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Abstract

We develop a model-plant mismatch (MPM) detection strategy based on a novel closed-loop identification

approach and one-class support vector machine (SVM) learning technique. With this scheme we can monitor

MPM and noise model change separately, thus separating the MPM from noise model changes. Another

advantage of this approach is that it is applicable to routine operating data that may lack any external

excitation signals. Theoretical analysis of the proposed closed-loop identification is provided in this paper,

showing that it can give a consistent parameter estimate for the process model even in the case where a

priori knowledge about the true noise model structure is not available. A set of normal operation data

with satisfactory performance is collected as the training data. We build SVM models based on process and

noise model estimates from training data to predict the occurrence of MPM in the test data. The proposed

technique can be applied to both single-input-single-output (SISO) and multi-input-multi-output (MIMO)

systems. Two examples from paper machine control are provided to verify the effectiveness of the proposed

MPM detection framework.

Keywords: Monitoring and performance assessment; support vector machine; model-plant mismatch;

closed-loop identification; paper machine control

1. Introduction

Process monitoring provides a quantitative way of measuring the performance of various model-based

controllers (e.g., model-predictive control, MPC) in the industry. For typical control loops, their performance

may deteriorate for various reasons such as model-plant mismatch (poor quality of process models), changes

in disturbance characteristics, improper tuning of controllers and so on [1]. Among these factors the model-5

plant mismatch (MPM) is vital since significant MPM often leads to suboptimal control decisions, production

loss, or even closed-loop instability. System re-identification will be required in the presence of severe MPM

to produce an updated model and deploy it to controllers to account for the changes of process characteristics.

As system identification is usually costly and time-consuming, identification experiment is not triggered for

other causes of performance loss than the MPM. Therefore, there is an increasing demand for automated and10
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highly-reliable schemes to directly detect the presence of significant mismatches and distinguish MPM from

the other causes with minimal interruptions of routine operations [2].

MPM often arises from the susceptibility of industrial processes to changes of operating conditions over

time, such as a drift to the chemical process caused by catalyst deactivation [3]. Traditionally, the MPM

detection problem is considered as a component in the diagnostic part of the process monitoring hierarchy15

[4]. Thus there exist excessive links between MPM detection and performance monitoring. Research interest

towards this direction has focused primarily on evaluation of MPC performance with various benchmarks

such as minimum variance control (MVC) benchmark [5], linear quadratic Gaussian (LQG) curve, and MPC-

specific benchmarks. However, these performance assessment techniques are not specifically established for

the detection of MPM, and thus they are not able to separate MPM from the other causes of performance20

degradation. On the other hand, attentions on developing effective methods to directly monitor the occurrence

of MPM have grown significantly over the last few decades. A correlation-based method is proposed in [6]

which relies on examining the significance of cross-correlations between setpoint and model error to separate

modeling errors from other causes. Multivariate chi-squared test on the output and prediction error is

proposed in [7] to diagnose the presence of MPM. A hypothesis test method is proposed in [8] to distinguish25

the effects of changes in process and disturbance on the control performance drop. As pointed on in [4], during

this early stage of research on MPM detection, most efforts concentrated on the performance monitoring and

little endeavors are reported to separate the MPM from other causes. Another category of methods on

MPM detection is to construct statistics to detect the abrupt changes in process parameters. A variety of

statistical tools such as time series modeling, principal component analysis (PCA), generalized likelihood30

ratio test and several new statistics are presented in [9, 10, 11, 12]. The issue of deciding when to perform

the model re-identification, based on PCA and Akaike information criterion, is investigated in [13]. For that

method, periodic injection of external excitation signals is required to perform simple tests to detect the

model degradation. More recently, attempts on directly identifying the presence or even the model of MPM

have become the mainstream in the literature. A method based on partial correlations is illustrated in [14]35

to address the correlations among manipulated variables (MVs). The correlation between each MV and each

model residual, after decorrelating the MVs, is employed to examine the MPM. In [15], an important method

is proposed to discriminate the noise covariance mismatch and process model mismatches. Both mismatches

affect the Kalman filter design, leading to non-white innovations, and they differ in the order of innovation

sequences. The impacts of MPM on the sensitivity function is thoroughly explored in [16] and a resultant40

performance index is put forward for the diagnosis.

More recently, interests on MPM detection push the frontiers into realistic industrial contexts with closed-

loop routine operating data. Several approaches are developed based on model residual analysis [17], output

autocovariance function [3], plant-model ratio [18] and the nominal sensitivity function [18]. Despite these

achievements, the MPM detection problem is not yet completely solved. The remaining key issues on this45

topic can be summarized into two categories: the separability between MPM and noise model change [17, 2],
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and the usage of external excitations [16, 14]. First, most MPCs perform predictions based solely on a

process model or together with a presumed simple noise model, e.g., a step or a random-walk disturbance.

Despite that changes in true noise model may cause drifts in the variance of process variables, the resultant

degradation in control performance shall not be attributed to the MPC. In other words, operators in the50

industry are more concerned with the quality drop in the underlying process model instead of that in the

noise model. An ideal MPM detection approach shall not mistake the changes in the noise model as MPM

and be robust to such factors [2]. Most approaches built on variance-based metrics are susceptible to this

issue, such as the minimum-variance benchmark [5]. Second, most present approaches to directly identify

the MPM depend on certain external excitations, such as dither signals or setpoint changes. Nevertheless,55

external excitations bring additional perturbations to the system and inevitably cause profit loss to the

industry. Although it is possible to identify the MPM during the setpoint change (e.g. grade changes for

paper machines), we prefer to monitor MPM during the routine operation stage, given that most of the time

the system operates at steady-state that may lack any type of external excitations.

In this work, we propose a novel MPM detection approach that addresses the above two challenges:60

separating the MPM from noise model changes and detecting MPM passively without intrusively introducing

external excitations to the system. Our idea is inspired by the historical data based benchmarks used in

controller performance monitoring [19]. In those methods, to assess the control performance, process variable

metrics under actual data are compared with those under a set of historical data which were collected during

a period with satisfactory operation. Similarly, in our method, we partition routine operating data into65

a “training” stage (that we believe is generated without MPM) and a “testing” stage. The training data

serves as a benchmark, against which we evaluate the presence of MPM in the test data. Specifically, we

propose a novel method, based on closed-loop identification and one-class support vector machine (SVM)

classification, that can monitor MPM and noise change independently and thus can directly separate MPM

from noise model change. Moreover, our method is applicable even when external excitations do not exist. A70

preliminary version of this method has been published in [20] and in this work, we elaborate the theoretical

verifications and also extend the results in [20] to MIMO systems. Note that our method is applicable to any

model-based controller, although our simulation examples are exclusively from paper-making processes with

MPC.

This paper is outlined as follows. In Section 2, we elucidate the framework of the proposed MPM75

detection approach. Section 3 is devoted to developing a new closed-loop identification method that can

provide consistent parameter estimates for the plant model. In Section 4, we elaborate detailed procedures

on training an SVM model based on the training data and implementing it in the test data to examine

the MPM and noise model change. A single-input-single-output (SISO) example and a multi-input-multi-

output (MIMO) example from machine-direction (MD) processes of paper machines is provided to verify80

the proposed approach in Section 5. We comment on the possible limitations of the proposed approach in

practical appliations in Section 6, followed by conclusions in Section 7.
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Figure 1: Illustration of the training and test data.

2. The MPM Detection Idea

We mention first that the noise model change detection follows the same course as the MPM detection in

our method. So in subsequent sections, our attention is mainly on introducing the MPM detection approach.85

The proposed method is based on a novel closed-loop identification algorithm which is capable of providing

unbiased estimates for process models with routine operating data albeit with large variance. The inevitable

variance (which may be large due to the low signal-to-noise ratio) associated with process model estimates

impedes us from directly comparing our results with nominal models to identify the mismatch. In other

words, discrepancies between the model estimates and the true plant can not always be attributed to the90

MPM and they may simply be an artifact of the variance in the estimates. Therefore, directly comparing

the estimated parameters with those of the nominal model used by the controller may cause misleading

detection results. We have to form a reasonable uncertainty bound around estimated process models due

to the variance of parameter estimates. Models outside this uncertainty range are regarded as mismatched

models. Such an uncertainty range can be naturally captured by using the SVM technique. Note that to95

synthesize all possible mismatch situations (e.g., gain mismatch and time constant mismatch) with an overall

metric, we would represent process model estimates in finite impulse response (FIR) forms. With a high-

order FIR model we can capture the process dynamics of any order. Now the problem of detecting MPM

can be reduced to that of checking if the estimated FIR coefficients are “equal to” the FIR coefficients of

the nominal model. However, comparing the high-dimensional FIR coefficient vectors is non-trivial and it100

forms the motivation for using SVMs. In what follows we define “normal” models as the ones that fall inside

the uncertainty region around the nominal model due to the variance of parameter estimates from routine

operating data. The models falling outside the normal uncertainty region are considered having mismatch

with respect to the nominal model. With such definitions, we can distinguish whether the discrepancy of an

estimated model (using routine data) from nominal models is caused by parameter identification error or by105

the MPM.

Fig. 1 demonstrates the proposed approach to detect the MPM. The industrial data are split into training

data and test data. The training data are collected during a time interval in which the MPM is absent, e.g., the

period during or right after the identification stage, as shown in the above figure. Notice that our algorithm
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Figure 2: Illustration of the MPM detection idea. Here the training and testing models refer to the process model estimates

from training and test data sets.

is in the form of moving windows and the size of training data can be properly selected according to the110

window size. For each window, we apply the closed-loop identification to attain an estimate of the process

model. With the set of estimated process models from moving windows in the training data, a one-class SVM

is trained which can be interpreted as an appropriate bound encompassing this set (see Fig. 2). Any model

inside this boundary is considered as normal, indicating the absence of MPM. Note that Fig. 2 is only a

graphical illustration of the one-class SVM model characterizing the normal cluster of estimated models. The115

irregular decision boundary of the SVM depicts the highly nonlinear model generated from SVM combined

with kernels. It does not represent any actually trained one-class SVM model.. For the test data, a similar

moving window is performed and each process model estimate obtained is examined by the SVM model to

predict whether it is located inside the boundary. If so, the SVM returns a positive score value implying no

MPM and otherwise, it returns a negative value to indicate the MPM in the current moving window. To be120

cautious in triggering an identification experiment, we define an indicator computing the portion of negative

scores over the last period of time. If the portion exceeds a (conservative) threshold, the MPM alarm will be

raised since it indicates that extensive moving windows have been identified to have MPM symptoms. Note

that the entire training and testing operations are carried out with routine operating data free of external

excitations. In the following sections we focus on the closed-loop identification as well as the SVM training125

and testing.

3. Closed-Loop Identification

From the explanations above we can see that closed-loop identification plays a fundamental role in de-

termining the performance of our proposed MPM detection algorithm. The last few decades have witnessed

a considerable emergence of closed-loop identification methods, such as direct identification, indirect iden-130

tification, joint input-output methods, projection methods and so on. Nevertheless, none of these available

methods are suitable for the particular problem of mismatch detection. The latter three methods require the
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inclusion of external dither signal and/or linear feedback controller. The direct identification method often

leads to biased estimates of the process model if the noise model structure is not sufficiently specified. In

this work, we propose a novel closed-loop identification approach, which aims at resolving the bias issue and135

fits into the proposed mismatch detection context. It is proved that the proposed method can give consistent

estimates for parameters in the process model, provided that some mild technical assumptions are satisfied.

Consider the following SISO Box-Jenkins plant

y(t) = G0(q)u(t) +H0(q)e(t), (1)

where G0(q) and H0(q) are the true plant and noise model, respectively. We suppose that H0(q) is monic,

stable and inversely stable. The plant G0(q) is assumed to be stable and contain at least one sample delay.

q is the unit-shift operator. e(t) is assumed to be zero-mean Gaussian white noise with constant variance

σ2. y(t) and u(t) represent the output and input signals, respectively. It is assumed that all relevant signals

are quasi-stationary. In the closed-loop system with MPC, the feedback controller often displays nonlinear

dynamics (if the constraints are active), which are expressed as

u(t) = k(t, ut−1, yt), (2)

where ut−1 = {u(1), . . . , u(t − 1)} and yt = {y(1), . . . , y(t)}. Before identifying the above models it is

important to mention that for the case with external excitations, a persistently exciting dither signal can

always guarantee that the closed-loop data are informative, regardless of the controller orders. However,

without external excitations, for linear controller to achieve the informativity requirement, the following

relationship must be satisfied for Box-Jenkins models [21]:

max(nx − nf , ny − nb) ≥ nd + min(nx, nf ), (3)

where nx and ny are numerator and denominator orders of the linear controller, respectively. nb and nf

stand for the orders of the process model numerator and denominator polynomials, respectively. nd denotes

the order of the numerator polynomial in the noise model. One observation from (3) is that more complex140

controllers often imply richer information in the closed-loop data [22]. Additionally, if the controller is

nonlinear, as is the case of MPC (2), the closed-loop data are generally sufficiently exciting for relevant

system identifications [23]. Another benefit of a nonlinear controller is that it can prevent the identification

algorithm from returning an estimate of controller inverse. Moreover, we assume that the prior knowledge

of time-delay is approximately known and is specified to the identification algorithm. In this paper, the145

following assumption is posed.

Assumption 1. The feedback controller (2), e.g., MPC, is complex enough to ensure the closed-loop iden-

tifiability for the selected model structures.

The bias in direct closed-loop identification arises from mis-specification of the selected noise model

structure. In order to circumvent this limitation, we can represent the noise model with an FIR structure
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[24]. Specifically, let us re-write the above true process model into an equivalent form

1

H0
y(t) =

1

H0
G0(q)u(t) + e(t), (4)

which can be easily represented by a high-order ARX model, with

A0(q)y(t) = B0(q)u(t) + e(t), (5)

where A0(q) = 1
H0(q) , B0(q) = A0(q)G0(q), and

A0(q) = 1 + a0
1q
−1 + . . .+ a0

nq
−n + . . . ,

B0(q) = b00q
−d + b01q

−d−1 + . . .+ b0nq
−d−n + . . . ,

where d is the true time-delay. Our proposed closed-loop identification consists of two steps: high-order ARX150

model estimation from closed-loop data, and output-error (OE) identification with filtered input and output

data, where the filter is chosen as the estimated A0(q) polynomial. Thus the proposed method is termed as

ARX-OE method.

3.1. High-order ARX model

For open-loop stable systems, coefficients of A0(q) are vanishing for growing n, and the same holds for

B0(q). Thus we parameterize the above infinite-order ARX (5) by using a finite-order ARX model

A(q, ηn)y(t) = B(q, ηn)u(t) + ε(t), ηn ∈ Ωηn , (6)

where Ωηn is a compact set,

A(q, ηn) = 1 +

n∑
k=1

akq
−k, B(q, ηn) =

n∑
k=0

bkq
−d−k,

and we denote155

ηn = [a1 . . . an b0 b1 . . . bn]T ,

η0 = [a0
1 . . . a0

n . . . b00 b
0
1 . . . b0n . . .]T .

It is further assumed that A(q, ηn) and B(q, ηn) are uniformly stable, ∀ηn ∈ Ωηn . Note that for notational

simplicity we choose A(q, ηn) and B(q, ηn) to be of the same order. To reduce the large parameter covariance

resulting from high orders we add a “regularization” trick as shown in [25] when identifying (6). For small

δ > 0,

Rnreg(N) =

 Rn(N), if ‖Rn(N)−1‖2 < 2/δ

Rn(N) + δ
2I, otherwise

where Rn(N) = 1
N

∑N
t=n+1 ϕ

n(t)ϕn(t)T with the regressor ϕn(t) = [−y(t) u(t) . . . −y(t−n) u(t−n)]T . N is

the sample size. It has been shown in that paper that asymptotically, the first and second order properties of

the parameter estimate will not depend on the regularization term. For simplicity of theoretical derivations
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we assume that the order n of A(q, θn) in (6) increases to infinity as the sample size N →∞, but n is smaller

compared with N . Then we show that asymptotically, the estimate A(ejω, η̂n) coincides with A0(ejω). First,160

the following assumption is supposed to hold.

Assumption 2. For the selected high-order ARX model structure (6), it holds that

n→∞, n3+δ/N → 0, as N →∞, (7)

where δ > 0 is some constant.

Assumption 2 essentially describes the condition that the model order n in (6) increases to infinity as

N → ∞ but with a slower increase speed than N . With this assumption, we further have the following

theorem regarding the estimation performance of the high-order ARX model.165

Theorem 1. Suppose that Assumptions 1—2 hold. We have

sup
ω
|A(ejω, η̂n)−A0(ejω)| → 0, w.p.1, as N →∞, (8)

where

η̂n = [â1 . . . ân b̂1 . . . b̂n]T ,

represents the estimate of parameter vector ηn in (6) from the prediction error method.

Proof. The proof follows directly from Lemma 2.1 in [26] and is thus omitted here.

Remark 1. Theorem 1 states that allowing the order of the high-order ARX model (6) to increase to

infinity but with a much slower increase rate than N , the estimate A(ejω, η̂n) converges uniformly to the true

polynomial A0(ejω) with probability one. It essentially depicts the behavior of the high-order ARX model170

under a large sample. Theorem 1 provides a theoretical basis for the subsequent OE identification with

filtered input and output since the estimated filter A(ejω, η̂n) approximates the true filter A0(ejω) sufficiently

well. Note that n→∞ is only an assumption for theoretical derivations, and indeed we can specify a (high-

order) finite n based on a priori information regarding the noise model when implementing this identification

algorithm.175

Remark 2. Note that the high-order approximation (6) of the original Box-Jenkins model (1) imposes more

stringent on the informativeness of closed-loop data, thereby the condition from 1 may not suffice for closed-

loop identifiability. However, the regularization employed above can guarantee the numerical stability and

asymptotic properties in estimating the parameters of high-order ARX model.

3.2. OE identification with filtered input-output data180

In the second step, we perform an OE model identification on the filtered input and output signals. Here

the filter is chosen as the estimated A(q, η̂n) from the first step. The filtered input and output signals are

y(t, η̂n) = A(q, η̂n)y(t), u(t, η̂n) = A(q, η̂n)u(t). To identify G0(q), we need to fit a model as follows

y(t, η̂n) = G(q, ρ)u(t, η̂n) + ε(t), (9)
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where an FIR structure in G(q, ρ) can be used in general. However, in typical industrial processes we have

some prior knowledge to correctly parameterize the plant model. For example, in the MD process of a paper

machine, it is widely accepted that a first-order-plus-time-delay model is sufficient to capture the system

dynamics. In that case, one can select G(q, ρ) to have the same structure as the true model. The parameter

ρ is estimated via minimizing the following criterion:

ρ̂N = arg min
ρ∈Ωρ

1

N

N∑
t=1

1

2
ε2(t, ρ, η̂n), (10)

where Ωρ is a compact set for parameter ρ and contains the true model, and the prediction error ε(t, ρ, η̂n)

is defined as

ε(t, ρ, η̂n) = [G0(q)−G(q, ρ)]u(t, η̂n) +
A(q, η̂n)

A0(q)
e(t).

We have the following theorem regarding the parameter estimate ρ̂N .

Theorem 2. Consider the true Box-Jenkins model for the plant (1) as well as the equivalent high-order ARX

form (5). Assume that conditions in Theorem 1 hold and that the plant model is correctly parameterized.

Then the parameter estimate ρ̂N from the prediction error criterion (10) is consistent, i.e., we have

ρ̂N → ρ0, w.p.1, as N →∞, (11)

where ρ0 is the true parameter value of G0. Moreover, the estimated parameter value ρ̂N is Gaussian dis-

tributed with mean value ρ0.

Proof. See Appendix Appendix A.

Remark 3. Despite the premise on the correct parameterization of G0(q) in Theorem 2, it is not supposed185

to be a restrictive limitation on the proposed ARX-OE method. As shown in the following section, the SVM

in MPM detection is trained and tested on the FIR form of G(q, ρ̂N ). Thus using an FIR model in the OE

identification step, if a priori information about G0(q) is not accessible, is suggested in such case to eliminate

the bias.

Remark 4. Compared with existing closed-loop identification methods, the proposed approach requires no190

information about the controller and thus is applicable to closed-loop data with both linear and nonlinear

controllers. Moreover, it does not rely on external excitations. However, it is also suitable for cases where

external excitations are present. In other words, this identification algorithm can be performed for both

routine operating data and experimental data. Note that the explicit expression for the variance of ρ̂N is

non-trivial since the variance of parameter estimates in the first step will affect that of parameter estimates195

in the second step. It is thus recommended to use a set of training data from which we can obtain a collection

of process model estimates as an approximation to the variance of transfer function estimates.
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3.3. Closed-loop identification for MIMO systems

The proposed ARX-OE method can be easily extended to MIMO systems. For a low-dimensional MIMO

system, each output channel is considered as a closed-loop multi-input-single-output (MISO) system. Similar200

to SISO identification, in the first step, a high-order MISO ARX model is estimated as

Ai(q, η
a
i )yi(t) =

i∑
j=1

Bi,j(q, η
b
i,j)uj(t) + εi(t), i = 1, . . . ,m, (12)

where m is the number of output channels, and

Ai(q, η
a
i ) = 1 + ai,1q

−1 + . . .+ ai,nq
−n, Bi,j(q, η

b
i,j) = 1 + bi,j,1q

−1 + . . .+ bi,j,nq
−n,

where Ai(q, η
a
i ) is the inverse of noise model of the i-th output channel. Define Âi(q), B̂i,j(q) as the respective

estimates of Ai(q, η
a
i ) and Bi,j(q, η

b
i,j). We then apply the MISO OE identification after filtering the input

and output signal using the obtained noise model estimate. We perform the following identification

yfi (t) =

i∑
j=1

Gi,j(q, ρi,j)u
f
j (t) + εi(t), i = 1, . . . ,m,

where

yfi (t) = Âi(q)yi(t), ufj (t) = Âi(q)uj(t).

A similar statement on the consistency of parameter estimates for ρi,j can be obtained and is omitted here.

4. MPM Detection

In this section, we will illustrate the procedures of performing MPM detection with SVM classifications.

Note that we would only consider that for SISO systems since the corresponding technique follows a similar205

line for MIMO systems.

4.1. One-class learning support vector machines

As a convention, the SVM is developed particularly for the binary classification problem. It provides a

hyperplane that not only separates two classes of data, but also guarantees that it has the maximum distance

to either class. The benefit of such a hyperplane is its robustness to outliers, thus considerably reducing210

false classifications. For the specific MPM detection problem, we use the set of process models from training

data as a reference group representing the behaviors of “no mismatch” process model cluster. The reason is

that in practice, normal operation data without MPM are easy to collect from which the cluster of normal

models can be directly formed. However, the other group of data is ordinarily not accessible since abnormal

situations may occur in a variety of ways such as various parametric mismatches, irregular disturbances and215

so on. The data under different mismatch scenarios may demonstrate different patterns. Therefore, it is

difficult to find a representative abnormal data set as the other class. Besides, the operating data containing

MPM are rare in practice since MPM often leads to degraded control performance and thus loss of profit to

10



the industry. Thus the MPM detection is a one-class learning problem, which is also known as the “novelty

detection problem”.220

The one-class learning SVM is depicted in the feature space, i.e., a space that the data are mapped into.

Consider the set of training data samples

x1, x2, . . . , xl ∈ X ⊂ Rm, (13)

where l is the number of training data and X is a subset (called input space) of Rm. Prior to one-class SVM

training it is necessary to map the data through Φ : X 7→ F into a (higher-dimensional) feature space F .

The kernel function κ(x, y) is such that the inner product in the feature space can be evaluated in the input

space as

κ(x, y) =< Φ(x),Φ(y) >, ∀x, y ∈ X . (14)

A well-known kernel function that will be used hereafter is the Gaussian kernel

κ(x, y) = e−‖x−y‖
2/c, (15)

where c is a parameter that is used to tune the shape of the Gaussian kernel function. It should be pointed

out that with Gaussian kernel function all data points in the feature space are located in the same orthant

since κ(x, y) > 0, ∀x, y ∈ X . Thus it is possible to find a hyperplane to separate the origin from the training

data in the feature space with maximized margin. With this idea the one-class SVM training problem is

formulated as [27]225

min
w,ξ,b

1

2
‖w‖2 +

1

vl

l∑
i=1

ξi − b (16)

s.t. wTΦ(xi) ≥ b− ξi, ξi ≥ 0, (17)

where w and b represent the slope and offset of the hyperplane in the feature space. The term v ∈ (0, 1] is

a parameter tuning the upper bound of the fraction of outliers and lower bound of the fraction of support

vectors. ξ is a slack variable allowing for local violations of the hard boundary determined by the hyperplane.

Solving the optimization problem (16)-(17) can be converted into solving the following dual problem,

min
α

1

2

l∑
i,j=1

αiαjκ(xi, xj) (18)

s.t. 0 ≤ αi ≤
1

vl
,

l∑
i=1

αi = 1, (19)

where αi are the dual variables. It is obvious that while the primal problem is formulated in the feature

space, its dual problem can be solved in the input space by resorting to the kernel function. Thus we can

avoid the intense computation arising from large dimensions of the feature space. Efficient algorithms are

available in the literature to solve this dual problem. In the simulations presented in Section 5, we used

sequential minimal optimization (SMQ) [27] to solve the dual problem above. A feature associated with the
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solution α̂ of dual problem is its sparsity, with most optimal dual variables α̂i valued at zero. Data points

corresponding to nonzero optimal dual variables are known as support vectors and it is revealed that the

optimal w and b (denoted as ŵ and b̂, respectively) are completely determined by those nonzero optimal dual

variables. Furthermore, with kernel function, the decision (or score value) function is also represented in the

input space, instead of in the high-dimensional feature space, by the following,

h(x) =

l∑
i=1

α̂iκ(xi, x)− b̂ (20)

where x is a test example. Note that the sum in (20) typically involves nα << l nonzero terms, where nα is230

the number of nonzero dual variables. This allows for efficient evaluation. For a given test example x, the

value |h(x)| represents the distance of x to the separating hyperplane. If h(x) > 0, it means that x can be

classified into the initial class. Otherwise x does not belong to that class. We note that the incorporation of

kernel functions significantly expands the flexibility of SVM in constructing separating boundaries, enabling

it to generate a nonlinear classifier in the input space.235

A critical issue in applying the one-class SVM training strategy to MPM detection is the limited amount

of training data available in the industrial processes. Taking the paper machine as an example, grade changes

(setpoint changes) often take place on a daily basis and thus training data has to be collected after each grade

change to represent the current operation condition before carrying out MPM detection. Consequently, only

a few process model estimates from training data are available to build an SVM model. In order to overcome240

this issue we use a resampling technique to enlarge the cluster of no mismatch models estimated from training

data before performing the SVM training.

4.2. Resampling

The main principle we adopt here is to fit a probability density function (PDF) to each impulse response

(IR) coefficient of the estimated process model. Then a large number of samples can be generated by sampling

randomly from the estimated density function. More specifically, denote the FIR form of the estimated process

model G(q, ρ̂N ) in the k-th moving window as

G(q, ρ̂kN ) = ĝk0q
−d + ĝk1q

−d−1 + . . .+ ĝkmq
−d−m, (21)

where m is the pre-specified number of FIR coefficients. k = 1, 2, . . . , Nk, are indices of moving windows in

the training data. It is straightforward that FIR coefficients ĝki , i = 0, . . . ,m, are Gaussian distributed, given245

that ρ̂kN has Gaussian distribution (cf. Theorem 2). For each coefficient ĝki , several estimated values are

attained from moving windows in the training data. Then we can construct rough estimators for the mean

and variance of each IR coefficient

µ̂i = µ(ĝ1
i , ĝ

2
i , . . . , ĝ

Nk
i ), i = 0, . . . ,m,

σ̂2
i = σ(ĝ1

i , ĝ
2
i , . . . , ĝ

Nk
i ), i = 0, . . . ,m,
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where µ(·) and σ(·) are some functions. One choice of these two functions is sample mean and sample

variance. Due to the limited amount of training data (Nk normally is small), the estimated PDF for each250

FIR coefficient is much more conservative than the true PDF. Thus we use a parameter α to tune the width

of the PDF to avoid this problem. If we have plenty of training data, α shall be small. Otherwise, α shall be

large. The rationale behind these guidelines is that more training data may give us a more precise and reliable

estimate of the PDF and vice versa. The next step is to use the resampling idea to randomly generate a large

number of samples for each FIR coefficient subject to the corresponding estimated PDF. Then a one-class255

SVM model can be developed from these enhanced samples for the initial cluster of “good” process models.

4.3. MPM detection with SVM

With the trained one-class SVM, we first need to estimate FIR coefficients of the process model identified

from each moving window in the test data, following the same procedures as previous sections. For estimated

FIR coefficients, we apply the SVM model to predict whether they belong to the initial cluster. If so, the

SVM returns a positive score value indicating that the current testing window does not display any sign of

mismatch. Otherwise the SVM returns a negative score to signify the mismatch. However, to be cautious to

start an identification experiment, we define an indicator showing the portion of negative scores over the last

few moving windows. A threshold is selected and the MPM alarm is raised if the portion of negative scores

exceeds this threshold. Specifically, define It as the sign of SVM scores for the moving window at time instant

t

It = sign(h(xt)), (22)

with xt being the FIR coefficient vector of the plant model estimate for the window data at time t. Denote

Tt = {t − nT , . . . , t − 1, t}, where nT is a detection interval, i.e., the number of previous moving windows

under inspection to determine the existence of MPM. We further define an MPM indicator

s =
|I−|
nT

, (23)

where I− := {Ii = −1 : i ∈ Tt} and |I−| is the number of elements in the set |I−|. The users can specify a

threshold sT for the MPM indicator to raise an MPM alarm. We suggest a conservative sT (e.g., sT = 0.95)

to be circumspect in raising the MPM alarm.260

Remark 5. Note that the MPM detection method presented above can also be applied to the noise model

estimate A(q, η̂n) from (6) to find the noise mismatch. In this manner we can monitor the process and noise

models separately to distinguish MPM from noise model change. Note that while the controllers considered

in this paper are assumed to be tuned based solely on the plant model, in cases where controller tuning also

depends on noise model (such as minimum variance control and some MPCs), detection of a noise model265

change can also be used to trigger an identification experiment. Moreover, if a priori information about the

true process model structure is not available, we can specify it with an FIR structure to acquire consistent

model estimates and the subsequent mismatch detection scheme is still applicable.
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Table 1: Parameters setup for the SISO example

Parameters Values Note

Wsize 2 hours Moving window size

Wstep 5 min Moving window step size

n 9 Order of ARX model

Ttrain 3 hours Duration of training stage

nT 2 hours Mismatch inspection interval

sT 0.95 Mismatch threshold

α 1.5 Tuning the width of estimated PDF

5. Examples

In this section we demonstrate the MPM detection algorithm through a SISO example and an MIMO270

example from the MD process of paper machines.

5.1. SISO example

For the SISO example, the controlled variable (CV) is dry weight and the MV is stockflow. The sampling

interval is set as 5 seconds. After discretization we obtain the true plant model

G0 =
0.1003

1− 0.9048q−1
q−17.

In the simulation of MD process the true noise model is selected as

H0 =
1− 0.3q−1

1 + 0.6q−1
.

We use an MPC as the MD controller. To reflect the reality of a paper machine’s operating condition we set

the standard deviation of noise to be σ = 0.05. The entire simulation lasts 15 hours without any setpoint

change. During this simulation, initially there is no MPM. After 7 hours we change the true noise model into

H0 =
1 + 0.3q−1

1− 0.6q−1
,

to create a noise mismatch. Furthermore, we double the plant gain to introduce an MPM after 11 hours. Thus

the first 5040 samples in this data set are normal and the rest are abnormal containing either noise change

or MPM. The objective is to examine whether the proposed MPM detection algorithm is able to detect the275

process and noise model changes separately, with the collected routine operating data. Configurations of

parameters relevant to the MPM detection algorithm are summarized in Table 1. The tuning parameters for

the SISO MD MPC are illustrated in Table 2. Note that we use the same window size and step size for both

training and testing stages.

Fig. 3 depicts the simulated CV and MV profiles after subtracting their respective means. Note that the280

first vertical red dash-dotted line indicates the time instant at which the noise change is introduced to the
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process. The second vertical line shows the time when we create an MPM. In plotting this graph we have

removed the mean from the profiles. It is obvious that both the noise change and MPM bring significant

variations to the profiles which are unfavored since the control objective is to keep the CV profile as flat as

possible. However, it is stressed that poor control performance from merely noise change should not trigger285

an identification experiment. We use the first 3 hours of data (2160 samples) as training data and the rest

as test data. For both SISO and MIMO examples in this section, we used Gaussian kernel with c = 1 as the

chosen kernel and SMO algorithm to solve the optimization problem. The ν parameter is set to 0.5 for both

examples. During the training stage, we perform 10-fold cross-validation on the training data to determine

the outlier rate, which is a parameter controlling the amount of allowable outliers in the normal class. For290

this example, the selected outlier rate is 0.05, meaning that about 5% of the training data can be considered

as outliers. The validation accuracy of the SVM for the plant model is 0.9498.

Time (min)
0 100 200 300 400 500 600 700 800 900

-0.4

-0.2

0

0.2

0.4
Weight

Time (min)
0 100 200 300 400 500 600 700 800 900

-0.3

-0.2

-0.1

0

0.1

StockFlow

Figure 3: Simulated input and output profiles after subtracting their respective means

Fig. 4 demonstrates the detection results for both noise model change and MPM. Specifically, the first and

third figures display the predicted SVM scores (cf. (20)) for noise and process model estimates, respectively.

Note that these scores can be interpreted as the signed distance of the underlying data from the separating295

boundary provided by the trained SVM. The sign of the scores indicates the classification result with positive

value implying the normal case and negative scores implying the occurrence of MPM or noise change. We

assign zero score to the one-class SVM predictions if the SVM is under training, e.g., the first 3 hours in

Fig. 4. Clearly, the SVM scores drop to negative values after the corresponding noise model change occurs.

The second and fourth plots track the mismatch indicator values s in (23) for both noise and process models.300

The red dash-dotted line highlights the specified threshold to raise an alarm. Ideally, a system identification

experiment is triggered once the s value of process model exceeds the threshold sT . However, in this example

we neglect the identification part since it is beyond the scope of this paper. From Figure 4 it is clear that

noise change at the 7-th hour does not affect the prediction of MPM. Thus we can conclude that the proposed
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Figure 4: MPM and noise change detection results

Table 2: Tuning parameters of the SISO MD MPC

Tuning parameters Values Tuning parameters Values

Actuator movement weight 0.01 Actuator deviation weight 0

CV target value 23.75 lbs/3000ft2 MV target value 131 gpm

Prediction horizon 40 Control horizon 4

CV target weight 1 MV target weight 1

CV min-max weight 1 MV min-max weight 1

Bounds of MV [0 3000] Limit of MV movement 0.1667

mismatch detection scheme is capable of monitoring the noise model change and MPM separately and thus305

is able to discriminate MPM from noise model change with only routine operating data.

5.2. MIMO example

MIMO MD processes consider the interactions among various types of actuators and measured paper

properties. A typical MIMO MD process is usually modeled by lower-triangular transfer matrices due to the

unique physical coupling relationships between MVs and CVs. In this example, three CVs are considered,

namely press dry weight, press moisture and reel moisture. Correspondingly, the three MVs are stockflow,
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Table 3: Parameters setup for the MIMO example

Parameters Values Note

Wsize 2 hours Moving window size

Wstep 5 min Moving window step size

na 18 Order of each Ai(q)

nb 10 Order of each Bi,j(q)

Ttrain 4 hours Duration of training stage

nT 2 hours Mismatch inspection interval

sT 0.95 Mismatch threshold

α 1.5 Tuning the width of estimated PDF

steam 4 and steam 3. The (discrete) true process and noise models are shown to be

G0(q) =


0.0763q−15

1−0.0723q−1 0 0

0.0305q−19

1−0.1030q−1
−0.0026q−23

1−0.0183q−1 0

0.0239q−9

1−0.0318−1
−0.0056q−7

1−0.0234q−1
−0.0101q−19

1−0.1823q−1

 , H0(q) =


1−0.5q−1

1+0.5q−1 0 0

0 1−0.3q−1

1+0.6q−1 0

0 0 1+0.2q−1

1+0.7q−1

 .
An observation is that the gain for plant G2,2(q) is small, and this poses significant challenge for the cor-

responding system identification. The resultant poor signal-to-noise ratio leads to large variance associated

with the gain parameter estimate. The entire simulation lasts 1725 minutes with 20700 samples and there310

is no setpoint change throughout this simulation. A set of different tuning parameters are employed in this

example to enhance the performance of the proposed MPM detection method. Lists of tuning parameters

for the MPM detection method and for the MD MPC are shown in Table 3 and Table 4, respectively. From

the 10-fold cross-validation, the selected outlier rate in training these one-class SVM models is 0.2.

In this simulation, the closed-loop system first operates without noise change or MPM. The noise model315

change was introduced after 575 minutes and the noise model H2,2(q) was altered to 1+0.3q−1

1−0.6q−1 . A gain

mismatch was introduced after 1000 minutes on G3,1(q) by doubling the true plant gain while keeping the

gain in the model unchanged. After 1250 minutes, a gain mismatch was introduced to G1,1(q) by doubling

the gain of true plant. This data set contains the first 6900 samples as normal data and the rest as abnormal

data. The simulated input-output profiles are shown in Fig. 5—6. Notice that the red vertical lines in Fig.320

5 from top to bottom gives the time instants at which the double gain mismatch of G1,1(q), the noise model

change, and the double gain mismatch of G3,1(q) are created. These changes in the process characteristics

can hardly be detected by inspecting the input and output variances. To verify the proposed MPM detection

algorithm, we apply it to this MIMO system and monitor the occurrence of noise change and MPM for each

transfer function with the parameters in Table 3.325

We use the first 4 hours of data (2880 samples) as training data. The detection results obtained from the

proposed method are illustrated in Fig. 7. Note that the sign of these scores indicates whether there is a

MPM in the underlying moving window. Similar to the previous SISO example, these scores show the signed
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Figure 5: Output profiles for the MIMO MD process Figure 6: Input profiles for the MIMO MD process

distance of the corresponding data point with respect to the SVM separating boundary. The signs indicate

the corresponding classification result: positive values imply the normal case, negative values indicate MPM330

or noise change, and zero values show that the SVM is still under training . A large number of consecutive

negative scores is a sign of MPM. From these plots one can see that the scores for G1,1(q) and G3,1(q) degrade

to negative values after the model-plant mismatches were created. Moreover, the monitoring on the other

transfer functions is not affected (no false positives for the other models) by the mismatches in G1,1(q) and

G3,1(q). This is significant for those processes that require or admit performing closed-loop identification335

experiments for individual models instead of an MIMO plant-wide identification. In addition, as pointed

out in previous sections, our method can also monitor the noise model and thus can provide more enriched

information for the diagnosis. To this end, we demonstrate the SVM scores for three noises models in Fig. 8.

It is apparent that scores for H2,2(q) drop to be negative rapidly after the noise model change was created,

which underscores the effectiveness of the proposed method in discovering this noise model change. It is340

stressed that this noise change does not trigger any MPM alarms and this further verifies the reliability of

our method in discriminating the MPM from noise model changes.

6. Limitations

The proposed method aims to address the challenging problem of detecting MPM with routine operating

data and separating MPM from noise model changes. For the proposed method, closed-loop identification is345

essential and failing to meet the identifiability conditions, for example, due to an overly simple controller or a

small time-delay, may lead to degraded performance in detecting MPM. Moreover, when the gain of the true

plant is small, often implying poor signal-to-noise ratio, the uncertainty on the estimated gain parameter

will easily mask the gain mismatch and thus it becomes difficult to distinguish between the mismatch and

the uncertainty of parameter estimate. In addition, the determination of scaling parameter α that tunes the350
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Table 4: Tuning parameters of the MIMO MD MPC

Tuning parameters Values Tuning parameters Values

Actuator movement weight [0.01 0.01 0.01] Actuator deviation weight [0 0 0]

CVs target weight [1 1 1] MVs target weight [1 1 1]

CVs min-max weight [1 1 1] MVs min-max weight [1 1 1]

Actuator movement weight [0.01 0.01 0.01] Actuator deviation weight [0 0 0]

Target value for CV1 174 lbs/3000ft2 Target value for MV1 165 gpm

Target value for CV2 2.3 % Target value for MV2 115 psi

Target value for CV3 6.2 % Target value for MV3 35 psi

Prediction horizon 20 Control horizon 2

Upper bounds of MVs [250 180 180] Lower bounds of MVs [0 0 0]

Limits of CV movement [0.1 0.1 0.1] Limits of MV movement [0.2 1 1]

Figure 7: SVM scores for each transfer function of the MIMO example

width of estimated PDF requires insights into the trade-off between the sensitivity and robustness of the

one-class SVM classifier. In addition, this work uses one-class classifier and thus traditional performance

metrics for binary classification such as precision, recall and F-score are not applicable to assess the trained

classifier. We consider this as one of our future research topics, especially given that attention on developing

performance metrics for one-class classifiers is growing rapidly in the literature.355

7. Conclusion

This paper presents a novel MPM detection algorithm that can separate MPM from noise model changes,

relying only on routine operating data. To this end, we proposed a new closed-loop ARX-OE method that

can give consistent parameter estimates for the process model without the need for any a priori information
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Figure 8: SVM scores for the noise models

about the noise model. This identification algorithms can also be extended to MIMO systems. For the MPM360

detection problem, we split it into a training stage and a testing stage. In the training stage, one-class SVM

models can be developed based on the process model estimates obtained from routine identification with the

ARX-OE algorithm. The trained SVM models are then used to monitor the model estimates from test data

in order to detect the occurence of MPM. With the same procedures we can train SVM models for noise

models to detect noise model changes. This technique is tailored well enough to meet the industrial demands365

on MPM monitoring. A SISO example and an MIMO example from MD processes of paper machines are

presented to illustrate the effectiveness of the proposed methods.
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Appendix A. Proof of Theorem 2

Define

ε(t, ρ) := [G0 −G(q, ρ)]u(t) +
1

A(q, η0)
e(t), (A.1)
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and

VN (ρ, η̂N ) :=
1

N

N∑
t=1

1

2
[A(q, η̂N )ε(t, ρ)]2,

VN (ρ, η0) :=
1

N

N∑
t=1

1

2
[A(q, η0)ε(t, ρ)]2.

Notice that with the presence of feedback, one can consider u(t) to be generated by passing the reference

signal r(t) and external noise e(t) through a set of uniformly stable filters. Moreover, from Assumptions 1 and

that A(q, η0) is stable and inversely stable, the conditions in Theorem 2B.1 in [23] are satisfied. Therefore,

we have

sup
ρ∈Ωρ

∥∥∥∥∥ 1

N

N∑
t=1

1

2
[A(q, η0)ε(t, ρ)]

2 − V (ρ, η0)

∥∥∥∥∥→ 0, w.p.1, as N →∞, (A.2)

where

V (ρ, η0) = E
1

2
[A(q, η0)ε(t, ρ)]

2
.

A similar conclusion can be drawn for VN (ρ, η̂N ) as well.

Notice that the loss function can be decomposed as

VN (ρ, η̂N ) =
1

N

N∑
t=1

{
1

2
[A(q, η0)ε(t, ρ)]

2
+

1

2
[(A(q, η̂N )−A(q, η0))ε(t, ρ)]

· [A(q, η0)ε(t, ρ)] +
1

2
[(A(q, η̂N )−A(q, η0))ε(t, ρ)] [A(q, η̂N )ε(t, ρ)]

}
.

Since ε(t, ρ) is bounded uniformly, from (A.2) and Theorem 1, it follows that375

sup
ρ∈Ωρ

∥∥∥∥∥ 1

N

N∑
t=1

[(A(q, η̂N )−A(q, η0)) ε(t, ρ)][A(q, η0)ε(t, ρ)]

∥∥∥∥∥→ 0, w.p.1, as N →∞,

sup
ρ∈Ωρ

∥∥∥∥∥ 1

N

N∑
t=1

[(A(q, η̂N )−A(q, η0)) ε(t, ρ)][A(q, η̂N )ε(t, ρ)]

∥∥∥∥∥→ 0, w.p.1, as N →∞.

Applying the triangular inequality yields,

sup
ρ∈Ωρ

∥∥VN (ρ, η̂N )− V (ρ, η0)
∥∥ ≤ sup

ρ∈Ωρ

∥∥∥∥∥ 1

N

N∑
t=1

1

2
[A(q, η0)ε(t, ρ)]

2 − E 1

2
[A(q, η0)ε(t, ρ)]

2

∥∥∥∥∥
+ sup
ρ∈Ωρ

∥∥∥∥∥ 1

2N

N∑
t=1

[(A(q, η̂N )−A(q, η0)) ε(t, ρ)][A(q, η0)ε(t, ρ)]

∥∥∥∥∥
+ sup
ρ∈Ωρ

∥∥∥∥∥ 1

2N

N∑
t=1

[(A(q, η̂N )−A(q, η0)) ε(t, ρ)][A(q, η̂N )ε(t, ρ)]

∥∥∥∥∥
→ 0, w.p.1, as N →∞.

That is,

VN (ρ, η̂N )→ V (ρ, η0), w.p.1, as N →∞,

Applying Parseval’s theorem yields

V (ρ, η0) =
1

4π

∫ π

−π
|G0(ejω)−G(ejω, ρ)|2 Φu(ω)

|H0(ejω)|2
dω + σ2.
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Therefore, if G(q, ρ) is correctly parameterized and closed-loop data are informative enough for selected model

structures, we can conclude that (11) is valid. The proof for the Gaussian distribution of η̂N follows the lines

of Theorem 9.1 in [23] and is thus omitted here.
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