y, θ)
∣∣ ≤

sup
θ∈Ω

∣∣−σ2(θ)/σ2 − V N (θ)/σ2
∣∣

+ sup
θ∈Ω

∣∣V N (θ)/σ2 −KV − LN (y, θ)
∣∣ .

Thanks to (22) and (18), the argument from this inequality
to (13) is very similar to the one from (20) to (21). Likewise
for (14). �

Corollary 2 Under the assumptions in Proposition 3,∥∥∥∥max
θ∈Ω
LNc (ỹ, θ)−max

θ∈Ω
LN (y, θ)

∥∥∥∥ w.p.1→ 0, (23)∥∥∥∥max
θ∈Ω
LN (y, θ)−max

θ∈Ω
L(θ)

∥∥∥∥ w.p.1→ 0, (24)∥∥∥∥max
θ∈Ω
LNc (ỹ, θ)−max

θ∈Ω
L(θ)

∥∥∥∥ w.p.1→ 0. (25)

Proof. All three statements follow from Proposition 3 and
the following inequality, valid for any real-valued functions
f and g on Ω:∣∣∣∣sup
θ∈Ω

f − sup
θ∈Ω

g

∣∣∣∣ ≤ sup
θ∈Ω
|f(θ)− g(θ)| . (26)

To justify (26), suppose for simplicity that f and
g attain their suprema, i.e., some θf , θg ∈ Ω obey
f(θf ) = supθ∈Ω f, g(θg) = supθ∈Ω g. Then clearly
f(θg) ≤ f(θf ), i.e., − f(θf ) ≤ −f(θg). Adding g(θg) to
both sides gives

g(θg)− f(θf ) ≤ g(θg)− f(θg) ≤ |g(θg)− f(θg)| . (27)

Repeating this argument with the roles of f and g reversed
establishes

f(θf )− g(θg) ≤ |f(θf )− g(θf )| . (28)

Together, inequalities (27) and (28) confirm our claim:∣∣∣∣sup
θ∈Ω

f − sup
θ∈Ω

g

∣∣∣∣≤max {|f(θf )− g(θf )| , |f(θg)− g(θg)|}

≤ sup
θ∈Ω
|f(θ)− g(θ)| .

Now consider (23). For each fixed ξ ∈ X such that
supθ∈Ω

∣∣LNc (ỹ, θ)− LN (y, θ)
∣∣ → 0 as N → ∞, defining

f(θ) = LNc (ỹ, θ) and g(θ) = LN (y, θ) and applying (26)

implies
∣∣supθ∈Ω LNc (ỹ, θ)− supθ∈Ω LN (y, θ)

∣∣ → 0 as N →
∞. According to Proposition 3, the set of ξ to which this
reasoning applies has probability 1. Similar arguments
establish (24) and (25). �

The results above show that the log-likelihood function of
the causal-equivalent model uniformly approximates that
for the original noncausal model as the sample count tends
to infinity. Further, the maximum values of the causal
and noncausal log-likelihood functions are asymptotically
equal, given that both causal and noncausal models are
uniformly stable. It remains to prove that the set of maxi-
mizing parameters for each of these two functions are the
same, so that we can use the causal-equivalent model for
identification. This requires some care, because (as shown
in Example 3 below) uniform convergence of a sequence of
functions is not enough to guarantee convergence of their
maximizing inputs.

Proposition 4 Consider the following sets of maximizing
parameters:

DNc = argmax
θ∈Ω

LNc (ỹN , θ),

DN = argmax
θ∈Ω

LN (yN , θ),

D= argmax
θ∈Ω

L(θ),

where LNc , LN , and L are defined in Propositions 2 and 3
above. Then, with probability 1, we have

(i) Each of the sets DNc , DN , and D is closed and
nonempty.

(ii) ∅ 6= lim sup
N→∞

DNc ⊆ D.

(iii) ∅ 6= lim sup
N→∞

DN ⊆ D.

(iv) In particular, if D = {θ0} is a singleton, then one has
both θNc → θ0 and θN → θ0 for any sequences θNc ∈ DNc
and θN ∈ DN .

Note that the “lim sup” operation in the statement above
applies to a sequence of sets. For a generic sequence of sets
DN ⊆ Rn, we have θ ∈ lim supN→∞DN if and only if
θ = limN→∞ θN for some sequence {θN} with the property
that θN ∈ DN for infinitely many N (See Resnick [27], p.
6).

Remark. The conclusions of Proposition 4 can be im-
proved by replacing the sets DN ,DNc with the respective
enlargements defined as follows. Let rN ≥ 0 be any non-
negative sequence of scalars obeying rN → 0 as N →
∞, and D̂N =

{
θ + rNu : θ ∈ DN , |u| ≤ 1

}
∩ Ω, D̂Nc ={

θ + rNu : θ ∈ DNc , |u| ≤ 1
}
∩Ω. This is relevant because

iterative schemes designed to find points in DNc typically
return inexact results, which can be described using sets

like D̂Nc .

Proof. The stated conclusions follow from the basic prop-
erties of the log-likelihood functions involved here and the

8



uniform convergence properties established in the cited
propositions. For any fixed realization ξ in X of the random
processes considered here (outside some set with zero prob-
ability), we reason as follows. All three variants of L(θ) are
continuous, and any continuous function is guaranteed to
attain a maximum value over any compact set; the set of
maximizers must be closed. This establishes (i). Further, all
three variants of L(θ) are continuously differentiable func-
tions of the parameter vector θ, whose gradients are uni-
formly bounded on the set Ω as shown in Section 5. Thus
the deterministic arguments detailed in Appendix B estab-
lish (ii) and (iii). As for (iv), when D = {θ0} is a singleton
set, the compactness of Ω guarantees that every sequence
{θN} obeying θN ∈ DN for each N must have a convergent
subsequence; from (iii), that subsequence must converge
to θ0. Since this reasoning applies to arbitrary sequences
θN ∈ DN , it is impossible for any such sequence to fail to
converge to θ0. The situation for DNc is analogous. �

Remark 1 The above result generalizes Theorem 8.2 in
Ljung [1] by allowing non-singleton sets for DN . The re-
sults in (ii) and (iii) show that the maximum-likelihood
parameter estimates from the causal-equivalent model and
the original noncausal model asymptotically approach true
maximizers of the asymptotic log-likelihood function. If
there is a unique maximizer in the limit, then the causal
and non-casual data will provide the same asymptotic es-
timates. (Example 3 suggests that the causal and non-
causal estimates could differ when D contains more than
one element—a situation we consider unlikely.)

From now on, we focus on maximum likelihood estimation
of the causal-equivalent model. Variance expressions for
estimates of causal models are derived in Ljung [1] (p. 291).
In Section 5, we provide variance expressions for the causal-
equivalent model with its special structure and also show
that if lim sup

N→∞
D̄Nc ∩ lim sup

N→∞
D̄N 6= ∅, then the variance of

the common maxima of causal and noncausal models will
be asymptotically identical.

Example 3 Uniform proximity between the causal and
noncausal models may not be enough to guarantee that the
corresponding maximum likelihood parameter estimates
are close together. Here is a deterministic analytical model
that clarifies the issue. We use a one-dimensional parame-
ter set Ω = [−1.5, 1.5] and define fN (θ) = −(θ2− 1)2− θ

N ,

gN (θ) = −(θ2 − 1)2 + θ
N . Both sequences {fN}, {gN} con-

verge uniformly on Ω to the same limit function h(θ) =
−(θ2 − 1)2. The discrepancies are caused by linear per-
turbations that shrink as N increases: these perturbations
make fN > hN > gN when θ < 0, but reverse these in-
equalities when θ > 0. As illustrated in Fig. 4, the maxi-

mizers of {fN} form a sequence θfN converging to θf = −1,
whereas the maximizers of {gN} form a sequence θgN con-
verging to θg = +1. Of course the maximum values con-
verge to 0 (which is the maximum value of h), and both
parameter sequences mentioned above converge to inputs
that maximize h. The existence of distinct global maximiz-
ers for the limit function h allows these two outcomes to

-1.5 -1 -0.5 0 0.5 1 1.5
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f
1
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Fig. 4. Sample functions fN , gN and h in Example 3.

hold even though
∣∣∣θfN − θgN ∣∣∣ ≥ 2 for all N .

For the identification problem considered in this paper, we
have not imposed hypotheses to guarantee that the lim-
iting log-likelihood function L(θ) defined in Proposition 3
achieves its maximum at a unique point on Ω. When it does
(which we expect to be typical in practice), conclusion (iv)
of Proposition 4 applies.

4 Identification Algorithm

From the previous section one can see that if the log-
likelihood function has a unique maximizer, then the
maximum likelihood estimate of the causal-equivalent
model converges to that of the original noncausal model.
This result lays a theoretical foundation for using the
causal-equivalent data {ỹx, ux} and corresponding causal
identification techniques as a way to identify a symmetric
noncausal model. However, as shown in (6), acquiring the
causal-equivalent data depends on an unknown all-pass
filter πB

πA
. We propose an iterative approach to deal with

this. To start, one must have input-output measurements
ux and yx for x ∈ {1, 2, . . . , N} and an approximation, θ,
for the true parameter vector θ0. Often an initial guess
can be obtained from physical insight into the process. For
instance, if we know an approximate time constant, then
it can be used as a first guess for that parameter. Iteration
proceeds as follows:

(1) Use the current approximation θ to compute ỹx(θ) =
(πB(θ)/πA(θ))yx.

(2) Use the data ỹx obtained from step 1 with ux to iden-
tify the structured model in (5).

(3) Extract an updated approximation for θ from the iden-
tified model.

(4) If Steps 2 and 3 produce a sufficiently small change in
the original vector θ, declare success and stop; other-
wise, return to Step 1.

The steps above are supported by standard software. Our
numerical experiments used Matlab’s System Identification
Toolbox, specifically, the function idgrey to encode the
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structured linear model and the function pem to perform
the optimization.

To formalize the iterations with a view to convergence

analysis, let F (q, θ) = πB(q,θ)
πA(q,θ) denote the filter applied in

step (1). Note that F (q, θ) is all-pass for each θ. Then de-
fine a version of the average prediction-error as a function
of inputs in Ω× Ω:

JN (θ, θ′) =
1

N

N∑
x=1

[
Ã(q, θ)

C̃(q, θ)

(
ỹx(θ′)− B̃(q, θ)

Ã(q, θ)
ux

)]2

,

where ỹx(θ′) = F (q, θ′)yx. When the current parameter
estimate in the iteration is θ = θn, step (1) of the algo-
rithm produces ỹx(θn) and then steps (2)–(3) define θn+1 =
argminθ∈Ω J

N (θ, θn). In particular,

JN (θn+1, θn) ≤ JN (θ, θn),∀θ ∈ Ω. (29)

The following proposition addresses the convergence of the
algorithm above in the large-N limit. We define J(θ, θ′) =
lim
N→∞

JN (θ, θ′).

Proposition 5 In the large-N limit, each iteration of the
identification algorithm above decreases the prediction er-
ror. More precisely, as N →∞, we have

J(θn+1, θn+1) ≤ J(θn, θn) for n = 1, 2, . . . . (30)

Proof. As detailed above (see (29)), if θ = θn in step (1) of
the algorithm, then steps (2)–(3) produce θn+1 for which
(asymptotically in N) J(θn+1, θn) ≤ J(θ, θn), ∀ θ ∈ Ω.
In particular,

J(θn+1, θn) ≤ J(θn, θn). (31)

The next step in the iteration holds the identified causal
model fixed and re-filters the observations with the most
recent parameter estimate, θn+1. This updates the predic-
tion error objective by effectively substituting θ′ = θn+1 in
J(θn+1, θ

′). To assess this, we rewrite 3

JN (θ, θ′) =
1

N

N∑
x=1

[
πAA(θ)

πCC(θ)

(
ỹx(θ′)− F (θ)B(θ)

A(θ)
ux

)]2

.(32)

From the true system model (2), we have

ỹx(θ′) = F (θ′)
B(θ0)

A(θ0)
ux + F (θ′)

C(θ0)

A(θ0)
ex. (33)

3 For simplicity, we omit the arguments q in the time domain
and eiω in the frequency domain.

Substituting (33) in (32) and using Parseval’s theorem in
the limit N →∞, we get

J(θ, θ′) =
1

2π

∫ π

−π

(∣∣∣∣A(θ)

C(θ)

∣∣∣∣2 ∣∣∣∣B(θ0)

A(θ0)
− F (θ)

F (θ′)

B(θ)

A(θ)

∣∣∣∣2 Φu

+

∣∣∣∣A(θ)C(θ0)

C(θ)A(θ0)

∣∣∣∣2 Φe

)
dω. (34)

We have used the independence between {ux} and {ex}
and the fact that F is always an all-pass filter to simplify
the expression.

We now apply (34) with θ = θn+1:

J(θn+1, θ
′) =

1

2π

∫ π

−π

(∣∣∣∣A(θn+1)

C(θn+1)

∣∣∣∣2 ∣∣∣∣B(θ0)

A(θ0)
− F (θn+1)

F (θ′)

·B(θn+1)

A(θn+1)

∣∣∣∣2 Φu +

∣∣∣∣A(θn+1)C(θ0)

C(θn+1)A(θ0)

∣∣∣∣2 Φe

)
dω. (35)

Now both B(θ) and A(θ) are noncausal and symmetric,
so their values when q = eiω are real and positive. We
therefore let

r(θ, ω) =
B(θ, ω)

A(θ, ω)
, (36)

noting that r(θ, ω) > 0 always. In addition, F (θ) is an all
pass filter and therefore

F (θ, ω) = eiφ(θ,ω), ∀ ω, (37)

for some function φ. Using (36) and (37) and dropping the
frequency variable for simplicity,∣∣∣∣B(θ0)

A(θ0)
− F (θn+1)

F (θ′)

B(θn+1)

A(θn+1)

∣∣∣∣2
=
∣∣∣r(θ0)− r(θn+1)ei[φ(θn+1)−φ(θn)]

∣∣∣2
= (r(θ0)− r(θn+1) cos([φ(θn+1)− φ(θ′)])2

+(r(θn+1) sin([φ(θn+1)− φ(θ′)]))2

= r2(θ0) + r2(θn+1)

−2r(θ0)r(θn+1) cos([φ(θn+1)− φ(θ′)]). (38)

The cosine value that minimizes the expression in (38) is
1, and this is achieved when φ(θ′) − φ(θn+1) is an integer
multiple of 2π. In particular, the choice θ′ = θn+1 is a
minimizer, giving

θn+1 ∈ argmin
θ′∈Ω

J(θn+1, θ
′). (39)

In combination with (31), this implies the desired result:

J(θn+1, θn+1) ≤ J(θn+1, θn) ≤ J(θn, θn). (40)
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The numerical experiments described in Section 6 confirm
that the descent property established above is typical in
situations where the number of measurements is sufficient,
and, more generally, whenever the signal-to-noise ratio is
sufficiently large.

5 Input Design

Input design for causal systems is a well established area
of research. In general, input design methods shape the
uncertainty of the identified model in a particular fashion
that suits the user. The early work on experiment design
was based on asymptotic variance expressions first derived
in [28]. These variance expressions are asymptotic in both
model order and sample size. These methods have also been
successfully implemented in practice [29]. However, recent
work has shown that variance expressions based on asymp-
totic model order are not accurate [30,31,32]. In [31], it was
shown that if the uncertainty is large, asymptotic expres-
sions lead to inaccurate results. However, if a particular
condition is satisfied by the model class then the asymp-
totic results provide reasonable accuracy despite large un-
certainty. In view of the results showing unreliability of
asymptotic variance expressions, a number of results based
on convex optimization techniques have appeared in the lit-
erature [33,22]. A more recent technique uses graph theory
to solve the nonconvex problem of closed-loop input design
in the presence of input and output probabilistic bounds
as well as non-linear feedback [34]. For a good summary of
these methods see [35,36] and the references therein.

In this paper, we do not intend to develop a new method
for input design. We would like to utilize the existing meth-
ods for the noncausal process. In order to achieve that, we
need to show asymptotic convergence of the covariance es-
timate of the causal-equivalent model to that of the origi-
nal noncausal model. This in turn makes it possible to use
the covariance estimates of the causal equivalent model for
input design.

5.1 Convergence of Covariance Estimates

The Cramer-Rao lower bound provides a lower bound on

the variance of an unbiased estimate θ̂ of θ0 and is given by

Ljung [1, p. 214]: cov(θ̂) ≥ M−1
0 , where M0 is the Fisher

Information Matrix 4

M0 = E
{
∇Lc(ỹ, θ0)T∇Lc(ỹ, θ0)

}
. (41)

Maximum likelihood estimates achieve the Cramer-Rao
lower bound. Hence, in this section we show that the
Cramer-Rao lower bounds of the causal and noncausal
models are asymptotically equal.

4 Note that ∇ denotes the gradient with respect to parameter
vector θ unless otherwise specified.

For inspiration, recall Proposition 2, which established
(with probability 1) two limiting relations, namely, the
original and causal-equivalent versions of LN (θ) →
σ2(θ) + σ

√
2π as N → ∞. This convergence is uni-

form with respect to θ ∈ Ω. Now we need the following
improvement of these relations involving derivatives.

Lemma 2 Let us assume that LN (θ) and LN (θ) are differ-
entiable for all N with respective derivatives ∇LN (θ) and
∇LNc (θ) that are continuous. Also assume that the deriva-
tives converge uniformly then,

sup
θ∈Ω

∥∥∇LN (θ)−∇σ2(θ)
∥∥ w.p.1→ 0, (42)

sup
θ∈Ω

∥∥∇LNc (θ)−∇σ2(θ)
∥∥ w.p.1→ 0, (43)

and

sup
θ∈Ω

∥∥∇LN (θ)−∇LNc (θ)
∥∥ w.p.1→ 0. (44)

Proof. See Appendix C. �

Lemma 3 Let FN , GN : Ω→ Rn be sequences of functions
satisfying supθ∈Ω

∣∣FN (θ)−GN (θ)
∣∣→0 as N → ∞. In or-

der to deduce that

sup
θ∈Ω

∣∣∣∣mN (FN (θ))−mN (GN (θ))

∣∣∣∣→0. (45)

for some given sequence of continuously differentiable func-
tions mN : Rn → R, it suffices to show that

(a) there exists R > 0 such that
∣∣FN (θ)

∣∣ ≤ R for all N ∈ N
and all θ ∈ Ω, and

(b) there exists a continuous function φ : Rn → R such that
supN

∣∣∇mN (p)
∣∣ ≤ φ(p), p ∈ Rn, where ∇ is the gradient

w.r.t. p in this lemma.

Proof. See Appendix D. �

Theorem 3 Let us suppose that the assumptions in Propo-
sitions 1, 2, 4 and Lemma 3 are satisfied and that the maxi-
mum likelihood estimates of the causal and noncausal mod-
els are obtained as shown in Proposition 3. Furthermore, as-
sume that the maximizer of the likelihood function is unique,
as in Proposition 4(iv). Then for the covariances of the es-
timated parameter vectors obtained using causal and non-
causal likelihood functions, given by

RNc =
[
E
{
∇LNc (ỹ, θ0)T∇LNc (ỹ, θ0)

}]−1
,

RN =
[
E
{
∇LN (y, θ0)T∇LN (y, θ0)

}]−1
, (46)

we have

|RNc −RN |
w.p.1→ 0. (47)
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Proof. Using Lemma 3 and the conditions (a) and (b) in
conjunction with Lemma 2, the result in this theorem fol-
lows. The condition (a) in Lemma 3 is valid if ∇LNc (ỹ, θ)
and ∇LN (y, θ) are bounded by some constants Rc and R
respectively. This is usually true for stable systems in the
neighborhood of the true parameter vector θ0. The condi-
tion in (b) is satisfied if ∇RNc (θ) and ∇RN (θ) are bounded
by continuous function of θ independent of N . �

Remark 2 This is an important result that is useful in
designing experiments. It states that the covariance esti-
mates of the causal and noncausal models converge to the
same value asymptotically. Hence, inputs for identification
of the original noncausal model can be designed by min-
imizing the parameter covariance of the causal-equivalent
model. In the following paragraphs we adapt this approach
and design inputs.

5.2 Input design

It is well known that for the (causal) prediction error
method, when the noise is Gaussian and the criterion is
quadratic, the covariance of parameter estimates coin-
cides with the Cramer-Rao lower bound as N → ∞ [1,
p. 287]. From Theorem 3 it follows that, asymptotically,
the Cramer-Rao lower bounds for the causal model (4)
and the noncausal model (5) are equivalent. Thus, the in-
put design of noncausal models can be instead conducted
based on the asymptotic parameter covariance of causal-
equivalent models.

For the structured causal model (5), the one-step-ahead

prediction at x is ŷ(x, θ) = B̃

C̃
ux +

(
1− Ã

C̃

)
yx. Following

the result in Ljung [1, p. 282], the asymptotic parameter
covariance obeys

√
N(θ̂N − θ0)→ N (0, Pθ), as N →∞, (48)

where ψ(x, θ) = ∇ŷ(x, θ) helps define

Pθ = σ2(θ0)E
[
ψ(x, θ0)ψ(x, θ0)T

]−1
.

Now assuming open loop conditions, the inverse of the co-
variance matrix can be expressed in the frequency domain
as a linear function of the input spectrum, Φu(ω) [1] (p.
291),

P−1
θ =

1

2πσ2

∫ π

−π
Fu(eiω, θ0)Φu(ω)F∗u(eiω, θ0)dω

+
1

2π

∫ π

−π
Fe(eiω, θ0)F∗e (eiω, θ0)dω, (49)

where Fu(θ0) = Ã(q,θ0)

C̃(q,θ0)
∇
(
B̃(q,θ)

Ã(q,θ)

)∣∣∣∣
θ=θ0

, Fe(θ0) =

Ã(q,θ0)

C̃(q,θ0)
∇
(
C̃(q,θ)

Ã(q,θ)

)∣∣∣∣
θ=θ0

. With a finite-dimensional param-

eterization approach as shown in [22], the spectrum of

input signal is expressed as

Φu(ω) = Ψ(eiω) + Ψ∗(eiω), (50)

where Ψ(eiω) =
∑M−1
k=0 cke

−iωk,M is the number of param-
eters and ck, k = 1, . . . ,M , are real decision variables in the
input design. A necessary condition for the parameterized
function Φu(ω) to be a spectrum is that Φu(ω) ≥ 0, ∀ω.
This infinite dimensional constraint can be converted to a
finite dimensional and convex form by the KYP lemma,
see [22]. In this work we intend to find an optimal input
design problem to minimize the covariance of the transfer
function estimate, i.e.,

min
ck,k=1,...,M

γ (51)

s.t. Φu(ω) ≥ 0,

|Fu(eiω)|2cov[Ĝ(eiω)/G0(eiω)] ≤ γ, ∀ω,
1

2π

∫ π

−π
|Wu(eiω)|2Φu(ω)dω ≤ α,

1

2π

∫ π

−π
|Wy(eiω)|2Φy(ω)dω ≤ β,

where Fu(eiω) is a frequency-wise weighting function and

cov[Ĝ(eiω)] is the covariance of the transfer function es-
timate under the proposed noncausal model identification
method. The parameters α and β specify upper bounds on
the admissible input and output signal powers, respectively.
With the above parameterization of the input spectrum in
(50), the preceding input design can be recast as a convex
optimization problem with linear matrix inequality (LMI)
constraints. Specifically, the parameter covariance P−1

θ can
be expressed as

P−1
θ =

M−1∑
k=0

ckB
P
k (θ0) +R0(θ0), where

BPk (θ0) =
1

2πσ2

∫ π

−π

[
Fu(eiω, θ0)(eiωk + e−iωk)

·F∗u(eiω, θ0)
]
dω,

R0(θ0) =
1

2π

∫ π

−π
Fe(eiω, θ0)F∗e (eiω, θ0)dω.

The positivity constraint on the power spectrum in (51)
can be transformed into an LMI using the KYP lemma:[
Q−ATQA −ATQB
−BTQA −BTQB

]
+

[
0 CT

C D +DT

]
≥ 0,

where Q = QT , and {A,B,C,D} is a controllable state-

space realization of Ψ(eiω) =
∑M−1
k=0 cke

−iωk. Analogously,
we can also formulate the other three conditions as LMIs in
terms of the parameters ck. The above optimization-based
input design can be extended to cases with complicated
quality constraints and objective functions. In this paper we
only make use of the above formulations for an illustrative
purpose.
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6 Numerical Example

6.1 Identification

Example 4 Consider the following noncausal model

(1− 0.5q−1)(1− 0.5q)yx = (1− 0.2q−1)(1− 0.2q)ux

+(1− 0.4q−1)(1− 0.4q)ex, (52)

where ex is Gaussian white noise with variance 0.01. The
causal-equivalent model is given by

(1− θ1q
−1)2ỹx = (1− θ2q

−1)2ux + (1− θ3q
−1)2ẽx, (53)

where ỹx = 1−θ2q−1

1−θ1q−1
1−θ1q
1−θ2qyx. We use the function idinput

in Matlab to generate a sequence of random binary signal
as ux. To examine the convergence of our iterative identi-
fication algorithm, we generate a large data set with size
N = 5000 to minimize variance errors. Starting with an
initial guess of parameters θ1 and θ2, we obtain an estimate
of {ỹx}. Note that we do not need an initial guess for the
noise model. This is an extra advantage of our approach
since in practice engineers have a good idea of typical pro-
cess model parameters while it is not easy to acquire any
a priori information regarding the true noise model. We
then minimize the prediction errors of the causal-equivalent
model and obtain a new estimate for the model parameters.
With the updated model parameters we re-estimate {ỹx}
and repeat the identification exercise. These iterations are
continued until the parameter estimate converges. In this
example we choose [0.8; 0.4; 0.6] as an initial guess of the
parameter vector. The average prediction error for the es-
timated causal model decreases monotonically as iteration
proceeds, as shown in Fig. 5(a). The estimated parameters
using the proposed method are shown in the first row of
Table 1 with an estimated variance of ẽx of 0.0106. In prin-
ciple, an increase in the data size can reduce the effect of
noise on the actual parameter estimates [1, p. 295]. The
original noncausal signal and its filtered causal-equivalent
signal are shown in Fig. 5(b). The phase shift due to all-
pass filter is visible.

In order to test the performance of the algorithm, we tried
a number of initial guesses. A plot showing the trajectories
of the parameter estimates with the iterations is shown in
Fig. 5(c). For all initial guesses in the neighborhood of the
true parameters, the estimates converged within a few it-
erations, typically about 15− 30 for this example. Table 1
also demonstrates the identification results using noncausal
MLE. Notice that this approach is similar to the one used
in [17] for unstable causal models. One can see this ap-
proach can also yield accurate parameter estimates. How-
ever, the user has to provide the gradient vector of the pre-
dictor of the underlying noncausal model. Our method can
avoid this issue since it can be implemented using currently
available tools for causal system identification. To further
show the advantage of the proposed noncausal identifica-
tion method relative to that in [16], we first convert (52)
into a causal unstable model with a new noise ẽx sequence
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Fig. 5. Simulation results of Example 4

and perform the prediction error identification based on
the gradient shown in [16]. Note that with this method,
the variance of new noise increases to σ2

ẽ
= σ2

e/a
2
na

(ana

is the last coefficient of polynomial A(q)), thus reducing
the SNR in the data. Table 1 shows the identification re-
sults based on our method and that in [16] for (52). One
can see that our method successfully identifies the true pa-
rameters, whereas the method in [16] yields an imprecise
estimate of θ1. This is due to the reduced SNR explained
above. Increasing the level of excitation signal would im-
prove the parameter estimates, as shown in the last row of
Table 1. In practice, for stable models, ana

is usually small
(much smaller that the value in this example) and thus we
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Table 1
Estimated parameters with our approach, the method based on
[16] and the noncausal MLE similar to [17]

θ1 θ2 θ3

True parameters 0.5 0.2 0.4

Our method with σ2
u = 1 0.4989 0.1996 0.4003

Method based on [17], σ2
u = 1 0.4825 0.1829 0.4027

Method based on [16], σ2
u = 1 0.6241 0.2165 0.3979

Method based on [16], σ2
u = 4 0.5128 0.2011 0.3980

expect our method to perform better than that from [16]
in identifying practical noncausal models.

To further compare the proposed method with the non-
causal MLE method based on [17], we perform 100 Monte-
Carlo simulations with N = 200. The resulting estimates
have mean and standard deviation values of (0.4993 ±
0.0083), (0.1989 ± 0.0106), (0.4005 ± 0.0231), respectively.
The corresponding results from the noncausal MLE method
are (0.5040± 0.0099), (0.2062± 0.0129), (0.4259± 0.0307).
Evidently both methods give unbiased estimates, although
the parameter covariance differs. A possible reason for the
slightly larger uncertainty of parameter estimates asso-
ciated with the noncausal MLE method is the transient
effect at the beginning and at the end of the predicted
output sequence, especially when the sample size is small,
as in this test. Note that for the noncausal MLE method
the noncausual filtering occurs in the computation of pre-
diction errors and gradients at each step. This issue is less
severe for our proposed method as our algorithm relies
mostly on causal identification. Moreover, the noncausal
MLE method involves a complex noncausal gradient com-
putation, which is another disadvantage from the imple-
mentation perspective.

Example 5 We now consider a realistic CD model in a
paper machine. This typical model is taken from [24] 5 ,

(1− 0.3465q−1 + 0.3025q−2)(1− 0.3465q + 0.3025q2)yx

= ux + (1− 0.3q−1)(1− 0.3q)ex (54)

The estimated causal-equivalent model is of the form

(1− θ1q
−1 + θ2q

−2)2yx = ux + (1− θ3q
−1)2ex.

The response of this model is similar to the one shown in
Fig. 1. As in the previous example, we have used a ran-
dom binary signal with unit variance as ux. Typical paper
machines have significant noise (and/or disturbances) in
the measurements. Hence to reflect reality, we have used a
noise covariance of 0.3. The number of data points available
from a paper machine depends on the number of scanner
measurements across the width of the paper. We have also
limited the data set to N = 1000. Clearly, with a smaller
data set and higher noise covariance, the uncertainty of the

5 Please note that there is no noise model in [24]. We have
added a noise model to make it more realistic.

estimated model increases. A 3D plot of the estimated pa-
rameters for 200 Monte Carlo simulations is shown in Fig.
6(a). The Nyquist and Bode plots of the estimated mod-
els from the Monte Carlo simulations are shown in Figures
6(b) and 6(c), respectively. As shown in the figure, the vari-
ance in the frequency domain is large around the corner
frequency 6 . This is typically the case with the data from
paper machines. Hence, a good input designed to minimize
this uncertainty and to find the “best” nominal model is
essential for CD model identification of paper machines.

6.2 Input Design

Example 6 In this example, we design an optimal input
for the model in (54) based on (51). Let us suppose that we
would like to minimize the covariance of the transfer func-
tion estimates in identifying (54), particularly the covari-
ance around the corner frequency region. To this end, we
use the true process model as a weighting function Fu(eiω)
in (51). In order to make a fair comparison between the
optimal input and the random binary input in Example 5,
we do not consider the output power constraint here and
choose Wu = 1 and α = 1 in (51) such that these two in-
puts have the same variance. The constraint on the positiv-
ity of the input power spectrum is formulated as an LMI.
With the above setup, the spectrum of the optimal input
is shown in Fig. 7(a) (dashed-dotted line). All the other
simulation conditions are similar to those in Example 5. In
Example 5, the variance in the low frequency range is small
and that around the corner frequency is large. However,
in this example, the Bode plot of models estimated from
Monte Carlo simulations shows higher variance in the low
frequency region and lower variance around the corner fre-
quency as shown in Fig. 7(b). Thus we can expect better
control performance if the controller is designed based on
the process model estimate under the optimal input signal.

7 Conclusion

In general, identification of noncausal processes with Gaus-
sian noise is rather difficult. In this work, we present a max-
imum likelihood approach to identify symmetric noncausal
models. It is shown that a symmetric noncausal model ad-
mits a causal-equivalent model in the sense of equivalent
output spectrum. We further show that the log-likelihood
function as well as its maximizer of a noncausal model
converges asymptotically to those of its causal-equivalent
model, respectively, given that the likelihood functions have
a unique maximum. We further propose an iterative iden-
tification approach to identify the causal-equivalent model
and such algorithm is proved to be convergent. In addi-
tion, we show that the parameter covariance matrices of the
causal and noncausal models converge to the same value
asymptotically, which lays a foundation for the input design
of using the parameter covariance of the causal-equivalent
model. Several examples are presented to demonstrate and

6 Please note that the y-axis is in decibels
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Fig. 6. Simulation results of Example 5

verify the related results. However, similar to Steiglitz-
McBride method, due to the prefiltering of the data in
the iteration identification algorithm proposed in Section
4, consistency and asymptotic efficiency of parameter es-
timates may not be ensured when implementing this algo-
rithm.

A summary of the advantages and disadvantages, both the-
oretical properties and implementation issues, of the non-
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Fig. 7. Simulation results of Example 6

causal identification techniques mentioned in this article
are as follows. For the noncausal MLE in [17], its mer-
its lie in that it yields unbiased estimate and no multiple
optimizations are needed for estimating parameters. How-
ever, it requires users to provide (noncausal) gradients,
and has larger parameter uncertainties when sample size
is small than our method due to the transient effects from
the noncausal filtering in computing predictor errors and
gradients. For the method in [16], it does not involve iter-
ative identifications. However, a new noise sequence hav-
ing larger variance is produced and this reduces the SNR,
leading to worse parameter estimates than our method. It
also requires users to provide gradients. For the method in
Section 2.3, it is straightforward to understand. However,
it is only suitable for open-loop identification or determin-
istic input, and computation of the gradient involves ex-
tensive noncausal filtering. In terms of our method, it can
be easily implemented with current system identification
toolboxes, and users do not need to provide gradient infor-
mation. Moreover, it can be easily extended to closed-loop
identification and is independent of SNR. However, it is
computationally more expensive due to the iterative iden-
tification algorithm.
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Appendix A Proof of Proposition 2

We generalize the approach in [9]. To fix notation, we rear-
range (4) as

ex =
A(q, θ)

C(q, θ)

[
yx −

B(q, θ)

A(q, θ)
ux

]
=

∞∑
k=−∞

gk(θ)ux−k +

∞∑
k=−∞

hk(θ)yx−k

=G(q, θ)ux +H(q, θ)yx,

using the impulse response coefficients associated with
G = −B/C and H = A/C in the usual way: G(q, θ) =∑∞
k=−∞ gk(θ)q−k, H(q, θ) =

∑∞
k=−∞ hk(θ)q−k. Now sup-

pose that we have the input-output data {y1, · · · , yN}
and {u1, · · · , uN}. For each x in {1, . . . , N}, we define

Gx(q, θ) =
∑x−1
k=x−N gk(θ)q−k, G̃x = G − Gx, Hx(q, θ) =∑x−1

k=x−N gk(θ)q−k, H̃x = H −Hx. This notation splits the
noncausal transfer functions into two parts: Gx(q, θ) and

Hx(q, θ) correspond to known values, while G̃x(q, θ) and

H̃x(q, θ) correspond to unknown past and future values.
Our system takes the compact form

ex = Gx(q, θ)ux +Hx(q, θ)yx + G̃x(q, θ)ux + H̃x(q, θ)yx.

Now the average log-likelihood function of the data given
inputs is

LN =
1

N
log fy(y1, · · · , yN |u1, · · · , uN , θ)

=
1

N
log fe(e1, · · · , eN |u1, · · · , uN , θ)

=
1

N

N∑
x=1

log fe(ex|u1, · · · , uN , θ), (55)

where fy(·) and fe(·) denote the density functions of yx and
ex respectively 7 , and the second equality follows 8 from

7 With a slight abuse of notation, we use the same name for the
density function of the sequence {e1, · · · , eN} and the individual
random variables ex.
8 Although the cited Lemma is derived for causal systems, a
similar proof holds for noncausal systems.

Lemma 5.1 in Ljung [1]. The values e1, · · · , eN involved here
are not all known, so we cannot maximize LN with respect
to θ to find a maximum likelihood estimate. Instead, we
introduce the following approximation for ex:

ẽx =

k=x−1∑
k=x−N

gk(θ)ux−k +

k=x−1∑
k=x−N

hk(θ)yx−k. (56)

Then we maximize the approximate log-likelihood function

L̃N :=
1

N

N∑
x=1

log f
ẽ
(ẽx|u1, · · · , uN , θ).

To complete the proof, we show that, with probability 1,

|ex − ẽx| → 0 uniformly. This ensures that |L̃N −LN | → 0
with probability one as the data length increases.

Let ∆ex = |ex− ẽx| denote the difference of interest. With
the notation above,

∆ex =
∣∣∣G̃x(q, θ)ux + H̃x(q, θ)yx

∣∣∣
=

∣∣∣∣∣∣
∑

k/∈[x−1,x−N ]

gkux−k +
∑

k/∈[x−1,x−N ]

hkyx−k

∣∣∣∣∣∣ .
Let us now define the following sum,

Sx(ε) =

x∑
k=1

P(∆ek > ε). (57)

Note that x ∈ [1, N ] and therefore x ≤ N . Now as x→∞
and N → ∞ simultaneously, the interval [x − 1, x − N ]
gets bigger, and gk and hk such that k /∈ [x − 1, x − N ]
get smaller (since gk and hk are absolutely convergent).
Considering that ux are deterministic and bounded, and ex
are Gaussian, it follows that lim supx→∞ E

[
(∆ex)2

]
= 0.

Now using Theorem 3.39 in Rudin [37] we have

∞∑
x=1

E
[
(∆ex)2

]
<∞. (58)

Chebyshev’s inequality [1, p. 542] implies

P(∆ex > ε) ≤ 1

ε2
E
[
(∆ex)2

]
. (59)

From (57),(58) and (59) it follows that limx→∞ Sx(ε) <∞.
Using the Borel-Cantelli lemma [1, p. 542], we con-

clude that as x → ∞, ∆ex
w.p.1→ 0. Therefore, from

(57), it follows that supθ∈Ω |ex − ẽx|
w.p.1→ 0. Since ex is

Gaussian, fe(.) is a smooth function and therefore we

conclude that supθ∈Ω |LN − L̃N |
w.p.1→ 0. Noting that
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fe(ex) = 1/(σ
√

2π)e−e
2
x/2σ

2

, we conclude that

sup
θ∈Ω

∣∣V N (θ)− σ2LN (θ)
∣∣ w.p.1→ log σ

√
2π. (60)

The analogous result for causal systems is well-known and
hence the proof is not repeated here.

Appendix B Proof of Proposition 4

Proceeding in general deterministic notation, we consider
how the set of maximizing inputs can evolve for a uni-
formly convergent sequence of functions. The ingredients
are a compact convex set Ω in Rn, functions fN , f : Ω→ R
(N ∈ N), and sets

DN = arg max
Ω

fN =

{
θ ∈ Ω : fN (θ) ≥ fN (θ′) ∀θ′ ∈ Ω

}
,

D= arg max
Ω

f =

{
θ ∈ Ω : f(θ) ≥ f(θ′) ∀θ′ ∈ Ω

}
.

For r ≥ 0, we use the notation B =
{
θ ∈ Rn :

∣∣θ∣∣ ≤ 1
}

,

D + rB =
{
d+ ru : d ∈ D, u ∈ B

}
.

Lemma 4 Assume that each of the functions fN , f is con-
tinuously differentiable on the compact convex set Ω. If

sup
θ∈Ω

∣∣∣∣fN (θ)− f(θ)

∣∣∣∣→ 0 as N →∞, and

sup
θ∈Ω

∣∣∣∣∇fN (θ)−∇f(θ)

∣∣∣∣→ 0 as N →∞,

and rN is any sequence with nonnegative values obeying
rN → 0 as N →∞, then

lim sup
N→∞

[(
DN + rNB

)
∩ Ω

]
⊆ D.

Proof. Let M0 denote the maximum value of
∣∣∇f ∣∣ over

Ω. This is a finite real number because Ω is a compact
set and

∣∣∇f(θ)
∣∣ depends continuously on θ ∈ Ω. Then let

M = M0 + 1. For all N sufficiently large, our hypothe-
ses imply that supΩ

∣∣∇fN ∣∣ ≤ M , and consequently that∣∣fN (θ2)− fN (θ1)
∣∣ ≤ M

∣∣θ2 − θ1

∣∣ ,∀θ1, θ2 ∈ Ω. Now let
any sequence of indices Nk ↑ ∞ be given, and consider an
arbitrary convergent sequence wNk

∈ Ω ∩
(
DNk + rNk

B
)
.

Let w = limk wNk
. By definition, wNk

∈ Ω and wNk
=

θ̂Nk
+ rNk

uNk
for some θ̂Nk

∈ DNk and uNk
∈ B. Now

the compactness of Ω guarantees that along a suitable sub-

sequence (we do not relabel), θ̂Nk
converges to some θ̂ in

Ω. Choosing any θ in Ω, we fix k and consider the follow-

ing quantity: f(wNk
)− fNk(θ) =

(
f(wNk

)− fNk(θ̂Nk
)
)

+(
fNk(θ̂Nk

)− fNk(θ)
)

. By definition of θ̂Nk
, the rightmost

difference shown here is nonnegative. Therefore

f(wNk
)− fNk(θ) ≥ f(wNk

)− fNk(θ̂Nk
)

=
(
f(wNk

)− fNk(wNk
)
)

+
(
fNk(wNk

)− fNk(θ̂Nk
)
)
.

As k → ∞ (through the subsequence named earlier), we
have

∣∣f(wNk
)− fNk(wNk

)
∣∣ → 0 by the hypothesis of uni-

form convergence of the given sequence of functions. Fur-
ther, as shown above,∣∣∣fNk(wNk

)− fNk(θ̂Nk
)
∣∣∣ ≤M ∣∣∣wNk

− θ̂Nk

∣∣∣ ≤MrNk
→ 0.

Thus the inequality above supports the limiting statement
that f(w)− f(θ) ≥ 0. But θ ∈ Ω is arbitrary, so this shows
that w ∈ D, as required. �

Appendix C Proof of Lemma 2

The results in (42) and (43) follow directly from Theorem
7.17 in Rudin [37] by writing it for multivariable functions.
In order to prove (44), let us start with the triangle inequal-
ity∥∥∇LN (θ)−∇LNc (θ)

∥∥ ≤∥∥∇LN (θ)−∇σ2(θ)
∥∥+

∥∥∇LNc (θ)−∇σ2(θ)
∥∥ . (61)

Therefore,

sup
θ∈Ω

∥∥∇LN (θ)−∇LNc (θ)
∥∥ ≤

sup
θ∈Ω

∥∥∇LN (θ)−∇σ2(θ)
∥∥+ sup

θ∈Ω

∥∥∇LNc (θ)−∇σ2(θ)
∥∥ .(62)

Using (62) in combination with (42) and (43) in the limit
N →∞, we have

sup
θ∈Ω

∥∥∇LN (θ)−∇LNc (θ)
∥∥ w.p.1→ 0. (63)

Appendix D Proof of Lemma 3

Combining the assumption of uniform proximity with
condition (a), we deduce that there exists R1 ≥ R for
which max

{∣∣FN (θ)
∣∣ , ∣∣GN (θ)

∣∣} ≤ R1,∀N ∈ N, θ ∈ Ω.
The continuous function φ in assumption (b) must attain
its maximum on the closed ball of radius R1 centered at
the origin of Rn, so there exists a constant K such that
supN

∣∣∇mN (p)
∣∣ ≤ K, whenever

∣∣p∣∣ ≤ R1. Consequently,
for each θ ∈ Ω and N ∈ N, we have∣∣∣∣mN (FN (θ))−mN (GN (θ))

∣∣∣∣ ≤ K ∣∣∣∣FN (θ)−GN (θ)

∣∣∣∣
≤ K sup

θ∈Ω

∣∣∣∣FN (θ)−GN (θ)

∣∣∣∣ .
The right side converges to 0 by hypothesis, so the result
follows. �
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