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Model Predictive Control

Nonlinear Model Predictive control
- Repeatedly solve the optimal control problems online with different L

min Zz )) + Vi(z(N))

x(k),u(k)
s.t. ( 1) = f(a(k),u(k))
z(0) = o
z(k) € X, 2(N) € Xy, u(k) € U
VkeT

- Implicit control law ©u(0)=k N (), expensive online computational cost

Explicit MPC

- Compute the optimal control law offline as a function of all possible states
- Muulti-Parametric optimization

- Negligible online, intractable offline for process with 10+ variables



Deep Learning Based Model Predictive Control

Two-step / “Optimize-then-train” approach

( Zoppoli 1995, Lantos 2015, Zhanfg 2018, Lucia 2018, Gopaluni 2018)
- Optimize control actions for multiple initial states to obtain (Zo,s, &N (Z0,s))
- Train the neural network to obtain the control law 4(0) = & (7, x0)

Advantages
- Negligible online computational cost

Disadvantages

- Training error of the NN can lead to sub-optimal or even infeasible action
even for training samples

- Those errors would accumulate through time (poor closed loop performance)

- Multiple optimal control actions for the same initial states

- Multiple local optimal control actions



lllustrative Example

min z(k)?
x(k),u(k) Z (%)
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All-in-one/“Optimize-and-train” Approach: Stochastic Optimization

min Z Z l(xs(k),us(k)) + Vi(xzs(N))

m,xs(k),us(k)

s.t. rs(k+1

VseS,VkeT

All-in-one/“Optimize-and-train” approach

- Solve only one large scale optimization problem

Decide the control law directly instead of control actions
Optimize closed loop performance directly

Constraints are satisfied at least for training samples

Parallel solvers (e.g. PIPS-NLP) can exploit the structure on HPC (CPUs)
Links to policy search/reinforcement learning
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Structured Nonlinear Optimization (Scalable Linear Algebra)

s.t. cs(m,xs) >0, s€S8
rs € Xy, s€S8

Structured Linear System

K By q1 1
Ky By q2 T2
Ks Bg qs rs

i B{ Bg ng KO 1 L qo i i To i

Schur Decomposition

(KO -> BSTKslBs> g =ro— Y BIK;'r

SES SES

Kst =Ts — BsQOv ses

Cao et al. “Scalable modeling and solution of stochastic multi objective opti-

mization problems.” Computers & Chemical Engineering 99 (2017): 185-197.
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“Optimize-and-train”/ All-in-one Approach: Recurrent Neural Network

in(m,z(0)|  An(rz(1)) iy (m, 2(N—=1))
u(0) u(1) u(NI1)
i \
7/ v i
z(0) z(1) (22— + + o« —>|z(N1H (V)
f(x(0),u(0)) fla(1),u(1)) fla(N=1),u(N-1))

The stochastic optimization problem can be reformulated as the training of RNN
- Existing packages (e.g. TensorFlow, Flux) can exploit the structure on GPUs

- Simple Input constraints (bounds) can always be satisfied by the design of NN

- Treat state constraints as soft constraints



Implementation

function step_model (x_k, u_k)
return x_k. 2 - u_k." 2
end
control_law = Chain(
Dense(1, 20, o),
Dense(20, 1))
function loss(x@, setpoint)
x_k = x0
X = nothing
for t = 1:N
control_law(x_k)
step_model (x_k, u_k)
t==1 ? x_k : vcat(x,x_k)

X X C
=~ x|

end
return Flux.mse(x,setpoint)

end

data=[([I],zeros(N)) for I in -2:0.1:2]

opt = ADAM()

Flux.@epochs 1000 Flux.train!(loss, Flux.params(control_law), data,
opt)

Additional 10 lines to implement input/state constraints



Feasibility

Constraint Violation

For state constraints: (O, (7) = max x
()= oomax o)l

g(z) <0 st. a(k+1) = f(xk), u(k))
w(k) = &y (m, (k)
Vk e T

If Cyp(m) >0

- Select the scenario leading to the largest violations
- Add the scenario to the training scenarios, and optimize the control law again
- Or chose tighter state constraints in the optimization/training

if Cp(m) =0
- It means the control law can drive any state xg € X to Xf in N steps
- Assume a local control law 11 £ (o) = Kz can stabilize any Zo € X7, then DNN

control law is stable
- Or we can train the control law to ensure that states in X ¢ remain in the zone



Uncertainty

fn(m2(0)|  An(m (1) A (m,2(N-1))

N
N
S|

Vse S,Vke T

Each scenario has datal%o,s, ds(k)]



Nonlinear Quadtank Problem
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Training scenarios:

- 81 initial state scenarios with each state variable discretized by 3 points

- forideal NMPC, we need to solve 81 *20 = 1620 optimization problems (N=20 steps)

- These 1620 data pairs are used in the two-step approach

Test scenarios:

- 256 initial state scenarios with each state variable discretized by 4 points

NN controller:

- Structure4-10-2-2

- Both hidden layers use the activation function tanh

- To guarantee the satisfaction of input constraints, the last layer projects values in the
range of [-1,1] to [Vmin, Vmaz]
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Nonlinear Quadtank Problem

Performance of different controllers Averaged online and offline computational time
training testing online (s) offline (s)
cost Cons. cost Cons. ideal NMPC 0.016 -
Viol. Viol. two-step 4e-5 2134
ideal NMPC | 582.18 0 488.53 0 all-in-one 4e-5 1194
two-step 582.64 1.85 | 492.83 1.85
all-in-one 582.29 0 488.95 0.075

Performance of two-step method with different DNN layers

training testing
# of layers Cons. Cons.
cost Viol. cost Viol.
2 582.64 1.8502 | 492.83 1.8502
4 584.40  0.599 | 490.26  1.008
6 583.74  1.12 | 491.06  1.18
8 586.26  0.259 | 492.23  1.240
10 582.87 0.636 | 489.71  0.746
12 586.08 0.513 | 492.84 1.250
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Summary

All-in-one Approach
- Still works even if optimal control actions are not unique
- Constraints are satisfied at least for training samples

- RNN reformulation might reduce the training time
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