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Abstract

This paper develops a tractable approximation for stochastic model predictive control (SMPC). Under the

proposed approach, we solve multiple deterministic MPC (DMPC) problems over individual scenarios of

the uncertain variables to obtain a set of control policies and select from this candidate set a control input

that yields the best approximation of the SMPC solution (i.e., yields the smallest statistical measure of the

objective function (e.g., expected value) and of the constraints). This approach is a scenario decomposition

scheme that overcomes tractability issues of SMPC (which solves problems that incorporate multiple scenarios

all-at-once). Moreover, the approach enables flexible handling of complex statistical measures (e.g., medians,

quantiles, and chance constraints) and enables prioritization of objectives and constraints (this is difficult

to do with off-the-shelf optimization solvers). An application to a nonlinear mechanical pulping process

demonstrates that the approach provides high quality solutions. We hypothesize that this is because the

optimal SMPC policy lives in a space that is spanned by the control policies for the individual scenarios.

Moreover, we note that a traditional DMPC policy corresponds to the policy of an individual scenario (the

mean scenario is typically chosen). Consequently, the proposed approach can do no worse than DMPC and

can be interpreted as an approach that seeks to find a DMPC policy that best approximates the SMPC

policy.
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1. Introduction

Model predictive control (MPC) has been widely studied in academia and adopted in industry as an

effective strategy to deal with multivariable constrained control problems [1, 2, 3]. MPC aims at determining

a closed-loop control policy by recursively solving an open-loop finite horizon problem. Deterministic MPC

(DMPC) does not provide a systematic approach to capture model uncertainties and disturbances in the5

computation of control policies and this can lead to poor performance and constraint violations [4]. In
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contrast, stochastic MPC (SMPC) factors in uncertainty information directly in the control formulation

[5, 6, 7]. This approach leads to improved constraint satisfaction and performance and has recently seen

applications in building climate control, wind turbines, batteries, power generation and distribution, and

network traffic control [5, 6, 8, 9, 10, 11, 12].10

A major issue associated with SMPC is computational tractability [5, 13, 14]. Tractability issues arise

because the control formulation incorporates statistical measures for the objective and constraints (which

are random variables). For instance, in the most basic SMPC formulation, one seeks to minimize the ex-

pected value of the objective function (this involves a high-dimensional integral). As a result, one needs

to approximate the expectation using quadrature techniques such as Monte Carlo sampling or polynomial15

chaos expansions [15]. These transcription approaches convert the infinite-dimensional SMPC problem into a

standard (finite-dimensional) optimization problem that can be handled using off-the-shelf solvers. Unfortu-

nately, the resulting optimization problems are often computationally expensive (e.g., they may require many

scenarios to approximate statistical measures). These computational tractability issues are exacerbated in

more sophisticated SMPC formulations in which one might seek to optimize complex statistical measures20

(e.g., variance, conditional value at risk, quantiles, medians). Under such formulations, as the resulting

optimization problems might involve integer variables, complex nonlinearities, or even bilevel formulations.

Similar tractability issues arise when dealing with constraints; specifically, constraints for SMPC are often

enforced using statistical measures such as chance constraints, quantiles, risk measures, and almost-surely

constraints (i.e., constraints are satisfied for all scenarios) [5].25

In this work, we explore tractable approximations for SMPC. Under the proposed paradigm, we use

sample scenarios to transform statistical measures for the objective and constraints into finite-dimensional

representations [5, 16, 17]. To deal with tractability issues of the resulting optimization problems, we propose

an approximation technique that is inspired by the quantile scenario analysis method proposed in [9]. In

this approach, we solve multiple DMPC problems for different scenarios to obtain a set of candidate control30

policies. The observation is that these policies can be computed quickly and in parallel as they do not

involve statistical measures. The set of computed control policies forms a candidate set from which we select

the policy that best approximates the SMPC solution (i.e., yields the smallest statistical measures for the

objectives and constraints). This approach allows us to handle complex measures and allows us to prioritize

conflicting objectives such as economics and stability. The proposed approach only provides an approximate35

policy of the SMPC problem but we note that this approach can be interpreted as a controller that seeks to

find the DMPC policy that best approximates the performance of SMPC. Moreover, since DMPC policy is

equivalent to solving a problem with one scenario (typically the mean or worst case), the proposed approach

can do no worse than the standard DMPC policy. We demonstrate the developments using a stochastic

version of economic MPC [18] applied to a mechanical pulping (MP) process. In this process, we seek to40

drive transitions between steady-states that deliver product with desired characteristics and while minimizing

energy consumption [19, 20, 21]. The process is challenging in that it involves multiple sources of uncertainty
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and strong nonlinearities. The proposed framework extends recent work in deterministic economic MPC for

MP processes [22, 23].

The paper is structured as follows. In Section 2, we provide a discussion of the SMPC problem under45

study and Section 3 presents the proposed approximation strategy. Section 4 presents an MP process to

demonstrate the performance of the proposed approach followed by conclusions in Section 5.

2. Stochastic Model Predictive Control Formulation

In this section, we frame the stochastic model predictive control (SMPC) formulation under study. We let

ζ
(S)
t := {ζ10|t, . . . , ζ

S
N−1|t} and η

(S)
t := {η11|t, . . . , η

S
N |t} denote i.i.d. samples (drawn at time t) for the random50

variables ζt and ηt, respectively. We denote the prediction horizon of the controller as N . The SMPC

formulation has the form:

min
v0|t,··· ,vN−1|t

1

S

S∑
i=1

N−1∑
k=0

Lec(zik|t, vk|t), (1a)

s.t. zik+1|t = f(zik|t, vk|t, ζ
i
k|t), k = 0, · · · , N − 1, (1b)

yik|t = g(zik|t) + ηik|t, k = 1, · · · , N, (1c)

zi0|t = xt, ziN |t ∈ Xf , zik|t ∈ X, k = 1, · · · , N − 1, (1d)

vk|t ∈ U, k = 0, · · · , N − 1, (1e)

N−1∑
k=0

Ltr(zik|t, vk|t) ≤ εt, k = 0, . . . , N − 1. (1f)

where the stage cost is given by Lec(zik|t, vk|t) and zik|t, y
i
k|t denote the k-step-ahead predictions of state and

output variables at time t and for the i-th scenario. With the scenario set {ζ(S)t , η
(S)
t }, the system dynamics

(1b) provide S different state trajectories over the prediction horizon, each corresponding to a particular55

scenario {ζik|t, η
i
k|t}

N−1
k=0 . The objective function is the expected value cost, which is approximated using a

sample average with S scenarios. The state measurement at the current sampling time t (xt) is used as initial

state. For convenience, we define the economic value function evaluated at scenario i and under input vk|t

as:

V ect (vk|t, {ζik|t, η
i
k|t}) :=

N−1∑
k=0

Lec(zik|t, vk|t) (2)

The SMPC problem seeks to find the optimal policy {v̄0|t, · · · , v̄N−1|t} that minimizes the expected cost60

and satisfies constraints (1a)–(1f). Only the first element of the policy ut := v̄0|t is injected into the plant.

The constraints of the SMPC formulation include standard input and state constraints and a stabilizing

constraint. To construct the stabilizing constraint, we assume that the stage cost Ltr is a positive definite

function (e.g., as in a tracking problem) and consider a sequence {εt} that decreases as t → ∞. Details

on how to construct such a sequence can be found in [24, 18] (details are omitted here for brevity). For65
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convenience, we also define the tracking value function at scenario i and input vk|t as:

V trt (vk|t, {ζik|t, η
i
k|t}) :=

N−1∑
k=0

Ltr(zik|t, vk|t) (3)

We thus see that the stabilizing constraint seeks to progressively decrease in the tracking function in order to

ensure stability [23, 18, 25]. This constraint is necessary because minimization of the economic cost function

does not guarantee stability [26]. In our previous work, we developed a deterministic variant of this economic

MPC formulation [22, 23]. The formulation considered here is a stochastic variant of such formulation.70

In summary, the idea behind the SMPC controller is to compute an optimal control policy that minimizes

the expected economic cost (corresponding to using the expected value as the statistical measure). An issue

with the use of the expected value as a measure is that it might lead to poor performance in extreme scenarios.

The proposed SMPC formulation can thus be modified to by using alternative statistical measures such as

the quantile or the median (quantile at a probability of 50%) of the economic cost (this is a more robust

approach to deal with extreme scenarios). The control policy computed with SMPC must also be feasible

under all S scenarios. In other words, the SMPC formulation enforces satisfaction of state constraints and

decrease of the tracking value function for all scenarios S. We note that assuming that the constraints hold

for all scenarios is equivalent to say that they hold with probability one:

P

(
N−1∑
k=0

Ltr(zk|t, vk|t) ≤ εt

)
= 1. (4)

Consequently, this formulation might be restrictive. The proposed SMPC formulation can thus be modified

to enforce constraints by using alternative measures such as a chance constraint in which the constraints

are enforced with a probability lower than one. In addition, we can relax the satisfaction of the stabilizing

constraint for all scenarios by requiring satisfaction of a probability ρ < 1:

P

(
N−1∑
k=0

Ltr(zk|t, vk|t) ≤ εt

)
≥ ρ (5)

or by requiring satisfaction in expectation:

1

S

S∑
i=1

N−1∑
k=0

Ltr(zik|t, vk|t) ≤ εt (6)

While the SMPC formulation makes practical sense, it can be challenging to solve in real-time. This can be

due to the need to handle many scenarios and/or from the need to capture complex measures (e.g., quantiles

and chance constraints). Consequently, we are interested in developing strategies that compute approximate

control policy.
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3. Approximating the Policy of Stochastic MPC75

In this paper, we propose a strategy to compute an approximate policy for SMPC. For each scenario

i = 1, ..., S, an optimal policy {v̄i0|t, . . . , v̄
i
N−1|t} is computed by solving a DMPC problem of the form:

min
vi
0|t,··· ,vN−1|t

N−1∑
k=0

Lec(zk|t, vk|t), (7a)

s.t. z0|t = xt, zN |t ∈ Xf , (7b)

zik+1|t = f(zk|t, vk|t, ζk|t), k = 0, . . . , N − 1, (7c)

yik|t = g(zik|t) + ηk|t, k = 1, . . . , N, (7d)

zik|t ∈ X, vk|t ∈ U, k = 0, . . . , N − 1, (7e)

N−1∑
k=0

Ltr(zk|t+1, vk|t+1) ≤ εt, k = 0, . . . , N − 1, (7f)

The corresponding value function for the i-th scenario is given by V ect (ūi0|t, {ζ
i
k|t, η

i
k|t}). We define the policy

candidate set over the S scenarios as ū0 = {ū10|t, · · · , ū
S
0|t}.

Given the optimal policy ūi0|t for the i-th scenario, we evaluate the value functions V ect (ūi0|t, {ζ
j
k|t, η

j
k|t})80

using this policy over for the full set of scenarios j 6= i. Our goal now is to select a control policy from the

candidate set to be implemented in the system. This selected policy must solve (or approximately solve) the

SMPC problem. In the context of problem (1), we want a control policy that minimizes the expected cost and

satisfies the state and stabilizing constraints for all scenarios (input constraints are satisfied by construction).

To select a policy, we construct a coordinating matrix for the cost (denoted as V ecset and shown in (8));

here; each row corresponds to a candidate control (in the left row outside of the matrix) and each column to

a scenario (top row outside of the matrix). We note that the diagonal elements correspond to the optimal

cost of problem (7) for all scenarios i.

V ecset :=

{ζ1k|t, η
1
k|t} {ζ2k|t, η

2
k|t} · · · {ζSk|t, η

S
k|t}

ū10|t

ū20|t
...

ūS0|t


V̄ ect (ū10|t, {ζ

1
k|t, η

1
k|t})

V ect (ū20|t, {ζ
1
k|t, η

1
k|t})

...

V ect (ūS0|t, {ζ
1
k|t, η

1
k|t})

V ect (ū10|t, {ζ
2
k|t, η

2
k|t})

V̄ ect (ū20|t, {ζ
2
k|t, η

2
k|t})

...

V ect (ūS0|t, {ζ
2
k|t, η

2
k|t}))

· · ·

· · ·
. . .

· · ·

V ect (ū10|t, {ζ
S
k|t, η

S
k|t})

V ect (ū20|t, {ζ
S
k|t, η

S
k|t})

...

V̄ ect (ūS0|t, {ζ
S
k|t, η

S
k|t})


(8)

In an ideal case, the state and stabilizing constraints are satisfied for all scenarios j 6= i and for all85

candidate inputs ūi0|t. In such a case, our strategy simply selects the input that leads to the smallest

expected cost (column-wise average). This approximation approach is fast because it only requires solving

decoupled scenario problems (which can be done individually and in parallel). Notably, this approach can

also be used to compute actions that minimize alternative statistical measures for the cost. For instance, we

can also select the control candidate that achieves the smallest quantile of the cost [9]. This can be done90

trivially using information from the cost matrix but doing so directly in an SMPC formulation is non-trivial
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(quantiles do not have a simple algebraic forms as in the case of expected values). Our approach thus seeks

to not only find approximate policies faster but also to enable the use of alternative statistical measures in

SMPC.

The proposed approximation approach presents interesting properties. Specifically, we observe that the95

sample average of the diagonal entries in V ecset provides a lower bound for the optimal cost of SMPC. In the

stochastic programming literature, this lower bound is the so-called wait-and-see cost [27]. Consequently, it

is possible to estimate an optimality gap for every candidate control (estimate how far is the approximate

policy from the actual SMPC policy).

We also highlight that the candidate controls considered are not constructed arbitrarily but are built by100

exploring the actual uncertainty space. As a result, we expected that the optimal SMPC policy is in a space

spanned by the candidate controls (or at least close to that space). In fact, we highlight that some of the

candidate control policies correspond to policies computed under typical DMPC formulations. Specifically,

in a DMPC formulation, one often selects a single representative scenario (S = 1) for the random variables

(typically the mean or the worst-case) to compute the control. Consequently, we observe that the policy105

obtained with the proposed approximation approach can do no worse than a typical DMPC policy in terms

of variance. Our approach can also be interpreted as a strategy that seeks to improve the DMPC policy or

as a strategy that seeks to find a deterministic policy that best approximates the SMPC policy. The detailed

approximation scheme is outlined in Table 1.

Table 1: Implementation of proposed approximate SMPC scheme in ideal case

Algorithm for the ideal case

Input: x0 ∈ X, σ ∈ [0, 1), set t← 0 and ε0 ← +∞.

For t = 0, . . . , simulation duration do

1: Draw S scenarios of {ζik|t, η
i
k|t}

N−1
k=0 , i = 1, . . . , S.

2: for i = 1, . . . , S do

2.1. Compute optimal input ūi0|t and its corresponding optimal value function

V̄ ect (ūi0|t, {ζ
i
k|t, η

i
k|t}) for the i-th scenario.

2.2. Given ūi0|t computed in step 2.1, evaluate V ect (ūi0|t, {ζ
j
k|t, η

j
k|t})

for the rest of scenarios {ζjk|t, η
j
k|t}

N−1
k=0 , ∀j = 1, · · · , S, and j 6= i.

end for

3: Construct matrix V ecset as structured in (8).

4: Find the minimal measure in each row of V ecset and its corresponding input ūl0|t,

l ∈ 1, · · · , S. Set ut ← ūl0|t.

5: Implement ut to the plant and obtain the state variables xt+1.

6: Set εt+1 < εt.

End
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In the ideal case, we assume that the state and stabilizing constraints hold for all scenarios and all110

candidate controls. In other words, it is assumed that a single input can satisfy all constraints. However,

in practice, we expect this assumption not to hold. In fact, it is possible that the SMPC formulation does

not even have a feasible solution. Because of this, one must select a control that allows for some constraint

violations. One possibility to deal with this is the following: given scenarios {ζjk|t, η
j
k|t}

N−1
k=0 , j = 1, . . . , S,

and candidate control policies, we construct matrix V ecset as in the ideal case. For a given candidate policy115

ūi0|t, i ∈ {1, · · · , S}, we count the number of state constraint (7e) violations (denoted as Mi) and count the

number of stabilizing constraint (7f) violations (denoted as Ni) over all scenarios j = 1, . . . , S. We then

single-out policies ūi0|t ∈ ū0 that have the smallest faction of violations Ni/S, i ∈ {1, . . . , S} and that satisfy

Mi/S ≤ ρ (where ρ ∈ [0, 1] is a given probability level). By construction, we have that Ni ≤ S and Mi ≤ S

and we thus note that minimizing Ni/S is equivalent to minimizing the probability (frequency) of state120

constraint violations and the requirement Mi/S ≤ ρ is a sample approximation of a chance constraint and

ρ is a desired probability level [28]. Specifically, when ρ = 0, no violations of the stabilizing constraint are

allowed and, when ρ = 1, all stabilizing constraints are allowed to be violated. We then construct a reduced

set of candidate policies ū1 = {ūi0|t, . . .} ⊂ ū0 that meet the constraint satisfaction criteria. To choose the

best overall policy, the coordinate matrix V ecset is reduced into V̂ ecset to account only for values that satisfy the125

constraint criteria. The policy ū0|t to be implemented is thus the one leading to the smallest cost measure

(e.g., the expected value or median) among all columns in V̂ ecset. In this general case, we assume that at least

one of the optimal inputs meets the constraint satisfaction criteria. The detailed approximation algorithm

for this general case is outlined in Table 2. In the ideal case, this algorithm simply reduces to that in Table

1 because the matrices V ecset and V̂ ecset coincide.130

The proposed approach is an approximate strategy for SMPC but has several practical benefits. First

of all, the approach is intuitive and easy to explain to industrial practitioners. Moreover, the approach is

flexible in that it can handle different statistical measures and enables prioritization of constraints. A key

observation and theoretical justification of the approach is that it can do no worse than DMPC in reducing

the variances of state and manipulated input variables. This is because the control policy of DMPC is one of135

the candidate policies. Specifically, in DMPC, a representative value for the uncertainties (e.g., the mean or

the worst-case value) is chosen to compute the control policy. The proposed approach can thus be interpreted

as a strategy that seeks to improve on the DMPC policy or as a strategy that seeks to find the DMPC policy

that best approximates the stochastic policy.

4. Application to Mechanical Pulping Processes140

In this section, we describe an application of the proposed SMPC framework to a mechanical pulping

process. We discuss the process and variables involved and provide numerical simulations to illustrate the

effectiveness of the proposed approach.
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Figure 1: Schematic representation for two-stage HC refining process

4.1. Process Description

A two-stage HC MP process generally consists of three equipment units: wood chip pretreatment, wood145

chip refining, and pulp refining. The wood chips are introduced into the pretreatment unit where they are

washed and screened to remove oversized or undersized chips and contaminants such as sands and stones.

The wood chips are then steamed and preheated at atmospheric pressure around 100◦C for the preparation

of the refining process at the next stage. Wood chip refining, which aims at breaking wood chips into wood

fibers, plays a major role in achieving the final pulp properties. There are normally two HC refiners, the150

primary HC refiner and the secondary HC refiner, as shown in Figure 1. The wood chips are introduced into

the inlet of the primary HC refiner by a cylindrical chip transfer screw feeder that is manipulated to control

the production rate. Then the wood chips are broken down into wood fibers as they pass through the two

rotating discs of the refiner. Dilution water is fed into refiners to control the consistencies of the wood pulp

in the refining zone. The secondary refiner is used to improve the pulp properties. At the pulp refining stage,155

the wood pulp is further processed to have the required properties. Table 3 lists key manipulated variables

(MVs) and state variables (SVs) used to develop a discrete-time nonlinear model for the process. Another

key variable is the specific energy (in MW/tonnes/day), which quantifies the energy consumed per tone of

the dry pulp [23]. The specific energy has a significant effect on the pulp properties and is a key variable

in advanced controller design for MP processes [19, 20, 29]. For the two-stage HC MP process, the total160

specific energy (TSE) is defined as the ratio of the total motor load and the production rate. In this work, the

TSE is embedded directly in the cost function of the controller and this is used as an indicator of economic

performance.

4.2. Dynamic Process Model

Modeling the two-stage HC MP process is challenging due to unknown mechanisms inside the pulp refiner165

as well as the inherently complex interactions among variables. The models of the process employed in this
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paper are based on our previous work [23, 26]. The nonlinear two-stage HC MP process can be written as:

x
(1)
t+1 = a1x

(1)
t + b1ka · kp · sc · dc · u(1)t , (9a)

x
(2)
t+1 = a2x

(2)
t + b2

km1 · x
(1)
t

u
(3)
t

(1− e−10u
(2)
t )(c1 − e1 · u(3)t ), (9b)

x
(3)
t+1 = a3x

(3)
t + b3

100x
(1)
t

x
(1)
t + ka · u(3)t − kep · x

(2)
t

, (9c)

x
(4)
t+1 = a4x

(4)
t + b4

km2
· x(1)t

u
(5)
t

(1− e−10u
(4)
t )(c2 − e2 · u(4)t ), (9d)

x
(5)
t+1 = a5x

(5)
t + b5

100x
(1)
t

x
(1)
t /(0.01x

(3)
t ) + ka · u(5)t − kes · x

(4)
t

, (9e)

where x
(i)
t , u

(i)
t , i = 1, . . . , 5, are the i-th state and manipulated variables (defined in Table 3) at time t,

respectively. ai, bi = 1 − ai, i = 1, . . . , 5, are process parameters and vary with the different refiners in

each pulp mill. sc(%) is the chip solid content. dc (kg/m3) is the chip bulk density. ka, and kp (m3/rev)

are constant parameters. kmi
, kei , ci, and ei, i = 1, 2, are the parameters for the i-th refiner which can be

estimated from the industrial data and their values depend on the particular production lines. Moreover,

since wood chips are the main raw materials in the two-stage HC MP process, variations in wood chips

comprise the main disturbance that affect the final pulp properties. In this paper, the variations in wood

chips, such as the bulk density (dc) and the solid content (sc) are considered as the random disturbances.

The cost function of the controller (the TSE) is given by:

Lec(zt, vt) = (y
(2)
t + y

(4)
t )/y

(1)
t (10)

where the dependence on zt and vt is implicit in the outputs yt.

4.3. Simulation Results

4.3.1. Simulation I170

We now demonstrate the effectiveness of the proposed algorithm. The process model is given in (9a)–

(9e). The state and manipulated variables are listed in Table 3. The process dynamics are modeled through

system identification with real industrial data. In the simulations, we assume that all the state variables are

directly measurable and affected by random measurement noise (denoted as ηt). We also introduce random

disturbances to the properties of the wood chips (denoted as ζt). To enforce stability, we obtain a factor εt175

by solving a reference tracking problem, as reported in [23].

Variations in the raw materials such as the chip bulk density and chip solid content are considered as

random disturbances. We assume that disturbances {ζt, ηt} are normally distributed with zero mean and

constant covariance:

ζt ∼ N (0, Qζ), and ηt ∼ N (0, Qη).

The prediction horizon is set to be N = 30. The sampling interval is chosen as 8 sec, and the simulation time

is 120 sec. The other parameters used in the simulation are shown in Table 4. To demonstrate the effect of

9



the number of scenarios S on control performance, we selected three cases with S = 1, 5, 30 and the SMPC

controller is designed to minimize the median of the economic cost. When S = 1, it is assumed that only one180

sample is drawn (this approach is equivalent to a DMPC policy).

Table 5 shows the variances for states, manipulated inputs, and specific energy over time. The variance

is used as a subject of volatility in the controller performance. It can be observed that by increasing S from

1 to 30, the variance of measured output variables, manipulated input variables and the specific energy have

been reduced dramatically. This is because using a single scenario makes the control policy susceptible to185

variations in the disturbances while increasing the number of scenarios protects the controllers.

The simulation results are shown in Figures 2 3. Figures 2 and 3 illustrate the tracking performance of

measured outputs and manipulated input variables. It can be observed that, in all cases, the controller is able

to stabilize the system at the desired target steady-state. For S = 1, the controller gets close to instability

at the beginning of the transition while, as S increases, the controller has better performance.190

4.3.2. Simulation II

In this simulation example, we compare the benefits of the proposed modified SMPC (with scenario

number S = 5) approach over traditional SMPC and DMPC from both the computational time and control

performances aspects.

The proposed modified SMPC is computational efficient comparing with the classical SMPC. Take the195

SMPC with scenario number S = 5 as an example. For each scenario, the SMPC problem has a total of 300

variables and 610 constraints. The simulations were run on a 2-core computer with Intel Core i7-3537U CPU

2.00 GHz processors, and 8 GB RAM. We implement the two-stage HC MP process in AMPL and solved the

nonlinear optimization problems using Ipopt [30]. Each MPC instance takes about 0.5s for the traditional

DMPC (which is equivalent to the SMPC with scenario number S = 1), 4s for the proposed modified SMPC,200

and about 17s for classical SMPC to solve. The closed-loop simulation requires approximately 1 minute for

the DMPC, 8.5 minutes for the modified SMPC, and 35 minutes for the traditional SMPC. The computational

time is spent by the operating system comprises forecasting, optimization solution, and feasibility check.

We further compare the control performance of proposed modified SMPC approach with the scenario

number S = 5 over DMPC and the traditional SMPC. The parameters used in this simulation are the same205

as we used in Simulation 4.3.1 and are listed in Table 4. For DMPC in this simulation, at each sampling

time, we compute the optimal control policy and value function for every sampled scenario as a deterministic

optimization problem. To make it a fair comparison with the proposed SMPC, the control policy for the

DMPC is selected as the one that corresponds to the median of optimal value functions. Then the calculate

control inputs by DMPC, the traditional SMPC, and the proposed SMPC are applied to the two-stage HC210

MP process separately with the same plant model, disturbances and measurement noises. The simulation

results are shown in Figures 4 – 7. Figures 4 – 5 demonstrate the control performance of measured outputs

and manipulated inputs, respectively. It can be found that the variances of measured output and manipulated

input variables can be significantly reduced by the proposed SMPC comparing with DMPC. This observation
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Figure 2: Closed-loop output policies obtained with the proposed controller with scenario number S = 1, 5, 30.
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Figure 3: Closed-loop input policies obtained with the proposed controller with scenario number S = 1, 5, 30.
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can be more clearly verified in Table 6. Moreover, the controller in DMPC is more likely be instability and215

drives the states beyond bound constraints (see the primary and secondary motor load plots in Figure 4). It

also can be easily found from the simulation results that the proposed SMPC has only a slight performance

penalty compared to traditional SMPC and the approximation algorithm is no worse than DMPC in terms

of reducing the variances of state and manipulated input variables. The value functions of the two-stage HC

MP process by using DMPC, traditional SMPC, and the proposed SMPC in Figure 6. It can be observed220

from Figure 6 that the calculated value function by DMPC is far off from the true value function. However,

the calculated value function by using the modified SMPC is very close to actual value function. In another

word, the modified SMPC can provide a reliable prediction of the future energy consumption. The specific

energy consumptions by the two-stage HC MP process using different MPC schemes are compared in Figure

7 in which it shows that the MP process consumes the least amount of the specific energy using the proposed225

SMPC.

5. Conclusions

The main contribution of this paper is to develop an approach to obtain approximate control policies for

stochastic MPC. This approach seeks to address computational tractability issues of stochastic MPC and

offers flexibility to handle diverse statistical measures. The proposed approach offers the guarantee that it230

can do no worse than DMPC in decreasing the variances of the state and manipulated input variables and

can be interpreted as a strategy that seeks to find a deterministic policy that gives the best approximation

to a SMPC policy. A simulation example for a two-stage HC MP process demonstrates the effectiveness of

the proposed approach.
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Table 2: Implementation of proposed approximate SMPC scheme in general case

Algorithm for general cases

Input: x0 ∈ X, ρ ∈ [0, 1), set t← 0 and ε0 ← +∞.

For t = 0, . . . , simulation duration do

1: Draw S scenarios of {ζik|t, η
i
k|t}

N−1
k=0 , i = 1, . . . , S.

2: for i = 1, . . . , S, do

2.1. Compute optimal input ūi0|t and its corresponding optimal value function

V̄ ect (ūi0|t, {ζ
i
k|t, η

i
k|t}) for the i-th scenario.

2.2. Given ūi0|t computed in step 2.1, evaluate V ect (ūi0|t, {ζ
j
k|t, η

j
k|t})

for the rest scenarios {ζjk|t, η
j
k|t}

N−1
k=0 , ∀j = 1, . . . , S, and j 6= i.

end for

3: Combining the results computed in step 2, construct the optimal input set ū0 =

{ū10|t, · · · , ū
S
0|t} and the coordinate matrix V ecset as in (8).

4: Check the constraints (7e) and (7f) and count the number of the violations Mi and

Ni, i = 1, · · · , S, for each sampled scenarios {ζjk|t, η
j
k|t}

N−1
k=0 , j = 1, · · · , S, under

the optimal manipulated input ūi0|t, i 6= j.

5: Find the inputs ūi0|t ∈ ū0 satisfying the conditions: (a) Mi/S ≤ ρ; (b) have the least

number of Ni, i ∈ {1, · · · , S}. Stack the qualified optimal inputs into a set

ū1 = {ūi0|t, · · · } ⊂ ū0

6: Choose the best overall optimal input as follows:

6.1. If there is only one candidate input in ū1,

then the best overall optimal input is chosen to be this candidate input ūl0|t.

6.2. If there are more than one candidate inputs in ū1

then

6.2.1. A new matrix V̂ ecset is formed with value functions for each

scenario under the qualified optimal inputs in ū1;

6.2.2. The best optimal input ūl0|t corresponds to the row that contains the

minimal measure among all rows in the new matrix V̂ ecset.

7: Set ut ← ūl0|t. Implement ut to the plant and obtain the state variables xt+1.

8: Set εt+1 < εt.

End
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Table 3: List of process variables for the two-stage HC MP process

MVs Name (unit) Notation SVs Name (unit) Notation

u(1) Chip transfer screw speed (rpm) R x(1) Production rate (tonnes/day) P

u(2) Primary refiner plate gap (mm) Gp x(2) Primary motor load (MW) Mp

u(3) Primary dilution flow rate (kg/s) Dp x(3) Primary consistency (%) Cp

u(4) Secondary refiner plate gap (mm) Gs x(4) Secondary motor load (MW) Ms

u(5) Secondary dilution flow rate (kg/s) Ds x(5) Secondary consistency (%) Cs

Table 4: Simulation parameters for the SMPC controller

Symbol Values Description

T 120s Simulation length

N 30 Prediction horizon for the m-econ MPC controller

S {1, 5, 30} Number of the scenarios

Qw 0.25 Variance of the disturbance/model uncertainty

Qv 0.1 Variance of the measurement

ρ 0.2 Violation tolerance for stabilizing constraint

Table 5: Variances for outputs, inputs, and specific energy for scenario cases S = 1, 5, 30

Variance of output variables

S = 1 [0.1259, 0.5238, 0.1302, 0.4630, 0.0957]

S = 5 [0.0958, 0.3805, 0.0754, 0.3911, 0.0651]

S = 30 [0.0492, 0.3173, 0.0575, 0.2625, 0.0525]

Variance of input variables

S = 1 [0.0069, 0.2344, 199.1535, 0.4471, 199.5652]

S = 5 [0.0065, 0.1995, 93.1120, 0.4269, 164.2665]

S = 30 [0.0020, 0.1530, 69.4539, 0.2386, 84.6686]

Variance of specific energy

S = 1 1.8430× 106

S = 5 5.6068× 105

S = 30 5.4775× 105
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Table 6: Variances for outputs, inputs, and specific energy comparison between the proposed SMPC, traditional SMPC, and

DMPC

Variance of output variables

DMPC [0.6018, 0.8008, 0.6071, 0.9440, 0.6145]

Traditional SMPC [0.0738, 0.0864, 0.0647, 0.0676, 0.0771]

Modified SMPC, S = 5 [0.0492, 0.3173, 0.0575, 0.2625, 0.0525]

Variance of input variables

DMPC [0.0061, 0.2752, 171.7846, 0.5106, 242.5241]

Traditional SMPC [0.0024, 0.0484, 35.1460, 0.0876, 51.7882]

Modified SMPC, S = 5 [0.0020, 0.1530, 69.4539, 0.2386, 84.6686]

Variance of specific energy

DMPC 5.2108× 105

Traditional SMPC 3.2542× 105

Modified SMPC, S = 5 5.4775× 105
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