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Abstract

Alarm design is an essential industrial problem with significant implications for

safety and performance. Standard alarm design algorithms are based on the assumption

that the data are uncorrelated and stationary. In this article, we relax these assumptions

and develop a novel approach to design alarms for processes modeled as a stochastic

nonlinear time-series model. In particular, we develop an algorithm to design deadband

alarms by minimizing the false and missed alarm rates. The resulting algorithm is

illustrated through extensive simulations on a reactor system.

Introduction

Modern day industrial plants are highly interconnected and complex due to the increasing

demands on performance, safety, environment and profitability standards. As a result, they

are also highly automated and fitted with hundreds of thousands of sensors that continuously

monitor a similar number of process variables.1,2 The performance and safety of industrial

processes depend critically on processing the information from these sensors to raise various
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safety and performance alarms. These alarms have to be adequately designed and commis-

sioned. Given the volume of alarms that need to be designed and tuned, often alarms are

used with their default settings without a proper systematic approach to design. This leads

to the plant operators being inundated with far more alarms than what is deemed safe by

various international industrial standards. It is therefore vital to efficiently design alarms,

process alarm information and presents it to an operator to take appropriate and timely

actions.

The standard industry practice is to design sensitive alarms that bring to the atten-

tion of operators every minor safety or performance violation. This approach to designing

alarms may result in operators being flooded with a large number of alarms. In fact, oper-

ators sometimes completely ignore certain recurring, but uncritical alarms. This can lead

to complacency on the part of operators and the management. There are numerous histor-

ical examples, where a large number of alarms, in conjunction with complacent behavior of

operators have resulted in catastrophic events with significant human and material losses.

For instance, the Deepwater Horizon oil spill in 2010,3 the Buncefield fire in 2005,4 the

BP Texas City refinery explosion in 20055 have been attributed partly to poor design and

management of process alarms and complacent behavior of operators. According to the

Abnormal Situation Management Consortium (ASM), process plants are losing billions of

dollars a year due to poor management of abnormal situations resulting from the inefficient

design of alarms.6 According to ISA1 18.2 and EEMUA2 191 v.2 industrial standards, an

operator, should receive no more than six alarms per hour during normal operation of a

plant; however in practice, in most industrial plants, operators constantly receive a large

number of alarms that easily exceed these standards, and that is mostly false or nuisance in

nature (chattering, redundant, etc.). According to EEMUA, the average number of alarms

in the oil/gas industry is thirty-six alarms per hour per operator.

Despite the importance of designing alarms, there is minimal literature that provides
1International Society for Automation
2The Engineering Equipment and Materials Users Association
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rigorous and systematic approaches to design alarms. It is only relatively recently that more

rigorous mathematical and data-based approaches have been used for designing alarms.7–10

Alarm design methods can be broadly classified into those that are based purely on histor-

ical data and those that are based on models.11 Data-based methods rely on assumptions

such as independence and stationarity of process data;12–15 however, the corresponding de-

sign algorithms are often easy to implement on industrial control systems. Further, these

methods do not require explicit process models. Although these methods perform reliably

under certain operating conditions, the underlying assumptions are often difficult to satisfy

in closed-loop nonlinear industrial systems. Model-based approaches can potentially provide

superior performing algorithms for designing alarms;7,16 however, they require high-fidelity

models that are often difficult to build for large-scale processes. All rigorous alarm design

algorithms require a probability density function of the data under normal and faulty con-

ditions. The data and model-based algorithms differ in how these density functions are

constructed. In data-based algorithms, the density functions are obtained from historical

data, and in model-based algorithms, they are estimated using a process model.

There are several approaches to triggering an alarm. The most straightforward approach

is the limit-checking method. This approach triggers an alarm when a process variable

exceeds a pre-defined alarm threshold.7,17 Although simple to implement, the process noise

and process disturbances can lead to several unnecessary nuisance alarms. The nuisance

alarms can be reduced by using other alarm-triggering approaches, such as delay-timers,

generalized delay-timers, and deadbands. In an n-sample delay timer, an alarm is triggered

if the past consecutive n samples of a process variable are above or below a pre-defined

alarm threshold.14,16,18,19 Similarly, for deadbands, an alarm is triggered once the process

variable crosses a limit, but it is turned off only when it leaves a pre-defined deadband.19–22

In industry, the delay-timer and deadband alarms are both widely used.

We develop a model-based deadband alarm design algorithm for a nonlinear stochas-

tic process. The authors had previously considered this problem in18 in the context of
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delay-timer alarm configuration. This article extends the problem in18 to deadband alarm

configuration, which is far more commonly used in industry. The design parameters for these

algorithms are the optimal upper and lower thresholds for turning “on” and turning “off” the

deadband alarm. This is a challenging problem due to the non-stationary, non-Gaussian,

and correlated nature of the process variables. Furthermore, the process can exhibit com-

plex nonlinear behavior. The proposed approach tackles these challenges by proposing new

definitions of false and missed alarm rates that are valid for nonlinear, non-stationary and

non-Gaussian processes. A recursive approach to calculate the proposed false and missed

alarms for dead-band alarm configuration is also provided. The effectiveness of the algo-

rithm is illustrated on a continuous stirred tank reactor (CSTR) system. To the authors’

best knowledge, this is the first method to design deadband alarms for nonlinear and non-

stationary processes. None of those above challenges have been addressed previously in the

alarm design community. It is noteworthy to highlight that in a recent study;21 the authors

proposed an approach for designing deadband alarms for non identically and independently

distributed (non-IID) processes. While the article21 consider a similar problem, there are

several key differences with the proposed method: (a) first, the method21 assesses whether it

is suitable for deadband alarms to remove nuisance alarms from a system, and if the answer

is affirmative, it designs the deadband alarm to reduce the nuisance alarms. In contrast,

our method assumes that there are no nuisance alarms, such that an alarm state is always

indicative of abnormal process operation; (b) the article21 considers a data-based alarm de-

sign; whereas, our method considers a model-based design; (c) while the method21 considers

deadband alarm design that achieves the best-weighted balance between the nuisance-alarm

duration ratio and the pseudo-detection delay, our approach, in contrast, considers the alarm

design that delivers the best-weighted balance between the false alarm rate and the missed

alarm rate; and (d) while the method21 assumes that the alarm trip threshold is known

a priori (or can be estimated using historical data), and proposes a method to design the

width of the deadband optimally, our method considers a simultaneous optimal design of the
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Figure 1: Process data (black curve) along with the deadband alarming strategy (upper
threshold is indicated by broken-blue line and the lower threshold indicated by broken-green
line). An alarm is raised if a process crosses the upper threshold and is cleared only if it
crosses below the lower threshold. The alarm state is represented by the solid-red line.

alarm trip threshold and the width of the deadband. Finally, it is instructive to highlight

that article21 mentions that analyzing false and missed alarm rates for a deadband alarm

configuration for non-IID signals is a challenging problem. We believe that the proposed

method makes an effort in addressing that problem by introducing a recursive approach to

compute the false and missed alarm rates for non-IID processes.

The remainder of the paper is organized as follows. First, a list of notation used in the

article is provided. In the second section, the deadband alarm configuration and its alarming

strategy are introduced. In the third section, the performance assessment of deadband alarms

in terms of FAR and MAR are derived for a class of stochastic nonlinear processes. In the

fourth section, the overall design of deadband alarms to reduce FAR and MAR are discussed

in detail. In the fifth section, several case studies are presented to demonstrate the efficacy

of the proposed deadband alarm design. Finally, some concluding remarks are provided.

Notation: We denote a random process variable measured at time t ∈ R+ with Zt and
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its particular realization by zt. The probability density function (PDF) of Zt is defined by

p(zt) and it is written as Zt ∼ p(zt). The probability of Zt ≤ a for some constant a ∈ R

is denoted by P (Zt ≤ a). In addition, we use the following compact notation to denote a

sequence of random process measurements from time t = 1 to t = N , Z1:t = {Z1, . . . , ZN}

or {Zt}t∈N to denote a sequence with arbitrary length. R+, P, and N respectively denote the

sets of non-negative real numbers, the set of real numbers in the interval [0, 1], and the set

of integers.

Deadband Alarms

Deadband alarms are widely used in industry to remove spurious alarms that may arise due

to process disturbances. A deadband alarm is triggered, when the process variable reaches a

value greater (or lower) than a threshold and is turned off only if it is lower (or greater) than

a different threshold. The unique feature of this alarm is that the thresholds for turning on

and turning off an alarm are different (see Figure 1 for illustration). Now, for a given process

state, Xt ∈ R, the deadband (i.e., the upper and lower thresholds) divides the state-space

into three disjoint sets (see Figure 1 for illustration), which are generically denoted here as

follows

Ct ≡ {Xt : Xt < Sx}, (Lower) (1a)

Bt ≡ {Xt : Sx ≤ Xt < Sx}, (Deadband) (1b)

Ut ≡ {Xt : Xt ≥ Sx}, (Upper), (1c)

where Sx ∈ R and Sx ∈ R are the upper and lower thresholds, Ct ⊆ R is the ‘lower alarm’

region, Bt ⊆ R is the deadband region, and Ut ⊆ R is the ‘upper alarm’ region. Note that

the alarming regions Ct, Bt and Ut are defined solely on the basis of the alarm parameters

(Sx, Sx) ∈ R × R. It is straightforward to check that R = Ct ∪ Bt ∪ Ut for all t ∈ N.
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Figure 2: The alarming strategy for a deadband alarm.

Note that at any time t ∈ N, the process Xt can only be in one of the three alarming

regions. Now based on in which alarming region, {Xt}t∈N is, the state of the alarm can be

appropriately defined. If suppose At ∈ {0, 1} denotes the state of the alarm at time t ∈ N,

such that At = 0 represents the “off” state and At = 1 represents the “on” state; then At can

be defined in terms of At−1. For example, if At−1 = 0, then At = 1 if and only if Xt ∈ Ut

(i.e., Xt ≥ Sx). Similarly, if At−1 = 1, then At = 0 if and only if Xt ∈ Ct (i.e., Xt ≤ Sx).

The other possible scenarios that describe the complete dynamics of At are given in Figure

2 or Table 1. Observe that the “on” state of the alarm, or At = 1 can be mathematically

Table 1: The alarming strategy for a deadband alarm

At−1 At Conditions
0 0 Xt ∈ Ct or Xt ∈ Bt
0 1 Xt ∈ Ut
1 0 Xt ∈ Ct
1 1 Xt ∈ Ut or Xt ∈ Bt

represented as follows

At = IUt(Xt) + At−1IBt(Xt), (2)

where Iχ(Xt), for any arbitrary set, χ is an indicator function such that

Iχ(Xt) ≡


1 if Xt ∈ χ

0 otherwise
. (3)
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According to (2), if At−1 = 0, then At = 1, if and only if Xt ∈ Ut; and if At−1 = 1, then

At = 1 either when Xt ∈ Bt or Xt ∈ Ut. Note that (2) only represents the “on” state of an

alarm, i.e., for At = 1. Similarly, the “off” state of the alarm can be represented using the

following equation

At = At−1IBt(Xt) + At−1(1− ICt(Xt)). (4)

Again, from (4), if At−1 = 0 then At = 0 if Xt ∈ Ct or Xt ∈ Bt, i.e., when Xt < Sx.

Similarly, if At−1 = 1 then At = 0 if and only if Xt ∈ Ct (i.e., Xt ≤ Sx). Observe that the

alarm triggering mechanisms in (2) and (4) are completely defined by the alarm parameters

(Sx, Sx) ∈ R×R. In the following sections, we assess the performance of a deadband alarm,

and discuss how it can be used to optimally guide the design of (Sx, Sx) ∈ R× R.

Performance Assessment

In this section, we discuss the performance assessment of a deadband alarm configuration

based on the FAR and MAR. Let RN and RF represent the normal and faulty operating

regions of a non-stationary process, {Xt}t∈N, respectively, such that Xt ∈ RN for t < tF

and Xt ∈ RF for t ≥ tF , where tF is the time of fault. Designing alarms for {Xt}t∈N often

results in two types of errors, namely the false and missed alarm error. A false alarm is an

alarm that is triggered when the process variable {Xt}t∈N is in the normal operating region.

Similarly, a missed alarm is an alarm that occurs when {Xt}t∈N is behaving abnormally,

but no alarm is raised. While the false alarms reduce the trustworthiness of alarm systems,

missed alarms severely degrade the designed functionality of alarm systems. In an alarm

design problem, false alarm rate (FAR) and missed alarm rate (MAR) are two important

measures of alarm performance. Given RN and RF , FAR for a deadband alarm designed for
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a non-stationary process, {Xt}t∈N, can be defined as follows

Ft(Sx, Sx) =


P (At = 1|Xt ∈ RN), for t = 0, . . . , tF − 1,

0, for t = tF , . . . , tN ,

(5)

where Ft ∈ P is the FAR at t ∈ N, and P (At = 1|Xt ∈ RN) is the probability of observing

an alarm given Xt ∈ RN . Note that Ft = 0 for Xt ∈ RF . For a given (Sx, Sx) ∈ R × R,

Ft is time-varying if {Xt}t∈N is non-stationary, and assumes a constant value if {Xt}t∈N is

stationary. This is because for stationary processes, P (At = 1|Xt ∈ RN) is time-invariant.

Similarly, MAR for deadband alarms can be defined as follows

Mt(Sx, Sx) =


0, for t = 0, . . . , tF − 1,

P (At = 0|Xt ∈ RF ), for t = tF , . . . , tN .

(6)

where Mt ∈ P is the MAR at t ∈ N, and P (At = 0|Xt ∈ RF ) is the probability of not

observing an alarm when Xt ∈ RF . As (5), Mt in (6) is time-varying for non-stationary

processes.

For non-stationary processes, calculating Ft and Mt is challenging as it requires access

to P (At = 1|xt ∈ RN) and P (At = 0|Xt ∈ RF ) at each time point. The next two theorems

provide a recursive approach to calcualte Ft and Mt.

Theorem 1. The FAR for a deadband alarm designed for a non-stationary process, {Xt}t∈N,

can be calculated as follows

Ft = P (Xt ∈ Ut|Xt ∈ RN) + P (Xt ∈ Bt|Xt ∈ RN)Ft−1, (7)

9



for all t = 0, 1, . . . , tF − 1, where:

P (Xt ∈ Bt|Xt ∈ RN) =

∫ Sx

Sx

pN(xt)dxt; (8a)

P (Xt ∈ Ut|Xt ∈ RN) =

∫ +∞

Sx

pN(xt)dxt; (8b)

and pN(·) is the PDF for {Xt}t∈N, when Xt ∈ RN .

Proof : See Appendix A for the detailed proof.

Theorem 2. The MAR for a deadband alarm designed for a non-stationary process, {Xt}t∈N,

can be calculated as follows

Mt = P (Xt ∈ Ct|Xt ∈ RF ) + P (Xt ∈ Bt|Xt ∈ RF )Mt−1, (9)

for all t = tF , tF + 1, . . . , tN , where:

P (Xt ∈ Bt|Xt ∈ RF ) =

∫ Sx

Sx

pF (xt)dxt; (10a)

P (Xt ∈ Ct|Xt ∈ RF ) =

∫ Sx

−∞
pF (xt)dxt; (10b)

and pF (·) is the PDF for {Xt}t∈N, when Xt ∈ RF .

Proof : See Appendix B for the detailed proof.

Given 0 ≤ F0 ≤ 1 and 0 ≤ S0 ≤ 1, equations (7) and (9) provide a recursive approach

to calculate Ft and Mt for all t ∈ N. Note that Ft and Mt calculated using n (7) and (9),

respectively, satisfy the conditions 0 ≤ Ft ≤ 1 and 0 ≤ Mt ≤ 1 for all (Sx, Sx) ∈ R × R

and for all t ∈ N (see Appendix C for the detailed proof). This ensures that (7) and (9) are

bounded for all 0 ≤ F0 ≤ 1, 0 ≤M0 ≤ 1 and (Sx, Sx) ∈ R× R.

Despite the recursive relations in (7) and (9), calculating integrals in (8a)-(8b) and (10a)-

(10b) require the complete distribution of {Xt}t∈N under normal and faulty operations, i.e.,
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pN and pF . A traditional data-based approach uses process data to estimate pN and pF . This

is done as follows. For a given sequence x1:TN , change-point detection algorithms, such as

moving-average charts and generalized likelihood-ratio test25,26 are used to estimate the time

of fault, tF , in x1:TN . Given an estimate of tF , the sequence, x1:TN , can be readily decomposed

into normal and faulty operations. Once decomposed, empirical density estimation methods,

such as histogram can be used to construct the required PDFs.14,23,24 For example, using

histograms, pF and pN can be estimated as

pN ≈ hist(x1, . . . , xtF−1), pF ≈ hist(xtF , . . . , xtN ), (11)

where hist(·) is a histogram function. While the approximations in (11) are reliable, they

are only valid when {Xt}t∈N is an i.i.d. sequence. In fact, for non-i.i.d. or non-stationary

processes, histogram-based approximations are no longer valid.

To calculate pN and pF for non-stationary processes, we propose a model-based approach.

Like with data-based methods, given a sequence of x1:TN , we first estimate the time of fault,

tF . Next, given an estimate of tF , we decompose the PDF of {Xt}t∈N as follows

p(xt) =


pN(xt), for t = 0, . . . , tF − 1,

pF (xt), for t = tF , . . . , tN ,

(12)

Given (12), pN and pF are approximated using a process model. Note that since the distri-

bution of {Xt}t∈N may be influenced by other states in the system, we consider an extended

state vector, {X̄t}t∈N, that includes the state, Xt. It is assumed that {X̄t}t∈N is defined by

the nonlinear time-series model
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Model 1. Stochastic nonlinear time-series model

X̄0 ∼ p(x̄0), (13a)

X̄t+1 = ft(X̄t, Vt), (13b)

where X̄t ∈ Rn is the process state; p(x̄0) is the PDF for the initial state X̄0; ft : Rn × Rn → Rn

is an n-dimensional state transition function; and Vt ∈ Rn is the state noise sequence.

For mathematical convenience, exogenous process inputs have been dispensed with in Model

1; however, the results presented in the paper hold with inputs included.

Assumption 1. {Vt}t∈N ∈ Rn is a sequence of independent random variables distributed

according to Vt ∼ p(vt), and is independent of the initial state X̄0 ∼ p(x̄0). Further, p(x̄0)

and p(vt) have known parametric probability density functions.

Finally, given Model 1 and the sequence, x1:TN , we use particle methods to compute pN

and pF at each sampling time. A particle approach to approximate the densities in (12) is

discussed in Appendix D. Note that the densities computed in Appendix D are valid since

Model 1 used with the particle method is a nonlinear, non-stationary, first-order time-series

model.

Design of Deadband Alarms

FAR and MAR are undesirable as it is detrimental to the performance of an alarm system

for it makes the alarm system less trustworthy and the system perceptible to catastrophic

failures. As shown in the section on performance assessment, FAR and MAR of a deadband

alarm configuration depend on alarm parameters (Sx, Sx) ∈ R× R. In fact, both FAR and

MAR can be reduced by appropriately choosing the alarm parameters (Sx, Sx) ∈ R× R.

In this section, we propose an optimization framework to optimize deadband alarm design
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by minimizing FAR and MAR. This is done as follows. Let J : R×R→ R+ be a cost function

associated with (Sx, Sx) ∈ R× R, then we define J as follows

Jt(Sx, Sx) ≡ w1F
p
t (Sx, Sx) + w2M

q
t (Sx, Sx), (14)

where: Jt is the cost function at time t ∈ N; p, q ≥ 0 are positive integers; and w1, w2 ≥ 0

are non-negative weights. The cost function in (14) is defined as a weighted sum of FAR and

MAR; however, this need not be the case, in general. For the cost function in (14), alarm

parameters can be optimally designed by solving the following constrained optimization

problem

(S∗x, S
∗
x) ∈ arg min

(Sx,Sx)∈R×R
J(Ft(Sx, Sx),Mt(Sx, Sx)),

s.t. G

[
Sx, Sx

]T
= c,

Ft(Sx, Sx) ≤ η1,

Mt(Sx, Sx) ≤ η2,

(15)

where (S∗x, S
∗
x) ∈ R× R is an optimal estimate of (Sx, Sx) at t ∈ N, G ∈ Rm×2, c ∈ Rm and

η1, η2 ∈ P are defined as per the process safety standards. Note that the formulation in (15)

considers optimization over two parameters, namely (Sx, Sx) ∈ R × R. Physically, solving

(15) yields the optimal width and the optimal location for placing the deadband. Note

that, in applications, where only the deadband width is critical to optimize, it is possible

to reformulate (15) in terms of ∆Sx = Sx − Sx. Note that with ∆Sx, (15) reduces to a

single-variable optimization problem.

Note that since Ft and Mt used in (15) are time-varying, (15) needs to be solved at each

sampling time to calculate optimal alarm parameters. Note that designing an alarm system

at each sampling time is not only impractical, it may also lead to serious process upsets and

unsafe process operations. To bypass the use of time-varying FAR and MAR in the alarm
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design, we consider the following time-invariant definitions

FE(Sx, Sx) ≡
1

tF

tF−1∑
t=0

Ft(Sx, Sx), (16a)

ME(Sx, Sx) ≡
1

(tN − tF + 1)

tN∑
t=tF

Mt(Sx, Sx), (16b)

where FE andME are expected values. With new definitions, an expected-case optimization-

based alarm design can be computed by replacing Ft and Mt in (15) with FE and ME.

Alternatively, we can also consider the following definitions

FW (Sx, Sx) ≡ max
t∈{0,...,tF−1}

Ft(Sx, Sx), (17a)

MW (Sx, Sx) ≡ max
t∈{tF ,...,tN}

Mt(Sx, Sx), (17b)

where FW and MW are the worst-case values for FAR and MAR, respectively. A worst-case

alarm design is obtained by replacing Ft andMt in (15) with their worst-case values. Finally,

the procedure for designing expected-case and worst-case deadband alarms for a nonlinear

process is outlined in Algorithm 1.

Case Study

In this section, we illustrate the efficacy of the deadband alarm design in Algorithm 1 on a

simulated example. The process considered here is a non-isothermal continuous stirred tank

reactor (CSTR) system. Consider a CSTR reaction system of volume γ ∈ R+, and with the

following three parallel, irreversible, exothermic reactions16

A
k1−−→ B, A

k2−−→ U, A
k3−−→ R, (20)
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Algorithm 1 Proposed deadband alarm design
1: Input: Model 1 in (13a) and (13b); input signal {Ut}t∈N; time of fault tF ; final time tN ;

total number of particles; M ; and optimization parameter set, {w1, w2, G, c, η1, η2}
2: Output: Optimal deadband alarm parameters, (S?x, S

?

x)
3: Set F0 ← 0 and M0 ← 0
4: for t=0 to tN do
5: if t < tF then
6: Compute an M particle approximation of the PDF pN(dxt) using (54), such that

p̃N(xt)dxt ←
1

M

M∑
i=1

δXi
t
(dxt).

7: Compute anM particle approximation of P (Xt ∈ Bt|Xt ∈ RN) and P (Xt ∈ Ut|Xt ∈
RN) using (8a) and (8b), respectively, such that

P̃ (Xt ∈ Bt|Xt ∈ RN)← 1

M

M∑
j=1

1Bt(X
j
t ), P̃ (Xt ∈ Ut|Xt ∈ RN)← 1

M

M∑
j=1

1Ut(X
j
t ).

8: Compute Ft using (7), such that

Ft ← P̃ (Xt ∈ Ut|Xt ∈ RN) + P̃ (Xt ∈ Bt|Xt ∈ RN)Ft−1,

9: end if
10: if t ≥ tF then
11: Compute an M particle approximation of the PDF pF (dxt) using (55), such that

p̃F (xt)dxt ←
1

M

M∑
i=1

δXi
t
(dxt).

12: Compute an M particle approximation of P (Xt ∈ Bt|Xt ∈ RF ) and P (Xt ∈ Ct|Xt ∈
RF ) using (10a) and (10b), respectively, such that

P̃ (Xt ∈ Bt|Xt ∈ RF )← 1

M

M∑
j=1

1Bt(X
j
t ), P̃ (Xt ∈ Ct|Xt ∈ RF )← 1

M

M∑
j=1

1Ct(X
j
t ).

13: Compute Mt using (9), such that

Mt ← P̃ (Xt ∈ Ct|Xt ∈ RF ) + P̃ (Xt ∈ Bt|Xt ∈ RF )Mt−1,

14: end if
15: end for
16: Compute (FE,ME) in (16a) and (16b) for expected-case alarm design or (FW ,MW ) in

(17a) and (17b) for worst-case alarm design
17: Optimize (15) with the objective function in (14) to obtain (S?x, S

?

x)
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Figure 3: The PDFs for the process state under normal operations at time t = 10, t = 100
and t = 200 seconds.

Table 2: Nominal parameter values for the non-isothermal CSTR reaction system.

Parameter Value Unit

V 1 m3

R 8.314 kJ · kmol−1 ·K−1

∆H1 −5.0× 104 kJ · kmol

∆H2 −5.2× 104 kJ · kmol

∆H3 −5.4× 104 kJkmol

k10 3.0× 106 h−1

k20 3.0× 105 h−1

k30 3.0× 105 h−1

E1 5.0× 104 kJ · kmol−1

E2 7.53× 104 kJ · kmol−1

E3 7.53× 104 kJ · kmol−1

ρ 1000 kg ·m−3

cp 0.231 kJ · kg−1 ·K−1

where A is the reactant, B is the desired product, and U and R are the undesired byproducts.

The concentrations of A, B, U , and R are denoted by CA, CB, CU , and CR, respectively. The

reactor is assembled with a jacket system to remove heat from the reactor. Given (20), the
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concentrations of species and the reactor temperature can be modeled using the following

Ṫ (t) =
1

γ
F (t)(TA0 − T (t)) +

3∑
i=1

(−∆Hi)

ρcp
Ri(CA(t), T (t)) +

Q(t)

ρcpγ
, (21a)

ĊA(t) =
1

γ
F (t)(CA0 − CA(t))−

3∑
i=1

Ri(CA(t), T (t)), (21b)

Ċj(t) = −γ−1F (t)Cj(t) +Ri(CA(t), T (t)), (21c)

where: j = B,U,R and Ri for i = 1, 2, 3 are rate functions

Ri(CA(t), T (t)) = ki0 · exp(−Ei/RT (t))CA(t); (22)

∆Hi, ki0, and Ei for i = 1, 2, 3 denote the enthalpy, pre-exponential rate constant, and the

activation energy for the three reactions in (20); T is the reactor temperature; cp, ρ and R

denote the heat capacity, fluid density, and the gas constant, respectively; and Q denote the

rate of heat removal. The feed flow rate, denoted by F , is pure A of molar concentration CA0

and at temperature TA0. The initial conditions in the CSTR are T (0) = 300 K, CA(0) = 4

kmol·m−3, and CB(0) = CU(0) = CR(0) = 0 kmol·m−3. The nominal values for all other

model parameters are given in Table 2. Equations (21a) through (21c) are first discretized

and represented in terms of Model 1 using the Euler’s discretization method with a time-step

0.01 hr. For the sake of brevity, the discrete-time nonlinear time-series model representation

of the network in (21a) through (21c) is not shown here, but is straightforward to derive.

For the remainder of this section, (21a) through (21c) is represented by Model 1 with X̄t ≡

[T (t) CA(t) CB(t) CU(t) CR(t)]T denoting the states and Ut ≡ [F (t) Q(t)]T the inputs. To

account for uncertainties in the parameters, we assume that the state noise in Model 1,
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denoted by Vt ∼ N (mt, Qt), is an additive multivariate Gaussian noise, where

mt =


[0 0 0 0 0]T, for t = 0, . . . , tF − 1,

[0.2 0.1 0.1 0.1 0.1]T, for t = tF , . . . , tN ,

(23a)

Qt =



0.1 0 0 0 0

0 0.1 0 0 0

0 0 0.1 0 0

0 0 0 0.1 0

0 0 0 0 0.1


. (23b)

The mean of the state noise in (23a) is assumed to be different in the normal and faulty

operating conditions. It is further assumed that the initial state, X0 ∈ R5 is imprecisely

known, such that X0 ∼ N (mx0 , Qx0), where

mx0 =



300

4

0

0

0


, Qx0 =



0.01 0 0 0 0

0 0.01 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


. (24)

Observe that the initial state distribution is defined independent of the state noise distribu-

tion (see Assumption 1). Note that even if X0 and {Vt}t∈N are Gaussian random variables,

the distribution for {Xt}t∈N is non-Gaussian and non-stationary. In fact, the non-stationary

and nonlinear behavior of {Xt}t∈N under normal process operations are illustrated in Figure

3.

In this section, we seek a univariate deadband alarm for the concentration of species A.

Further, the alarm parameters (Sx, Sx) ∈ R×R are constrained to the space defined by the
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Figure 4: The objective function for the expected-case deadband alarm design as a function
of (Sx, Sx) ∈ R× R. The objective function is plotted for the unconstrained case.

following inequalities

 2

2

 ≤
 Sx

Sx

 ≤
 7

7

 , (25a)

 −1 1

1 −1


 Sx

Sx

 ≤
 1.5

−0.3

 , (25b)

where (25a) is the upper and lower bounds on (Sx, Sx) ∈ R× R and (25b) is the minimum

and maximum width of the deadband. The inequalities in (25a)–(25b) are decided based on

the process understanding and safety standards set for the process.

First, we consider an expected-case alarm design by assuming the following cost function

J(Sx, Sx) = 0.5[FE(Sx, Sx)]
2 + 0.5[ME(Sx, Sx)]

2. (26)

Next, we minimize (26) given (25a) and (25b). Figure 4 gives a schematic of the cost

function as alarm parameters are varied. From Figure 4 it is clear that the expected-case

cost function is convex. The optimal alarm parameters, cost function, and the corresponding
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Table 3: Results for the proposed expected-case and worst-case deadband alarm designs.

Design type Optimal parameters Optimal cost Training Cross-validation
(S?x, S

?
x) J(S?x, S

?
x) FAR (in %) MAR (in %) FAR (in %) MAR (in %)

Expected-case (3.70, 4.80) 5.98× 10−5 0.57 1.03 0.65 1.11

Worst-case (3.53 4.02) 0.0061 13.01 18.4 13.37 18.76

FAR and MAR for the expected alarm design is shown in Table 3. It is easy to check that

the optimal parameters (S?x, S
?

x) = (3.70, 4.80) is a feasible solution. The expected FAR and

MAR corresponding to the optimal parameters are 0.57% and 1.03%, respectively. Finally,

Figure 5 (and Table 3) provides the expected FAR and MAR based on cross-validation.

The results are based on 1000 Monte-Carlo simulations and are in close agreement with the

results from the training set.

Next, for the worst-case alarm design, we replace the expected values for the FAR and

MAR in (26) with their worst-case values. Again, solving (26) under (25a) and (25b) yields

the worst-case alarm design. The optimal alarm parameters, cost function, and the worst-

case FAR and MAR are tabulated in Table 3. Observe that the worst-case alarm design

picks a different set of alarm parameters, compared to the expected-case design. Further,

for the worst-case design, the worst-case FAR and MAR are 13.01% and 18.4%, which are

much higher than their expected values calculated for the expected alarm design. Again,

cross-validation results for the worst-case design are in close agreement with the training

results, demonstrating the efficacy of the proposed deadband alarm design.

Conclusions

We have developed a deadband alarm design algorithm for nonlinear stochastic systems.

The algorithm is valid for process variables that are correlated and non-stationary. We have

derived mathematical expressions for recursive computation of false and missed alarm rates.

These expressions depend on probability density functions, which are approximated using

particle methods. The resulting approximate false and missed alarm rates are used to develop
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Figure 5: The FAR and MAR for the optimal expected-case alarm design in cross-validation
(represented by black curves). The expected FAR and MAR are denoted by broken-red lines.

expected-case and worst-case algorithms. In particular, an alarm design algorithm based on

a new optimization method is developed. These algorithms are effectively illustrated in a

CSTR example.

Appendix A: Proof for Theorem 1

Using the Law of Marginalization, (5) can be written as

Ft =
∑

At−1∈{0,1}

P (At = 1, At−1|Xt ∈ RN), (27)

where the marginalization is over the alarm state At−1. Now using the law of conditional

probability, (27) can be decomposed and written as follows

Ft = P (At = 1|At−1 = 0, Xt ∈ RN)P (At−1 = 0)

+ P (At = 1|At−1 = 1, Xt ∈ RN)P (At−1 = 1), (28)
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where P (At = 1|At−1 = 0, Xt ∈ RN) is the probability that the alarm at t is “on”, given that

the alarm at t−1 is “off” and Xt ∈ RN , and P (At = 1|At−1 = 1, Xt ∈ RN) is the probability

that the alarm at t is “on”, given that the alarm at t − 1 is “on” and Xt ∈ RN . Now to

calculate Ft in (28), we need to first calculate the following density functions:

1. P (At = 1|At−1 = 0, Xt ∈ RN);

2. P (At = 1|At−1 = 1, Xt ∈ RN);

3. P (At−1 = 0);

4. P (At−1 = 1).

Next, we discuss the procedures to calculate the aforementioned density functions. From

(2), if At−1 = 0, then At = 1 if and only if Xt ∈ Ut, such that

P (At = 1|At−1 = 0, Xt ∈ RN) = P (Xt ∈ Ut|Xt ∈ RN). (29)

Similarly, if At−1 = 1, then At = 1 if Xt ∈ Ut or Xt ∈ Bt, such that the following relation

holds

P (At = 1|At−1 = 1, Xt ∈ RN) = P (Xt ∈ Ut|Xt ∈ RN)

+ P (Xt ∈ Bt|Xt ∈ RN), (30)

Now using the Law of Marginalization, P (At−1) is written as

P (At−1) =
∑

i∈{N,F}

P (At−1, Xt−1 ∈ Ri), (31a)

= P (At−1|Xt−1 ∈ RN)P (Xt−1 ∈ RN)

+ P (At−1|Xt−1 ∈ RF )P (Xt−1 ∈ RF ). (31b)
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Substituting At−1 = 0 into (31b) yields

P (At−1 = 0) = P (At−1 = 0|Xt−1 ∈ RN)P (Xt−1 ∈ RN)

+ P (At−1 = 0|Xt−1 ∈ RF )P (Xt−1 ∈ RF ), (32)

Now from (5), we have P (At−1 = 0|Xt−1 ∈ RN) = 1−Ft−1, and from (6), we have P (At−1 =

0|Xt−1 ∈ RF ) = Mt−1. Substituting these expressions into (32), we get

P (At−1 = 0) = (1− Ft−1)P (Xt−1 ∈ RN)

+Mt−1P (Xt−1 ∈ RF ). (33)

Similarly, substituting At−1 = 1 into (31b) yields

P (At−1 = 1) = P (At−1 = 1|Xt−1 ∈ RN)P (Xt−1 ∈ RN)

+ P (At−1 = 1|Xt−1 ∈ RF )P (Xt−1 ∈ RF ). (34)

Now from (5), we have P (At−1 = 1|Xt−1 ∈ RN) = Ft−1, and from (6), we have P (At−1 =

1|Xt−1 ∈ RF ) = 1−Mt−1. Substituting these expressions into (34), we get

P (At−1 = 1) = Ft−1P (Xt−1 ∈ RN)

+ (1−Mt−1)P (Xt−1 ∈ RF ). (35)
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Finally, substituting (29), (30), (33) and (35) into (31b), we get the following

Ft = P (Xt ∈ Ut|Xt ∈ RN) [(1− Ft−1)P (Xt−1 ∈ RN)

+ Mt−1P (Xt−1 ∈ RF )] + [P (Xt ∈ Ut|Xt ∈ RN)

+ P (Xt ∈ Bt|Xt ∈ RN)][Ft−1P (Xt−1 ∈ RN)

+ (1−Mt−1)P (Xt−1 ∈ RF )]. (36)

Now for t < tF , where tF is the time of fault, the process is in the normal operation region,

such that P (Xt ∈ RN) = 1 and P (Xt ∈ RF ) = 0 for all t < tF . Substituting these

expressions into (36) gives

Ft = P (Xt ∈ Ut|Xt−1 ∈ RN)

+ P (Xt ∈ Bt|Xt−1 ∈ RN)Ft−1, (37)

which completes the proof.

Appendix B: Proof for Theorem 2

The proof for Theorem 2 is similar to Appendix A. Nevertheless, a separate proof is provided

here for the sake of completeness. First, using the Law of Marginalization, (6) can be written

as

Mt =
∑

At−1∈{0,1}

P (At = 0, At−1|Xt ∈ RF ), (38)
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where the marginalization is over the alarm state At−1. Now using the law of conditional

probability, (38) can be decomposed and written as follows

Mt =
∑

At−1∈{0,1}

P (At = 0|At−1, Xt ∈ RF )

× P (At−1|Xt ∈ RF ), (39a)

=
∑

At−1∈{0,1}

P (At = 0|At−1, Xt ∈ RF )P (At−1), (39b)

Mt = P (At = 0|At−1 = 0, Xt ∈ RF )P (At−1 = 0)

+ P (At = 0|At−1 = 1, Xt ∈ RF )P (At−1 = 1), (39c)

where P (At = 0|At−1 = 0, Xt ∈ RF ) is the probability that the alarm at t is “off”, given that

the alarm at t− 1 is “off” and Xt ∈ RF , and P (At = 0|At−1 = 1, Xt ∈ RF ) is the probability

that the alarm at t is “off”, given that the alarm at t − 1 is “on” and Xt ∈ RF . Now to

calculate Mt in (39c), we need to first calculate the following density functions:

1. P (At = 0|At−1 = 0, Xt ∈ RF );

2. P (At = 0|At−1 = 1, Xt ∈ RF );

3. P (At−1 = 0);

4. P (At−1 = 1).

Next, we discuss the procedures to calculate the aforementioned density functions. From

(4), if At−1 = 0, then At = 0 if Xt ∈ Bt or Xt ∈ Ct, such that

P (At = 0|At−1 = 0, Xt ∈ RF ) = P (Xt ∈ Bt|Xt−1 ∈ RF )

+ P (Xt ∈ Ct|Xt−1 ∈ RF ), (40)
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where

P (Xt ∈ Bt|Xt−1 ∈ RF ) =

∫ Sx

Sx

pF (xt)dxt, (41a)

P (Xt ∈ Ct|Xt−1 ∈ RF ) =

∫ Sx

−∞
pF (xt)dxt. (41b)

Similarly, if At−1 = 1 then At = 0 if and only if Xt ∈ Ct, such that the following relation

holds

P (At = 0|At−1 = 1, Xt ∈ RF ) = P (Xt ∈ Ct|Xt−1 ∈ RF ). (42)

Finally, the densities P (At−1 = 0) and P (At−1 = 1) in (39c), are given by (33) and (35),

respectively. Therefore, substituting (40), (42), (33) and (35) into (39c), we get

Mt = [P (Xt ∈ Bt|Xt ∈ RF ) + P (Xt ∈ Ct|Xt ∈ RF )]

× [(1− Ft−1)P (Xt−1 ∈ RN) +Mt−1P (Xt−1 ∈ RF )]

+ P (Xt ∈ Ct|Xt ∈ RF )[Ft−1P (Xt−1 ∈ RN)

+ (1−Mt−1)P (Xt−1 ∈ RF )]. (43)

Now for t ≥ tF , where tF is the time of fault, the process is in the faulty operation region,

such that P (Xt ∈ RN) = 0 and P (Xt ∈ RF ) = 1 for all t ≥ tF . Substituting these

expressions into (43) gives

Mt = P (Xt ∈ Ct|Xt ∈ RF ) + P (Xt ∈ Bt|Xt ∈ RF )Mt−1, (44)

which completes the proof.
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Appendix C: Bounds on FAR and MAR

Theorem 3. The Ft and Mt in Theorems 1 and 2, respectively, are such that they satisfy

the following inequalities

0 ≤ Ft ≤ 1, (45a)

0 ≤Mt ≤ 1, (45b)

for all (Sx, Sx) ∈ R× R and for all t ∈ {0, 1, . . . , tN}.

Proof : First, we provide a proof for (45a). First observe that (45a) is trivially satisfied

for t = tF , . . . , tN from the definition of FAR in (5). Now for a process Xt ∈ R, for each

(Sx, Sx) ∈ R× R, the following equality holds

1 = P (Xt ∈ Ct|Xt ∈ RN) + P (Xt ∈ Bt|Xt ∈ RN)

+ P (Xt ∈ Ut|Xt ∈ RN). (46)

This is because Xt ∈ R = Ct ∪ Bt ∪ Ut for all (Sx, Sx) ∈ R×R, and for all t = 0, . . . , tF − 1.

Now using (46), Ft expression in (7) can be alternatively written as follows

Ft = 1− P (Xt ∈ Ct|Xt ∈ RN)− P (Xt ∈ Bt|Xt ∈ RN)

+ P (Xt ∈ Bt|Xt ∈ RN)Ft−1, (47a)

= 1− P (Xt ∈ Ct|Xt ∈ RN)− P (Xt ∈ Bt|Xt ∈ RN)

× (1− Ft−1). (47b)

For t < tF , where tF is the time of fault, the process is in the normal operation region, such

that P (Xt ∈ RN) = 1 and P (Xt ∈ RF ) = 0 for all t < tF . Substituting these expressions
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into (34) yields

P (At−1 = 1) = P (At−1 = 1|Xt−1 ∈ RN) = Ft−1. (48)

Substituting (48) into (47b) yields

Ft = 1− P (Xt ∈ Ct|Xt ∈ RN)− P (Xt ∈ Bt|Xt ∈ RN)

× (1− P (At−1 = 1)), (49a)

= 1− P (Xt ∈ Ct|Xt ∈ RN)− P (Xt ∈ Bt|Xt ∈ RN)

× P (At−1 = 0), (49b)

where the last equality is from P (At = 1)+P (At = 0) = 1. Clearly, by definition Ft ≥ 0 (see

(5)); and in (49b), 0 ≤ P (Xt ∈ Ct|Xt ∈ RN) ≤ 1 and 0 ≤ P (Xt ∈ Bt|Xt ∈ RN)P (At−1 =

0) ≤ 1. Substituting these relations into (49b)

Ft = 1− P (Xt ∈ Ct|Xt ∈ RN)︸ ︷︷ ︸
≥0 and ≤1

− P (Xt ∈ Bt|Xt ∈ RN)P (At−1 = 0)︸ ︷︷ ︸
≥0 and ≤1

≤ 1, (50a)

which completes the proof. The proof for (45b) is similar, and for the sake of brevity is not

included here.
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Appendix D: Particle Methods

In this section, we present an approximation of the PDFs pN(·) and pF (·). First note that

pN(xt) is a marginal density of the joint density function pN(xt, xt−1), which is given by

pN(xt) =

∫
pN(xt, xt−1)dxt−1, (51a)

=

∫
pN(xt|xt−1)pN(xt−1)dxt−1, (51b)

where pN(xt|xt−1) is the state transition density in Model 1 under normal operating condi-

tions. Given pN(xt|xt−1) and p(x0), it is possible to use (51b) to recursively estimate pN(xt)

at any time t; however, often the integral in (51b) is too complex to evaluate directly.27–29

A particle method provides an approximation of the integral in (51b). The basic idea of a

particle method is to generate a number of ‘particles’ of the state through simulations and

propagate them through the state transition model.30 We refer the reader to31 for a tutorial

on particle methods.

Let us assume thatM random samples (also called particles) of {X i
t−1}Mi=1 distributed ac-

cording to pN(xt−1) are available from a previous iteration. Then the distribution pN(dxt−1) ≡

pN(xt−1)dxt−1 can be approximated as

p̃N(dxt−1) =
1

M

M∑
i=1

δXi
t−1

(dxt−1), (52)

where p̃N(dxt−1) is an M -particle approximation of the corresponding distribution function,

and δX(dx) is a Dirac delta measure centered at particle X. An approximation of the density

function pN(xt) can be obtained by substituting (52) in (51b),

p̃N(xt) =

∫
pN(xt|xt−1)

1

M

M∑
i=1

δXi
t−1

(dxt−1), (53a)

=
1

M

M∑
i=1

∫
p(xt|xt−1)δXi

t−1
(dxt−1) =

1

M

M∑
i=1

p(xt|X i
t−1). (53b)
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A set of M particles of {X i
t}Mi=1 can be generated by simply passing {X i

t−1}Mi=1 through

pN(xt|X i
t−1) and using (53b). The new set of particles {X i

t}Mi=1 are approximately distributed

according to pN(xt), and can be represented as

p̃N(xt)dxt =
1

M

M∑
i=1

δXi
t
(dxt). (54)

The PDF pF (xt) can also be similarly approximated, such that

p̃F (xt)dxt =
1

M

M∑
i=1

δXi
t
(dxt), (55)

represents an M article approximation of pF .
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