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ABSTRACT Deep learning models have been applied to industrial process fault detection because of 
their ability to approximate complex nonlinear dynamic behavior. They have been proven to 
outperform shallow neural network models. However, there are no good guidelines on how to build 
these deep models. Therefore, a good deep model is often constructed through a trial and error exercise. 
It is not easy to interpret the model because of features that do not have any physical interpretation. In 
addition, latent variables (or features) in a deep model are not independent. This causes features to 
overlap with each other, resulting in challenges in evaluating distributions of features and designing 
suitable monitoring indices. Lastly, typical deep learning models in process monitoring are used in a 
deterministic manner and do not automatically provide confidence levels for each decision. In this 
paper, a variational auto-encoder is utilized to develop a framework for monitoring uncertain nonlinear 
processes. The learned latent variables are guaranteed to be independent (or orthogonal) of each other 
under a specific optimization objective with constraints. The proposed method provides density 
estimates of latent variables and residuals intead of point estimates. The density functions are used to 
design appropriate indices for monitoring. A simulation example and an industrial paper machine 
example are presented to validate the effectiveness of the proposed method. 
INDEX TERMS fault detection, latent variables, probability, variational auto-encoder

 
I. INTRODUCTION 
Process complexity and high demands for process safety have 
driven the development of data-based process monitoring 
techniques, in particular, multivariate statistical process 
monitoring [1, 2]. Among them, the continuous latent variable 
(LV) models have been applied to fault detection for several 
decades [3-5]. These LV models are proved to be effective 
because they are able to decompose the observation space into 
the LV subspace and the residual subspace. The LV subspace 
describes process mapping, known as a generative model, 
from LVs to the observed variables. On the other hand, the 
residual subspace represents the space spanned by 
measurement noises[6].   
 
Initially, an LV model called principal component analysis 
(PCA) [7, 8] was widely used for monitoring linear processes 
with Gaussian observations. However, most processes are  
characterized by complex nonlinearities and uncertainities 

and therefore can not be accurately approximated by PCA. To 
handle these practical issues, advanced LV models for 
monitoring nonlinear processes have been widely studied. 
Kernel PCA (KPCA)[9-12] is one of the effective and widely 
used extensions of PCA for nonlinear processes. With KPCA, 
original observation variables with nonlinear correlations are 
nonlinearly mapped onto a high-dimensional space; then the 
mapped data in high-dimensional space is decomposed into 
the latent subspace and the residual subspace. Compared with 
other linear approximation methods which use several linear 
subspaces to approximate nonlinear dynamics, KPCA is a 
transformation from the low-dimensional nonlinear 
observation space into the high-dimensional linear feature 
space without any approximation error. However, the 
monitoring performance of KPCA critically depends on the 
selection of kernel functions and it is also very sensitive to 
some hyper-parameters required for kernel functions.  
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Fig. 1. Illustration of the generative model and the inference model 

 

 
Fig. 2. Flowchart of VAE 

Considering these drawbacks, approaches from manifold 
learning like maximum variance unfolding [13] and 
neighborhood preserving embedding (NPE) [14] can be used 
by directly learning the kernel space from observation 
variables. Nevertheless, approaches resorting to kernel tricks 
can not deal with large-scale datasets without compromising 
their performance. The dimension of the kernel matrix is same 
as the number of samples, and therefore for large data sets, 
algorithms involving kernel tricks require time-consuming 
matrix decomposition and large memory for storage. The 
computational and memory storage challenges are too 
prohibitive to apply KPCA and manifold learning on large 
data sets. 
 
In the past modeling approaches, the structure of nonlinear 
models has limited flexibility and therefore the models were 
considered to be shallow. They do not have enough flexibility 
in the models to represent strongly nonlinear systems. 
Recently, deep learning [15-18] has received a lot of attention, 
especially in the process system engineering community, 
because of its high model flexibility. In particular, Zhang et al. 
[19] proposed a nonlinear process monitoring method based 
on the stacked denoising auto-encoder (SDAE) that maps 
observations into LVs through a deep forward network 
(encoder) and reconstruct observations with LVs through 
another deep forward network (decoder). Compared with the 
shallow models, current deep models, when applied to 
process monitoring, have shown superior performance, but 
they lack good model interpretability [17]. Specifically, it is 
hard to explore what kind of manifold in the LVs forms a 
low-dimensional space because of no explicit local preserving 
constraints. Besides, unlike LVs in PCA and KPCA, LVs in 
SDAE are not orthogonal. Their relative process variabilities 
are unknown in advance. Moreover, observations are driven 
by the randomly varying LVs and contaminated by random 
measurement noises. Process variables intrinsically follow a 
stochastic path while SDAE is constructed through mapping 
and reconstruction in a deterministic manner. Thus, from the 
stochastic perspective, SDAE lacks a good probabilistic 
interpretation about how observations are generated from a 
distribution. In contrast, many multivariate statistical analysis 
methods have their probabilistic counterparts such as 
probabilistic PCA(PPCA) [20], factor analysis(FA) [21], 
probabilistic KPCA [22] and probabilistic weighted PCA [23], 
and so on, but these methods are a class of shallow models. 
 

In this paper, an algorithm for process monitoring based on 
variational autoencoders (VAE) [24, 25], also known as 
auto-encoding variational Bayes, is developed. VAE is one of 
the deep learning models and it can infer LVs and generate 
reconstructed observations with complex posterior and 
conditional distributions, respectively. VAE can be regarded 
as a nonlinear version of PPCA or FA. PPCA and FA are 
based on linear Gaussian models and therefore the posteriors 
from observations to LVs and the emission distributions from 
LVs to observations are Gaussian. In addition, the PPCA and 
FA solutions are analytical. In VAE, complex nonlinearities 
are taken into account so that deep neural networks can be 
used to approximate corresponding posteriors and emission 
distributions. LVs in an industrial system include those 
variables that make contributions excite the process systems 
[26]. These exciting signals generally consist of unmeasured 
disturbance changes, measured disturbance change, and 
possible setpoint changes, all of which vary independently [7]. 
The variational Bayes framework brings about a probabilistic 
interpretation by regarding the industrial plant as a stochastic 
process. This approach has the benefit of providing estimates 
of distributions unlike the shallow models. As the complexity 
of probability distributions evolves with the strong process 
nonlinearity, process knowledge is easy to incorporate into 
VAE by designing a proper structure in data distributions. In 
this article, we propose a fault detection algorithm for  
complex nonlinear processes using a deep orthogonal LV 
model. Based on LV and noise distributions, two detection 
indices in the LV space and the residual space are designed, 
respectively. The index in the LV space is able to capture the 
main process variability while the index in the residual space 
is used to interpret the breakdown of process correlations. The 
control limits of these two detection indices are determined by 
kernel density estimation (KDE)[27]. The proposed design 
algorithm is detailed in the rest of the sections. Section 2 
reviews the basic ideas of VAE. Then based on VAE, 
extraction of orthogonal LVs and their application to fault 
detection are developed in Section 3. Section 4 presents case 
studies to illustrate the effectiveness of the proposed 
framework and conclusions are drawn in the final section. 
 
II. OVERVIEW OF VARIATIONAL AUTOENCODERS 
As shown in Fig. 1, assume an m-dimensional observation  
is generated by a random process 

, where  is a vector of  
n-dimensional continuous LVs that is unobserved and  is a 
group of unknown parameters governing the generative 
process. That means  is generated by the conditional 
distribution , in which  is sampled from the 

prior distribution . VAE is a realization of variational 
Bayes with deep learning, especially when performing 
efficient inference and learning in directed probabilistic 
models in the presence of continuous LVs with intractable 
posterior distributions and large datasets (Fig. 1) [24]. 
Generally, LVs are unobservable. What can be obtained are 
the independent observation samples organized as a dataset 

 with N independent 
observations. The goal is to estimate unknown parameters ( ) 
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and LVs by maximizing the log-likelihood function given by 

                             (1) 

where ln refers to the natural logarithm and the equality in 
Eq.(1) follows from the assumption of independent 
observations. For each term on the right hand side in Eq.(1),  
           (2) 

where  is the distribution of LVs. The first term in the 
right-hand side of Eq.(2) is a Kullback-Leibler (KL) 
divergence measuring the dissimilarity between the defined 
distribution  and the posterior distribution  
given by 

            (3) 

is also known as an inference model for inferring 
 given by the observation. 

 
Because of the non-negativity of KL divergence, 

 becomes a variational lower bound of 

 given by 

               (4) 

In most cases, the marginal distribution  is so complex 
that directly maximizing Eq.(2) is difficult and even 
intractable. Instead, the lower bound in Eq.(4) is maximized 
to approximate the marginal likelihood. Note that the KL 
divergence in Eq.(3) plays the role of measuring the 
approximation error when the lower bound is used to 
approximate the marginal log-likelihood. It is obvious that the 
more similar  is with , the smaller the 
approximation error is. Especially, the approximation error 
will be zero when  is equal to . Hence, at the 

maximum of the lower bound ,  is chosen 

to be . Substituting  with , the 
lower bound of Eq.(4) can be rewritten as   
  (5) 

where  denotes the expectation of 

 w.r.t . To evaluate the loss function 
as Eq.(5), it first needs the estimation of the posterior 
distribution , called an encoding process, which is 
used to infer the LVs (codes)  given an observation . 

Then the conditional likelihood  in Eq.(5), 
called a decoding process, should be evaluated. It is used to 
generate the observation given the codes. The second term 

 in the loss function Eq.(5) sets up a 
regularization that ensures that the posterior distribution is not 
too ``far’’ from the prior distribution. Hence, it potentially 
puts a constraint on the posterior distribution that is 
determined by the structure of prior distribution.  

 

 
Fig. 3. Decoder structure in VAE 

Notice that there is an integral in Eq.(5) for calculating the 
expectation . It is often difficult to 

derive the integral analytically. A simple alternative way is a 
reparative sampling strategy. The true expectation with an 
empirical average can be estimated using the samplings. 
Specifically, S samples are drawn from , denoted as 

; then the empirical average is given by 

.  

 
The various steps in the implementation of VAE are depicted 
in Fig. 2. Using the mini-batch stochastic gradient 
optimization for training a deep neural network (DNN), the 
cost function for a mini-batch with  samples is  

  (6) 

Note that the sampling number S can be chosen as 1 when the 
mini-batch number is large. This idea is analogous to the 
stochastic gradient descent algorithms; just one sampling 
point is used to update the network parameters in each 
iteration. Similarly, S=1 is equivalent to picking up one point 
from the distribution to evaluate the gradient and update the 
networks in each iteration. After several iterations, the 
network would finally converge. [25]  
 

III. PROCESS MODELING AND MONITORING WITH VAE 

A. PROCESS MODELING 
Observation variables are measured process variables which 
are often high-dimensional in large-scale systems. They are 
correlated with each other in a complex fashion because of 
highly complex nonlinearities in real industrial processes. As 
described in Introduction Section, in the high-dimensional 
process variables of an industrial system, LVs representing the 
essential features of observation variables are assumed to be 
independently corrupted by noise signals. They can be 
assumed to be uncorrelated with each other. Based on these 
assumptions, a process model is given by 
                               (7) 
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Fig. 4. Illustration of distributions in VAE 

where  is zero-mean Gaussian white noise 

standing for measurement errors. Here  can vary with 
 considering the nonlinearities in measurements. In this 

case we relaxed the assumption that the covariance matrix is 
constant as in the conventional model representation. And 

 can be a diagonal covariance matrix because 
measurement errors from different sensors are assumed to be 
independent.  is a nonlinear function 
with process parameters , representing a complex process 
model mapping from the latent space onto the observation 
space. From Eq.(7), a conditional Gaussian distribution can be 
derived as: 
                     (8) 
where a decoder in VAE is used to model the nonlinear 
functions  and . Taking the neural network 

with three hidden layers as a decoder, for example,  

and  are calculated by 

  (9) 

  (10) 

where  stands for the vector consisting of 

diagonal elements of . Fig. 3 illustrates the network 
structure presented by Eqs.(9) and (10). In the decoder, the 
expectation and the covariance share the parameters of the 
hidden neurons .  is outputted 

through a linear unit with parameters  because of 

the unlimited range of expectations. In contrast,  
should be larger than zero so that the softplus activation 
function  is utilized in the corresponding 

output layer with the weight  and the bias . 
 
Since  has formally embraced complexity related to 
processes, the prior distribution of  can be chosen to be a 
simple distribution. Moreover, as the components in  are 
uncorrelated with each other, the prior distribution  is 
chosen to be normal; i.e., 

                                 (11) 
This means that the points in the latent space are assumed to 
be drawn from the normal distribution. Taking 
two-dimensional observation variables in Fig. 4 for example, 
assume that there is a one-dimensional LV. Firstly, the 
samples in the latent space (black nodes) are randomly 
generated from the unit Gaussian distribution. By a nonlinear 
mapping, the black nodes are projected onto the red nodes in 
the two-dimensional observation space. The ellipses 
surrounding the red nodes refer to the uncertainty caused by 
data quality, denoting the distribution of  conditioned in 

. It is obvious that the posterior distribution  is 
not a linear Gaussian model under the nonlinear mapping 
function . In Fig. 4, one of the contours related to the 

posterior distribution ( ) is denoted by the black 
smooth curve, which indicates there is a manifold embedded 
in the lower dimensional space. Because of the complexity of 
posterior distribution, it is difficult to formalize the true 
posterior with several parameters. Instead, local description is 
used as an approximation to the true posterior, i.e., the 
probability density function (PDF) is given at each 
observation. As shown in Fig. 4, the blue curve denotes the 
specific posterior PDF at , which is also chosen to be a 
normal distribution. But the expectation and covariance 
describing the local PDF vary with  as follows. 
                      (12) 

where  and  are the posterior expectation and 
the posterior covariance matrices, respectively, both of which 
are nonlinear functions of . To guarantee LVs to be 

orthogonal with each other,  is constrained to be a 
diagonal matrix. By introducing the Gaussian distribution as a 
local estimator, the KL divergence of the last term in Eq.(5) 
involving two Gaussian distributions (Eqs.(11) and (12)) has a 
closed form as follows: 

    (13) 

where  refers to the trace of one squared matrix. As 
shown in Fig. 2, the output of the encoder network will be 

 and the diagonal elements of . Following the 
same design logic of the decoder in Eqs.(9) and (10), in the 
encoder, the expectation in the output layer can be activated 
by a linear unit while the output activation function related to 
the covariance is chosen to be the softplus function.  
 
So far, the process model has been constructed based on VAE 
with these specific distributions. The gradient 
back-propagation along the network in Fig. 2 is used to learn 
the network weights and biases. However, sampling is not 
differentiable so that the backpropagation is blocked from the 
decoder back-propagating to the encoder. Reparameterization 
trick of Gaussian distribution [25] makes the network 
learnable without any extra cost or compromise. The idea  
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Algorithm 1. Training VAE with orthogonal LV constraints 

Input: Dataset X with M mini-batch; the number of latent variables ; maximum iteration K; network 
structure (the numbers of hidden layer and units in each layer); learning rate . 
Output: Network parameters (weights and biases) 
Start: 

Initialize weights and biases 
For k=1:K 

For m=1:M 
Encoder: Calculate the posterior means and posterior variances (Eq.(12)) 
Sample data from the unit Gaussian distribution and transform these samples (Eq.(14)) 
Decoder: Calculate conditional means and conditional variances (Eq.(8)) 
Calculate the lower bound of the likelihood (Eq.(6)) 
Update weights and biases by the gradient descent with the learning rate  

End For 
End For 

End 
behind reparameterization is that the distribution in Eq.(12) 
can be regarded as an affine transformation of the normal 
distribution , i.e. 

                            (14) 

                    (a) 
 

 
(b) 

Fig. 5. Illustrations of different kinds of anomaly patterns located at the LV 
and the residual spaces in (a) a linear system; (b) a nonlinear system. 

 

Fig. 6. Validation errors for different numbers of LVs in the numerical 
example 

which is differentiable. Each point  required in VAE 

shown in Fig. 2 is given by , 

, where  represents a sample from the normal 
distribution. By reparameterization, the orthogonal latent 
variables become learnable.   
 
Before the network is trained, the number of latent variables 

 and the number of iterations  are two important 
hyperparameters to be predefined. A poor choice of  that is 
different from the true value can cause a severe model bias 
resulting in an estimated model structure that deviates from 
the true model structure. In terms of the number of iterations, 
a small  may also result in model bias as the network 
would not have converged. On the other hand, a large  
will induce a high model variance known as overfitting. In 
this paper, the early stopping strategy [28, 29] is used to find 
the hyperparameters. Consequently, the original dataset is 
divided into mutually exclusive training and validation 
datasets. For a specific , set up a large  and observe the 
validation error on the validation set. The validation error 
should be defined to reflect the underfitting and overfitting of 
the networks. The mean squared error (MSE) is used to 
evaluate the model error because it is a trade-off index that 
considers the model bias and the model variance 
simultaneously. The corresponding MSE is given by 

                           (15) 

where  is the number of validation set.  is the 
reconstructed observations defined as  
                                 (16) 

where  is one of the sampling points of LVs based on the 
encoder network. The optimal number of iterations denoted as 

 is obtained when MSE tends to be stationary or has 
not significantly improved. By incrementing  gradually, 
the one with a minimum MSE of the validation dataset is 
considered to be the optimal number of LVs. In this paper, the 
upper bound of  can be heuristically determined by PCA, 
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therefore about 80% cumulative variance contribution is 
chosen for the number of principal 

 
Fig. 7. The trend of the variational lower bound in the numerical example. 
 
components. The complete learning algorithm is given in 
Algorithm 1. 

B. PROCESS MONITORING 
After the VAE-based process model is developed, a latent 
space and a residual space can be obtained by the encoder and 
the decoder, respectively. Instead of point estimates of LV and 
the residual for a specific observation, VAE offers distribution 
descriptions, giving more information than a point estimate. 
To make the full use of the distribution information, the 
monitoring indices should be constructed by the posterior 
PDF ( ) and the conditional PDF ( ).  

1) MONITORING INDEX IN LATENT SPACE 
According to the lower bound of the likelihood in Eq.(5), the 
objective with respect to the KL divergence

 makes the posterior distribution as 
close to the prior distribution as possible. Therefore, an 
abnormal sample will have a large KL divergence because the 
posterior will be dissimilar to the prior. The KL divergence 
can be considered as a monitoring index  in the latent 
space, as in Eq.(13). To define the normal operating region or 
control limits, PDF of  described by a known density 
function such as Gaussian or normal PDF cannot be 
guaranteed. To overcome the limitation, KDE is used to 
estimate the distribution of the monitoring index. 

                        (17) 

where  is a kernel function with the constraints 

 and .  is a hyperparameter 
known as the bandwidth to adjust the smoothness of the 
kernel function. The Gaussian kernel function is used in this 
paper and the bandwidth is determined by the empirical 
criterion as follows, derived by Mugdadi and Ahmad [30] 
                                  
(18) 
where  is the standard deviation of the sample. Based on 
the distribution, a control limit  can be designed under a 

given confidence level  such as 95%; i.e., the minimum 
 satisfies  

                        (19) 

For a new sample, one should first derive the posterior  
using the encoder of VAE. Then calculate the KL divergence, 
and finally judge whether it exceeds the control limit. 
2) MONITORING INDEX IN RESIDUAL SPACE 
Similarly, the expectation of the conditional log-likelihood 

 in Eq.(5) can represent an index 

measuring the possibility of the observation drawn from the 
conditional distribution. The larger  indicates 

the observation highly follows the distribution . 
According to Eq.(8), there is 

  (20) 

 One can see  is similar to the indices in the 

residual space and  represents the distance 
between the observations  and the reconstructed values 

. Moreover, it simultaneously considers the uncertainty 

measured by the covariance matrix . Hence, 

 is able to play the role of detecting the 

anomaly related to residuals. To make  and  

tractable, the point  sampled from  is used to 
calculate the final index, given by 

  (21) 

The larger  is, the more likely  is an abnormal point, 
but it is hard to produce a closed form of the expectation 
because of the nonlinear representation. Here an empirical 

average  introduced in Section 2 

can be used for monitoring the anomaly in the residual space. 
As mentioned before, S can be chosen as 1. With the 
estimation of PDF of the R index, like the determination of 
the control limit in the D index, the corresponding control 
limit in the R index can be determined.  
 
Remark. Like the T2 statistic in PCA based process 
monitoring, the D detection index in VAE based process 
monitoring is applied to the latent space while the negative R 
detection index in VAE is an analogy to the SPE statistic in 
PCA. In a linear time-invariant system, an identified model 
still works for normal data patterns even though the scope of 
variables is beyond the training set because the model for 
linear systems would not vary with variables. Hence, when a 
large external fluctuation happens in process systems without 
a breakdown of the process model, only T2 is out of control, 
like the red point in Fig. 5 (a). In the figure, the gray area is 

( )ip |z x ( )ip |x z

( ) ( )( )ikl p | || pz x z

iD

iD

( )
1

1 N
i

i

D D
p D K

Nh h=

-æ ö= ç ÷
è ø

å
( )K ×

( ) 1K dx x =ò ( ) 0K x ³ h

0 21 06 .h . N -= s

s

limD

a

limD

( ) ( )limD

-
P D = p D dD a

¥
³ò

( ) ( )( )
i ip | ln p | ,z x x z qE

( )iln p | ,x z q

( )ip | ,x z q

( )

( )( ) ( ) ( )( ) ( )11 1
2 2

i

i i

ln p | ,

m

x z

x f z Σ z x f z Σ z-

=

- - - - -

q

p

( )iln p | ,x z q

( )iln p | ,x z q

ix

( )f z

( )Σ z

( )iln p | ,x z q

( )f z ( )Σ z
( ),i sz ( )i|p z x

( )( )
( )( )( ) ( )( ) ( )( )( ) ( )( )11 1

2 2

i,s
i,s i

i,s i,s i,s i,s
i i

R ln p | , mx z

x f z Σ z x f z Σ z-

= - - =

- - +

q p

iR ix

( )( )
1

1 S
i,s

i i
s

R ln p | ,
S

x z q
=

= å



7 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Scatter plots of the variable pairs of (a) , (b) , and (c) . The left column represents the measured observations. The middle column 
shows the true values of observations. The right column displays the reconstructed values by the model. 
 

Table I. The descriptions of fault scenarios in the numerical example 
Fault No. Location Type Magnitude 
F1 

  Mean 
(bias fault) 

1 
F2 2 
F3 3 
F4 

 standard deviation 
(noise fault) 

1.5 
F5 2.5 
F6 3.5 
F7 

 
standard deviation 
(sensor precision 
degradation) 

0.15 
F8 0.25 
F9 0.35 
F10 

  process fault 
1.5 

F11 2 
F12 2.5 

 

Table II. The FARs in the numerical example (%) 

Methods T2  SPE  
PCA 1.2 3.2 
KPCA 1.4 4.8 
NPE 0.5 4.2 
SDAE 4.8 4.8 
VAE 4.2 4.0 

 
the control limit determined by the training set. The blue point 
in Fig. 5(a) indicates T2 is in a normal region. SPE is out of 
control, so there is a change of an inner system structure. It 
implies a real fault. But for the yellow point in Fig. 5 (a), the 
anomaly can be detected in both spaces (T2 and SPE). 
Nevertheless, the situation becomes more complex when it 
comes to nonlinear processes. As one knows, nonlinear 
models, no matter whether they are shallow methods or deep 

methods, just learn the given training set. Nonlinear methods 
may not learn these patterns caused by larger LVs which do 
not occur in the training sets. Take Fig. 5(b) for example. The 
nonlinear model is a local description of a training set. For the 
red point, a larger LV would be captured by T2 but SPE may 
also respond to it because the LV model with the collected 
training set cannot cover all the other unknown patterns. 
Hence, there is probably a significant reconstruction error 
caught by SPE. In Fig. 5(b), the behaviors of the other two 
kinds of anomalies (the blue point and the yellow point) look 
like those in Fig. 5(a) of the linear system. 
 
To sum up, the algorithm with the proposed VAE based 
process monitoring algorithm are listed as follows: 
Step 1. Normalize process variables with sample means 

and standard deviations. 
Step 2. Organize the training set by randomly sampling 80% 

from the dataset and the remaining 20% of the 
dataset is taken as the validation set. 

Step 3. Determine the upper bound of the number of LVs 
by PCA. 

Step 4. Train the VAE based process monitoring model 
i. Initialize the number of LVs n as 1. 

ii. Train the model with Algorithm 1 using the 
training set.  

iii. Evaluate the validation error in each iteration.  
iv. Record the optimal number of iterations in the 

current n through an early stopping strategy. 
Record the validation error under the optimal 
number of iterations. 

( )1 2x ,x ( )2 3x ,x ( )3 4x ,x

1z

2z

1w

t
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v. Increment n and return back to ii until n is up to 
the upper bound. 

Step 5. Determine the optimal n and the corresponding 
number of iterations based on the minimum 
validation error. 

Step 6. Retrain the model with Algorithm 1 using the 
whole dataset under the predefined optimal 
hyperparameters. 

Step 7. Output the two defined detection indices using the 
normal data set and determine the control limits. 

Step 8. For any new sample, normalize it using the means 
and standard deviations of the normal dataset. 
Calculate the two indices by feeding it into the 
trained model and compare the indices with the 
corresponding control limits. If yes, keep 
monitoring the next new data points; otherwise, 
further analyze what caused the abnormal situation. 

 
IV. CASE STUDIES 
In this section, the feasibility and efficiency of the proposed 
method are evaluated by two examples, including a numerical 
example and an industrial process example. The numerical 
example is created artificially. Then the proposed method is 
applied to a real industrial process, a more challenging test 
bed for process monitoring. The proposed VAE in this paper 
is compared with several conventional data-driven fault 
detection methods, including PCA, KPCA, NPE, and SDAE. 
Among them, PCA is a benchmark approach to process 
monitoring. KPCA is a popular representative of kernel 
methods for process monitoring. Attempting different 
commonly used kernels for KPCA, the sigmoid kernel 

 has better monitoring 
performance than the other kernels such as the polynomial 
kernel and the radial basis kernel in this example. Hence, 
KPCA with the sigmoid kernel ( and ) is used. 
NPE is one of the manifold learning methods. Here the 
number of LVs in the three comparative methods is 
determined by the cumulative variance of 80%. Regarding 
SDAE, it is a deep feature extraction method based on deep 
learning, and the number of LVs is set up to be the same as 
the proposed method. Note that the detection indices of 
different methods in the LV space play a similar role of 
measuring the variability in LVs, though different methods 
may nominate different indices such as T2 in PCA, HD in 
SDAE[19] and D in VAE. For convenience, in this paper, all 
these indices are commonly referred to as T2. Likewise, all the 
indices in the residual space are commonly referred to as SPE. 
The deep models were trained in the environment of NVIDIA 
GeForce GTX 1060.  

A. NUMERICAL EXAMPLE 
A nonlinear system with 4 observation variables is considered 
in this example. There are 2 LVs generating the observations 
contaminated by Gaussian measurement noises, given by 

                  

where  is an adjustable coefficient and is 1 when the 
system is normal.   and  are LVs subject to unit 
Gaussian distributions.  are zero-mean 
Gaussian measurement noises with standard deviations 

, respectively. A total of 1,200 normal 
observations are generated and normalized. Among them, 
1,000 observations are randomly selected as the training set 
and the remaining 200 points are organized as the validation 
set. With PCA, the singular values of the covariance matrix of 
the training set are . Therefore, the 
maximum number of LVs is 3 using the cumulative variance 
of 80%. To construct the VAE model, both the encoder and 
the decoder are built by three hidden-layer feedforward 
networks, in which each layer contains 30 neurons. The 
maximum iterations are set up as 300. Fig. 6 presents the 
trends of MSE as the iteration time evolves with the three 
different numbers of LVs from 1 to 3. According to the early 
stopping strategy, the optimal iteration number is marked by a 
circle point in Fig. 6. Among the three different LVs, the 
minimum MSE is obtained at  and with the 
corresponding 200 iterations. Then, the 1,000 training 
samples and the 200 validation samples are concatenated and 
used to retrain the network with these determined 
hyperparameters. The trend of the variational lower bound is 
illustrated in Fig. 7. One can see the lower bound gradually 
increases as the iteration proceeds and it tends to be steady 
when the number of iterations is close to 200. Taking the 
parameters updated at the 200th iterations as the final network 
parameters, the posterior distribution and the conditional 
distribution can be obtained by feeding each normal sample to 
the network. In this paper, the means of the posterior play the 
role of point estimates of LVs for each observation. The 
covariance matrix of the means of the posterior for all the 

observations are , which implies there is little 

correlation between the two LVs and the learned LVs are 
orthogonal to each other. This satisfies the required VAE 
model; there is no overlapped and redundant information 
among different LVs. To visualize the ability of signal 
reconstruction of VAE, the scatter plots between two different 
observed variables are shown in Fig. 8. Fig. 8 presents the 
scatter plots of , , and  from top to 
the bottom. The left column shows the observed values 
contaminated by measurement noises. The middle column 
presents the true observation values without considering 
noises so that the contour in the middle column is more 
distinct than the left column. The right column gives the 
reconstructed values with the LVs. The reconstructed values 
in the right column are close to the true values in the middle 

 
Table III. The FDRs in the numerical example (%) 

Fault No. T2 SPE 
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PCA KPCA NPE SDAE VAE PCA KPCA NPE SDAE VAE 
F1 4.8 6.6 1.5 7.5 13.0 9.1 7.9 14.1 10.9 10.0 
F2 12.1 24.1 8.6 11.3 32.1 29.6 27.7 31.4 34.8 34.6 
F3 20.8 44.2 35.4 14.8 49.2 65.7 67.5 36.6 68.8 72.2 
F4 1.2 0.9 0.5 5.1 7.9 3.5 3.7 3.8 4.9 9.3 
F5 1.7 2.1 0.8 14.4 13.7 6.0 8.0 2.3 13.2 26.3 
F6 2.1 3.5 2.2 24.0 16.6 8.4 11.8 2.0 16 34.4 
F7 0.8 0.7 0.2 8.2 3.8 2.3 4.4 4.8 4.4 11.2 
F8 0.9 1.0 0.8 15.2 4.5 3.1 7.3 6.7 10.6 25.1 
F9 1.6 1.1 1.9 22.2 4.6 3.9 12.3 7.0 14.5 36.0 
F10 7.8 6.1 0.4 3.7 2.7 17.6 12.9 9.2 37.2 43.1 
F11 18 35.7 0.0 7.6 3.9 29.5 41.9 36.3 53.5 67.0 
F12 25.2 44.0 0.3 13.0 3.2 42.1 47.6 47.4 56.4 72.9 

 
                     (a)                                         (b)                                        (c) 

 
                                   (d)                                 (e)               

Fig. 9. The control charts of (a) PCA, (b) KPCA, (c) NPE, (d) SDAE, and (e) VAE for F10 in the numerical example. 

 
Fig. 10. Structure of a typical industrial paper machine. 

 
Table IV. The FARs in the paper machine (%) 

Methods T2  SPE  
PCA 5.8 5.9 
KPCA 6.8 6.3 
NPE 5.7 3.4 
SDAE 5.0 5.0 
VAE 4.9 5.0 

 

 
Fig. 11. The validation errors for different numbers of LVs in the paper 

machine. 
column, which implies overfitting is suppressed significantly 
and the model precision is satisfactory.  
 
For fault detection, 12 fault scenarios, listed in Table I, are 
designed with several different magnitudes and fault locations. 
A total of 1,000 samples of each fault is collected. In the 12 
fault scenarios, each fault type contains three different fault 
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Fig. 12. Trends of four variables in the paper machine (clockwise from top left these are: Dry Weight, Dry Stock Flow, Machine Speed, and Moisture) 

 
Table V. The FDRs in the paper machine (%). 

Fault No. T2 SPE 
PCA KPCA NPE SDAE VAE PCA KPCA NPE SDAE VAE 

F1 6.0 6.2 7.5 6.7 11.7 2.4 8.7 0.1 44.2 68.6 
F2 51.7 4.3 32.0 43.1 31.3 26.5 88.3 23.8 44.1 86.9 
F3 25.2 37.6 45.5 15.3 7.9 11.7 41.6 8.4 14.4 59.2 

magnitudes; one wants to test the sensitivity of the fault 
detection methods.  With the 95% confidence level, Table II 
summarizes the false alarm rates (FARs), referring to the ratio 
of false alarm numbers to the total numbers for normal data. It 
is reasonable when FARs are less than 5% because of the 95% 
confidence level. One can see from Table II that all the 
methods have an eligible FAR. The fault detection rate (FDR) 
is the ratio of the samples with detection indices beyond the 
control limits to the total samples. A decisive performance of 
FDR that evaluates these methods for all the fault data is 
listed in Table III. In the table, the largest FDRs in the two 
detection indices for each fault are bold. F1-F6 are faults in 
LVs. Among them, F1, F2, and F3 are bias faults in the first 
LV while F4, F5 and F6 are noise faults in the second LV. T2 
and SPE should catch these two kinds of anomalies based on 
the analysis in the remark. It is found that VAE substantially 
behaves better than the other methods. Specifically, T2 in VAE 
for F1-F4 outperforms the other methods. SDAE presents a 
smaller preponderance of F5 and F6 over VAE. Especially, for 
the three noise faults (F4-F6), FDRs of other shallow methods 
in T2 even cannot exceed 5%, causing a misleading statement 
that the root cause does not come from LVs.  The reason is 
that shallow methods provide a very poor estimate for true 
data distribution. F7-F12 are structural faults, F7-F9 suffer a 
sensor precision degradation, and F10-F12 simulate a varying 
variable correlation. In these situations, SPE would be 
sensitive while T2 is immune to these kinds of faults because 
these faults will not result in a wide range of fluctuations. It is 
clear that both NPE and VAE give correct judgment because 
SPE in the two methods is out of control while T2 is still 
under control. Moreover, SPE of VAE has larger FDRs than 
that of NPE. In contrast, PCA, KPCA and SDAE would 
mislead engineers into considering a change of external 
exciting signals because there are some out-of-control points 
in T2. Substantially, the proposed process model based on 
VAE outperforms the other methods in inferring fault 
locations and sensitivity of detecting faults. Taking F10 for 
example, the control chart for each method is plotted in Fig. 8. 
In the figure, the former 500 samples are normal and the latter 
1,000 samples are abnormal. 

B. INDUSTRIAL EXAMPLE 
An industrial paper machine process is studied in this work. 
Paper machines, such as the one shown in Fig. 10, transform 

stock, which is a suspension of wood cellulose fibres in a 
water solution, into a web of paper which is wound onto a reel. 
The direction the paper moves along the paper machine is 
known as machine direction (MD), while the direction 
perpendicular to this is known as cross direction (CD). 
Quality variables of the paper must be kept uniform along 
both the machine and cross directions, but typically the MD 
and CD control problems are handled independently. In this 
study, data from the MD process is examined. Paper quality 
measurements of average dry weight (the weight of the paper 
less any remaining moisture on a per area basis) and the 
average moisture content across the web are taken by a 
scanning sensor at the end of the machine. These quality 
variables are controlled by adjusting the dry stock flow (the 
volumetric flow of the solids in the stock), the steam 
pressures in heated metal cylinders in the drying sections, and 
the machine speed. The MD process is a multivariable process 
with sufficiently nonlinear behavior that a common industrial 
practice is to apply a gain scheduled linear model predictive 
control with different models for different operating regions. 
In this study, 9 process variables are examined, including 
actuator signals, setpoints, sensor signals and mode signals. A 
dataset with 100,000 points is collected and judged as normal 
data by engineers. To show the complexity of the process, the 
trends of 4 normalized variables in the training set are plotted 
in Fig. 11. It is found that most of the variables present strong 
nonlinear fluctuations. To construct a VAE model, likewise, 
PCA is used to determine the upper bound of the number of 
LVs. The singular values of the 9 variables in the covariance 
matrix are [4.3, 3.2, 1.0, 0.7, 0.3, 0.05, 0.007, 0.0007, 0.0003]. 
Based on the 80% cumulative variance contribution, the first 
three LVs are used as the candidates. To verify the training 
models with different selected LVs, the collected dataset is 
separated into a training set and a validation set. The MSEs on 
the validation set for the chosen three different number of LVs 
are shown in Fig. 12. Based on the early stopping strategy, the 
optimal iterations are marked in circle points (Fig. 12). 
Among the LV models, the model with three LVs is selected 
as the minimum MSE is obtained for this paper machine 
process after 50 iterations. With these trained 
hyperparameters, the posterior distribution and the conditional 
distribution for each sample can be obtained and the means of 
the posterior distribution are regarded as a point estimate of 
LVs. The covariance matrix of the means of all the training 
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data is 

 

As the off-diagonal entries of the matrix are close to zero, all 
the LVs can be considered as being orthogonal to each other. 
This satisfies the required VAE model. 
 
The proposed method, as well as several comparative 
methods (PCA, KPCA, NPE, and SDAE), is applied to 
detecting the anomalies of this paper machine. As the 
estimated models of KPCA and NPE are computationally 
expensive for large-scale data, the size of the dataset is 
beyond their tractability in the configuration of our own 
computer system in this example. Hence, a downsampling 
strategy is performed for KPCA and NPE. Three kinds of 
testing data are collected and described as follows: 

F1: A controlled variable is added with an additional 
sensor noise. 
F2: A sequence of data with the operation modes which 

are not included in the normal training data. 
F3: A sequence of data produced with a changed 
controller. 

Each fault scenario contains 30,000 samples. Given a 95% 
confidence level, control limits can be calculated for different 
methods. The results of the FARs listed in Table IV indicate 
the shallow methods, PCA, KPCA, and NPE, cannot 
sufficiently fit the data distribution as FARs in both T2 and/or 
SPE statistics exceed 5%. Further, FDRs for the three testing 
data are given in Table V. For F1, it is a scenario of sensor 
precision degradation. All the FDRs in T2 are just over the 
critical value given by their FARs. These detected points 
mainly come from outliers or produce severe fluctuations. In 
fact, the sensor fault occurs because of the change of the 
measured device; and the fault points should be distributed in 
the residual space. The results of SPE indicate VAE gives the 
highest FDR while PCA and NPE cannot identify this fault. In 
F2, mode changes can be considered as a change of LVs 
because an external adjustment occurs. Considering the 
nonlinearity of this process, T2 and SPE would 
simultaneously detect the fault points. Even though SPE in 
KPCA is slightly larger than VAE, T2 in KPCA cannot present 
a correct conclusion. It is clear that the comprehensive 
performance of VAE in the two detection indices precedes 
those of the other methods while SDAE is in the second place. 
Regarding F3, T2 in VAE is the smallest while SPE is the 
largest. This mostly conforms to the reality because the 
changed controller in F3 would cause the adjustment of 
variable correlations. Based on these three representative fault 
patterns, it is validated that VAE is able to achieve better 
monitoring performance.  
V. CONCLUSIONS 
In this paper, a novel VAE based process fault detection 
algorithm is proposed. VAE is constructed under a 
probabilistic deep learning framework for inferring LVs and 
generating observations. Simultaneously, by formalizing 
posterior distributions and conditional distributions, the 
orthogonal constraints of the latent variables are effectively 
incorporated into the VAE models based on the available 

process knowledge. It is particularly good for complex 
nonlinear systems. Compared with the past models, the 
proposed model has the following merits: 
l It automatically extracts LVs through a deep neural 

network. It is more powerful than shallow methods, 
especially when handling complex nonlinear processes. 

l Unlike most multivariate statistical analysis methods, 
there are no steps resorting to matrix decomposition in 
the proposed VAE method, so the large-scale data can 
still be applied and online monitoring is also highly 
efficient. 

l Unlike general deep learning models, VAE can learn 
independent LVs easily and avoid information overlap.  

l Since VAE provides a distribution estimate for LVs and 
residuals, more comprehensive detection indices instead 
of a point estimate can be designed for fault detection. 

The better fault detection results of the proposed method have 
been proved by the numerical example and the paper machine 
process, both of which contain complex nonlinear elements. 
Even though this paper solves the most fundamental issue in 
learning orthogonal LVs under the assumption that LVs and 
noises are Gaussian, it actually formulizes a framework for 
more complex problems. For example, Student t distribution 
can be considered as a prior distribution for data with outliers. 
To obtain sparse LVs, Laplace distribution for LVs is a good 
choice. These deductions should be further validated in the 
future.  
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