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Abstract: Considering the stringent requirements for product quaftycomplex industrial
processes, the purpose of this study is to apply causality analysis to select causal features of
guality-relevantvariables; and then to improve the prediction performance and interpretability of
inferential sensors. Based on the idleat low-dimensionalcausal featuresan approximate the
underlyinginformation of the process instead of the original kijmensional measurements,
feature causality analysis proposed in this worklTo describe dynamic information and extract
efficient latent features, dynamic latent variable models are utilized to combine eattiref
causality analysisAfter dynamic latent causal feature extraction, two kinds of inferential sensors
are developed with extracted dynamic latent causal feagmgesral comparison studies have been
implemented on the Tennessee Eastman benchmar&sgithe results show that the inferential
sensors based on dynamic latent causal features obtain the best performance.
Keywords:l nf er enti al sensor; causality analysis;
1. Introduction

The process industry is an indispensable aspect of the global economy. With the increasing
demands for higher product quality and cost efficierttyy complexity and automation of
industrial processes is continuously growing [1]. As the complexity of indlglants grows, the
industrial plants face high risk of accidents [2]. Therefore, it is important to enhance the safety and
reliability of process industry through process modeling and monitorigg [1
1.1 Background and Motivation

The inferential sesor (soft sensor) {4] provides a framework for dealing with imperfections
in the measurements of complex processes usingddatn algorithmsin industrial processes,
inferential sensor models are commonly developed to monitor varidaleare associated with
the quality of products, by establishing mathematical models betwekmpendentvariables
(quality-relevant)andindependenvariables

Feature selectiofthroughout the paper, for simplicity, features and variables are equjvalen



an important first step in building inferenteénsorsit is very complicated and often there is no
uniqueofdoingscCausal ity analysis is a powerful tool
However, there are few applications of this technigueature selectian In addition, taditional
datadriven inferential sensors commonly rely on the assumption theégses operate at steady
states and the data are temporally independent. However, there are often dynamic characteristics
that define the relationship between the independent and dependent varldide=fore,
traditional steadhstateinferential sensors are prone to inaccuracies and lack of robustviess.
buildinginferential sensor model, introducing latent variable methods has some important benefits.
One obvious benefit is to include features of interest that cannot be direaymee into process
industry. These latent features are usually more efficient than the measurable variables in
developing inferential sensors.

In this work, dynamic latent variable models are utilireéxtractdynamiclatent featuresin
addition, b select efficientlatent featuresfrom the extracted latent featurewe proposedwo
causality analysimethodgo describecausality relationship betwedime extracted latent features
and qualityrelevant variablesand selectlatent features that hawegh causality with quality
relevant variablesFinally, two kinds of inferential sensors are develope@ddress the above
mentioned problerwith dynamic latent causal features.

1.2 Literature Review

This sectiorcontains a detailed literatuseirveyon recent work fodynamicmodeling, feature
selection, causality analysis and latent variable model.

To effectively model dynamic characteristics that exist in industrial process, several methods
have been proposeaid they can be classified into three categories: vector augmentation by lagged
samples [5], recurrent neural network [7] and system identification [6]. Vector augmentation by
lagged samples is one common approach to model dynamics in inferential s&ystem
identification is another approach that has been successfully used in process control and
monitoring. In [6], an impulse response template model based on Wiener structure is used to
describe the dynamic relationship between variables by introdiripgise response function.
Recurrent neural network is an example of deep learning, and it has also been successfully used in
dynamic inferentiabensors.

Currently, most common feature selection approach is search and score, it defines score function

f,:R' R that measures quality of a set of featuees| 4}2( Xi R"m"and yi R are the
i



independenvariables andlependentariables, sis the number of selected features) and then

search for the se% with best scorel, regularization and., regularization are the most common

score functions [9]; forward selection and backward selection are the most common search
methods [10]. However, this approach is usually computationally expensive gmoeeds data

due to the large number of sets@f v i abl e s . It is also difficult
function and O0searcho.

In inferential sensors, we usually identify causal effects betwedspendenwvariables and
dependentvariablesb y i f o r éndepapdentvariabée to take a certaimalue and then
measuring the effect idependentariable If there is strong dependence between the variables, it
indicates that the correspondinglependentariable is important for predicting tlleependent
variable and there is a causal effect. Whhk ability to mine the causal dependency, causality
analysis carprovide valuable information about the process wagmert knowledge is limited.
Causality analysifl1-18] has played a key role in alarm root causality analysis and fault diagnosis
[13-15]. However, there are few applications of this technique in inferential sensors. To develop a
more interpretable and more accurate inferential sembde maintaining the saplicity of the
mode| this work uses causality analysis to capture causality hidden in procesandiagploit
features that have causal relationship wighendentwariables to develop inferential sensors.

For time series process data, there are aéwdfective methods (time delay, conditional
probabilities, energy transfer) to capture and quantify causality. These methods can be classified
into parametric and nonparametric, linear and nonlinear, etc. For simplicity, we use one of the
methods proposkin [18] to classify causality analysis methods into two categories: linear and
nonlinear.

Among these methods, Granger causality analysis (GCA}2] &and transfer entropy (TE) [13
14,1617] are two of the most common methods for establishing painaisgatity of variables
and therefore have been used in many areas, like economics, biology and process industries. In
[11], the author concluded that TE theoretically provides more information about the causal
relationship especially when the data are kajtbut both methods generally exhibit similar
performance with enough data. It needs to be pointed that many other effective rfiedels
are also reported with the increasing attention on causality anaWscé, are not covered in this

work.
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unmeasured but contains abundant information about process data. Many multivariate statistical

models use latd variables such as principal component analysis (P8A3Ipw feature analysis

(SFA) [1], canonical correlation analysis (CCHg], partial least square (PLSY][ In addition,

some nonlinear latent variable models, like variational autoencoder (Y2)and stacked

autoencoder (SAE) [22]jave also been proposed and applied in inferential sensors.

1.3 Contribution and Paper Organization

The present work aims tdevelop a more interpretable and more accurate inferential sensor

while maintaining the simplicity of the modétor a highdimensional industrial process,is

i mportant

variables imply the complex model while less variables mean the loss of useful information. As

an important contributiorthis work uses causality analysis to capture causality hidden in process

t o

find a

data; and exploit features that hadnigh causality relationship wittlependentariables to develop

inferential sensordBased orthis idea two types of advanced dynamic latent causal inferential

sensors are proposddnlike traditional methods which eitheannotprovide precise prediction

using simple modebr suffer from highmodel complexitythe model complexityf this proposed

algorithm is reduced significantlyy introducing causality analysis aladent variable model he

case study shows that proposeterential sensors areighly efficient in improving prediction

performance anteduce model complexity

This article is organized as follows. Section 2 reviews algorithms of causality analysis, dynamic

s u bospeedictdepéndenttareabledas mmgpeo r t a n t



inferential sensor, as well as latent variable modelragdlarization methods. In Section 3, new
approaches for proposed dynamic latent causal inferential sensors are put forward, with detailed
implementation procedures and algorithmic analysis. Section 4 gives comparison case studies on
the Tennessee Eastmia@nchmark process to verify the effectiveness of proposed methodology.
Concluding remarks are presented in section 5.
2. Algorithm Principle

Our intendedproblem is to finda subsetf dynamic causal lateriéaturesso thatan accurate
andsimple inferential sensor can be easily fouselieral algrithms and methodsbout causality

analysis dynamic modelingnd latenwariable modeWwill be given comprehensiveiscussion in

this section
2.1 Causality Analysis

Based on causality analysis categotiest mentioned in introductionwo causality analysis
methods, Granger causality analysis (linear) and transfer entropy (nonliiEbe) introduced in
the following section.
A. Granger Causality Analysis

The idea of Granger causalibyiginally came from Wiener, which could be expressed as: time

seriesx(t)i R'causesy(t)i R'if the predictability ofy(t) could be improved by intducing
the information ofx(t) . Granger [12] used a bivariate auegressive model to formalize the idea,

that is, the introduction of the historical informationxdft) reduces the prediction error g{t)

in a bivariate autoregressive model compared with the model only using the past information of

y(t) . Supposing thak(t) and y(t) could be modeled as an autoregressive model:

X(t)=élai,d (t-d) e (dval g(9) 3 1
y(t)=élqdy(t -d) e, (dvarl g(9) 5 .

Jointly, they could be described by a bivariate autoregressivelmode
(=8 2.(t ) Baut dre,(fa g() 2
Y()=8 bt -d) Bl Mt dre,()val g()) ?



where scalap is the model orderG, is the variance of residua, (). G, measures prediction
accuracy ofy(t) using its own information whiles,, measures prediction accuracy pft)
using information of bothx(t) and y(t) . According to the definition of Granger causalityGf,

is less thafg,, then it is concluded that(t) causesy(t). The strength of causal connectivity

can be measured as follows:

G w =1n
G,

The figure2 gives an intuitive explanation of Granger causalityGranger causality analysis,
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statistical significance tests need to befprmed before a causal link can be established. After the

statistical significance test, a causal map could be built between each variable.
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Figure2. Intuitive explanation of Granger causality

B. Transfer Entropy

Itis wellknownthae nt r opy measures firandomnesso of a
Avery predictabled and high entropy means Ave
was proposed by Schreiber to measure the uncertainty reduction between variables [1§]. Name
transfer entropy measures the uncertainty reduction in future y given past information of x and vy,

compared with only using the past information of y.
Supposing thax(t) =gx(1) ,---,x(i) .- x(n) Tg' R, y(t)=gy(1)., . y(i) .- .y(n) Tg' R",

and the transfer entropy fraxft)to y(t) can be calculated as follows:
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Wherep(())is the complete or conditional probability density function (PDK) are the order of

Yt(k))' H(yth

variablesx(t), y(t),his the prediction horizonx[(j)=§x(t- i).x(t D), x(Y) Tgand similar for

yt(i)_

The figure3 gives an intuitive explanation of transfer entropy. Based on the definition of transfer

entropy in(4), we can conclude that, if there is uncertainty redaadt y(t) given past values of
x(t), we would say thak(t) causesy(t) and the value Ty g > O- As with Grange causality

analysis (GCA), asignificance test is also needed to determine whether there is a causal
relationship between variables. The significance threshold could be obtained by using a Monte
Carlo method with surrogate datir].

The TE method is a type of nonlinear causalitylysig approach based on information theory
and has a wide range of applications in catysahalysis. It is based on probability theory and
does not depend on the model, so we can directly use this method to find imipoltgendent

variables that haveairwise causal relationships widlependentariables.
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Figure3. Intuitive explanation of transfer entropy



2.2Dynamic Inferential Sensor

For independentvariables X =@x (1), %(1),...,%.( [ R™™ and dependentvariable y(t)

=ay()) -, y(i) .y(n) @ R, assume that, (t)=gx (1), % (i) % (n) @ R'is the
kth variable, wherex, (i) is the value ofkth variable at time . When using vector augmentation
by time lagd on x_ (i), one gets:
X (i)=(i), x(i- D, -, x,(i d t)DgRT*.1 i (5)
Before vector augmentation by lagged samples, the vecindebendenvariable at timd is

X, =gx (1), %(i),....x,(i) gR", 1¢i ®. After vector augmentation by lagged samples,

figure 4 shows, the vector becomesX; =g (i),x, (i), X, (i) g'R”(dﬂ). Therefore, for

historical observations with time lag), the input matrix is changed a6l R* ™% . Here,if we
use X RFM¢Y asinputand chooséeast square regressitmpredicty(t) , then we camgetthe

algorithm calleddynamic least squanegressiorand thisalgorithmwill be used incase study

section.
% (i)
x(i- D)
x(i-d B) _ 5
static
: inferential #_,'-
x., (i) sensor
X,(i- D)
m(i:-d D)

Figure4. The structure ofector augment by lagged samples method

2.3Latent Variable Analysis
In the followingsection we give brief introduction on PCA and SFA that used inwiuisk.



A. Principal Component Analysis
Principal component analysis (PCA) is a classical featrection method to find those latent

variables that carry the most variance information from the original data. For a standardized data
matrixX I R™™ , PCA tries to decompose X as the following equations:

X =TP" +E (6)
whereT =[t,t,,...,t, ] IR*/ isthe score matriRl R"' is the loading matrixt I R" is the latent

variable known as the principal compondtit, R*™ is the residual matrix. The computation of
PCA canbe done with singular value decomposition, gradient descent/ escthe number of
principal components and it could be selected according to the methods prop@sgd in [
B. Slow Feature Analysis

Industrial processes have significant inertial characteristics and usually operate steadily, so they
possess slow dynamibaracteristics in most cases. The central idea of slow feature analysis is to
extract the slowest components from the time series data and treat them as main features. The slow
changes can be assumed to represent the fundamental characteristic featynexeds, while

the fast changes can be treated as ghart noise.

For a given time series signai(t)i R", the speed of change can be measured by

D(x(t)) =<x2(t)>t X(t)=x(1)-x(t1) is the time differenceand (x(1)), =

t

S|k
=}

A x(;:) denotes the

'u‘

time averaging value of a certain time series withobservations.For data matrix

X(t)=gx(1),%(1),....%, () . the purpose of SFA is to find a set of slow features

S()=@s(D., s( ... s( } suchthatthe slowness of extracted feature is minimal. The objective

of this optimal problem is:
. .2 .
T€g<§>t J=1,...m
st(s), =0(zero meah(,$) = L(unitvarianc @)
"i ,j.(ss) ®(decorrelation andorder)

whereg, (Qis the scalar function that needs to be optimizet) = w" X( 1) for linear function.

Shang [1] gave a detailed introduction of the solutions of SFA problem. To dezdtmainumber

of slow features, & -upper quantile value of the slowness of inputs is introduced as follows:



M, =card{s| B mat{ 3} (®)
wherecard® represents the number of elements in setVanis the number of features that are

ought to be removed.
2.4 Elastic Net

In this work, we will use elastic net ase of the comparison studies to show the effectiveness
of causality analysis in feature selection of inferential sensors. Elasticdhet {Be combination

of L, regularization (ridge regression) ard regularization (Lasso)L, regularization adds
penalty on thel,norm of andL, regularization adds penalty on thenorm of w to geneste
sparse solutionand select featureBor nonnegative and s | (01) the cost function of elastic
net based on least square camhbéen as:

() =g -+ I ©
This cost function ighe same as the cost functionradge regression whes=0 and Lasso when
s =1. For L, regularization, it is robust when there are a number of irrelevant features as those
features are ignored (many, tend to be zero) in the prediction of y. But the solutiorLof
regularization is not unique as there may be multplelues that achieve the minimurn,
regularization can provide unigue solution as it is strongly convex. Therefore, by comlang
L, regularization, the elastic net can simultaneously select features and provide sparse, unique

solutions.
Remark: It is worth pointing out that under the assumption of Gaussian likelihood and Gaussian

prior, themaximum a posteriori (MAP) estimation is equivalent to solvingltheegularized least
squares probl em arni ztahtei ofinl 6o sfsr apmheuwso rrke.g udj mi | ar |

regularization. The choice of prior corresponds to the choice of regularization and this requires us
to give plausible assumption abowutin real applications when using regularization.
3. Proposed Methodology
As mentioned inimtoducti on, it i's extremely necessar:
measurable features or latent features that are-dséfied and interpretable tdependent

variables.The highdimensional measurements in industrial processes are often highlateaire



[8]. There is often a lovdimensional feature space that explains the most important information
in observations [&]. In other words, some causal features could fully represent the underlying
informationof the process instead of all the original variables.

In this section, a dynamic inferential sensor based on causality analysis is proposed using the
idea of featurdéearning in industrial processé® develop a more interpretable and more accurate
inferential sensor, this work uses causality analysis to capture causality hidden in process data; and
exploit features that have causal relationships we&hendentariades to develop inferential
sensorsAfter feature causality analysis, the causal features could be selectedratefiendent
variables to prediadependentariables. A detailed description of proposed methodology is given
in the following section.
3.1.CausalFedaure Learning of Dynamic Inferential Sensor

Forahighdi mensi on al i ndustri al p r indepersdenyariablés6 s h ar
to predictdependentariables due to the trade off betwdaba complexof model and the loss of
useful information. Obviously, a set of variables which have causal influenceemendent
variables are the most important variables. Using this idea, causal feature learning of dynamic
inferential sensor is proposed in this work.

Figure5 shows the framework of causal feature learning of dynamic inferential sensor. Vector

augmentation by lagged samples is performed initially to obtain dynamic featdie®R™ ™ *

of original process data. Then, givdependentariade to be analyzed, causality analysis is
conducted to select the causal featoté$ R™°(%'(t),1¢i &« m(d 2)}by measuring their
causal influence on tldependentariablesbecausemimportant feature should exert more causal
influence on thelependentariables Thecausal featureX® are the subset of featuré&” . Then,
latent variable model is performed to extract latent feaife®"' (;(t),1¢i dl) of causal

features. With latertausafeatures, to build dynamic model for inferential sensor, dynamic latent

causalfeaturesz® | R ¥ (Zid*(t),l¢i (I(d* +1)) are obtained as inputs to the inferential

Sensor.



% (1) X (1) % (1) .. x,(1) x (1) , B0 (1) z(1)
%(t) :> ‘ :> % (t) — (1) |:> %(t% z(Y)
)

(1) X(0%() - Ko (8 Maa(t) (Y (1 (9
y(t) (c<m(d +3)
Dynamic features Feature selection based Latent feature extraction

on causality analysis

4

Z(02(). 240 (d

Dynamic regression model Dynamic latent features

Figureb. causal feature learning framework

3.2.Latent causal faure Learning of Dynamic Inferential Sensor

In some cases, process data possesses strong correlation and collinearity. Hence, finding directed
causality between originahdependentariables andhe dependentvariables may be hard and
complicated. However, there is no correlation between eachidaatmost latent variable models
like SFA, PCA,; as a result, small causal links could be assumed among these latent features, which
is useful for selecting latent features in building inferential sensors.

Figure 6 illustrates how latent causal feature rteag of dynamic inferential sensors is
performed. Like the approach in secti®r, vector augmentation by lagged samples is initially

performed to obtain dynamic featué$ of the original data. Then, latent variable model is used

to extract essential latent featur@d R”'(Z(l),l Ci ¢)of dynamic features. Then, given

dependentvariable to be analyzed, causality analysis is conducted to select the latent causal

featuresZi R*® (z (t),1¢ i @ @ by measuring pairwise causality between latent features and

dependentariables. 8nilarly, the latent causdeaturesZ are the subset of latent featur@s

After determining all the important latent causal features, to build dynamic model for inferential
sensor, dynamic latent causal featussi S (zd* (t),1¢i (11:( d l}) are obtained as

inputs of inferential sensor.
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Figure®6. latent causal feature learning framework

3.3.Inferential Sensor Designand Analysis

For the proposed algorithms, the major difference between the two proposed dynamic inferential
sensors is the order of causality analysis and latent feature learning. The implementation of these
two algorithms can be split into four stages.
1. Dynamic fature extraction: In this step, data preprocessing will be performed to deal with the
missing values, data outliers and drifting data. After data preprocessing, choose appropriate lagged
time d for all independentariables and get the initial dynamic features for inferential sensors.
Remark: Considering the different structures of two proposed algorithms, we can find that the
stage 2 and 3 of them are roughly opposite, which means the stagasal feature leaing
algorithm is the stage & latentcausal feature learnirgjgorithm and vice versaoFsimplicity,
we only introduce stage 2 and 3 of thtent causal feature learniatgorithms
2.Latent feature extraction: Some efficient latent feature extrmetgorithms, like PCA and SEA
could be used in this stage. As dynamic featofesdependentariables have been obtained in
stage 1, we can apply dynamic PCA, dynamic SFA or other dynamic latent variable models to
extract dynamic latent features.
3. Causality analysis: To select appropriate latent features for regression model, we could utilize
causality analysis methods, such as GCA, TE or Bayesian network, to measure causality and select
latent features that have strong causality w&pendentariables.



4. Dynamic regression model: After selecting latent causal features, appropriate lagged time

for these latent causal features is chosen in stage 4 to get dynamic latent causal features. Some
regression methods, such as least square, support vector regression or neural network, could be
used to develop model.

Figure7 shows the flowchart of twdifferent structures of inferential sensor design based on
causality analysis. For these two dynamic inferential sensors, red 1 represents causal feature
learning while blue 2 represents latent causal feature learning. For offline learning, two feature
learning methods are applied to get the dynamic latent causal featdegseofdentariables. Once
a model has been developed and thoroughly tested offline with tons of data, it needs to be validated
and evaluated online with real time data. In online moinigg latent feature extracting algorithm
and causality analysis methods learned in offline learning are applied to real time process data.
Latent causal features could be extracted according to their indices in offline learning. With trained
model paramet's, assuming dynamic latent causal features as the inputs of the inferential sensor,

real time predicted values dépendenvariables could be obtained.

offline learning

v
‘ dynamic new dynamic inferential
processdata 7 g —¥ ) >
features features sensor

model
parameters

new dynamic inferential A
- featyures 1 sensor | [PUCEIEE) YEG

o

Fig 7. The flowchart of inferential sensor based on causality analysis

4. CaseStudy

Tennessee Eastman Problem (TEP) provides a benchmark for realistic industrial process
monitoring.In this section, the effectiveness of proposed methodology is illustrated based on TEP
[26]. Figure 8 shows the diagram of the TEP proceBsere are 52 difi@nt variables in this
process, among which 33 variables can be measured in real time while another 19 variables need

to be analyzed respectively.



In this case study, 3@ariables are chosen as timelependent variablesnd XMEAS (31),
component C in pur gas is chosen as thdependentwariable to be predicted’he normal
condition data is used to verify proposed methods, of which 960 samples for training and 500
samples for testing.

For dynamidndependenvariables, two causality analysis methods, Granger causality analysis
(linear) and transfeentropy (nonlinear), are used $electfeatures that have higbausality
relationshipswith dependent variableswo latent variable models, PCA and SFA, are used to
extract latent features. Finally, dynamic least square regression method is useditdeeardal
sensors. In addition, elastic net and balgicamic least square regression (DLAR) performed
for comparison studies. Correlationefficient (r) between the predicted values and real values

plus a root mean square error (RMSE) are caledltd show the performance.

Compressor

®HOROOB®

AoN< e

| eeeee

Figure8. TEP flowchart
The detailed coefficients of each part of proposed algorithms are given as follows. The time lag

d is set to 1 for originalndependenwvariables, so 33ndependentariables will become 66
dynamicindependentariables. The number of principal components is set when cumulative

percent variance is greater than 0.85 and the number of slow features is deternunedpsy

guantile value which is set to 0.1. For Granger causality analysis, history length is set to 5 and the



significance level is set to 0.05. The mean of TE value obtained by surrogate data is set as
significance threshold of TE. The time lagof regression model is set asthe coefficient/ of

elastic nets selected by using-fold crossvalidation and thes is set as 05.

4.1 Results of Causality Analysis

A. Granger Causality Analysis

In this section, in order to give a complete demonstration of the effectiveness of our method,
GCA is implemented to find the causality relationship between 66 dynamic features and all 19
dependentariables.We proposed two dérent algorithms, feature learning and latesdure
learning, to extract dynamic latent causal features.

Firstly, the results of latent causal feature learning based on GCA are giver®ihlfigrig 9
shows that for all 1@9lependenvariables, the number of causal features is less than 20 and the
number of latent causal features is less than 15, which nsbans decreases in the number of
inferential sensor inputs.

Figure 10 and 11 show maximum and average causal connectivity strength of 19 variables
respectively. High average and maximum causal connectivity strength are expected when
evaluating the perforemce of proposed algorithms. It is obvious that for diffedeyendent
variables, the performance of PCA and SFA is different; PCA outperforms SFA in some cases
while SFA outperformsPCA in other cases.

In the following part, we will focus odependenvariable 31. The green box in fyshows
different numbers of causal features and latent causal features of variakiecB8inpare thanput
number ofdifferent inferential sensors, table 1 lists the number of inputs used in GCA latent causal
feature leening algorithm and original inferential sensor without causality analysis. In addition,
considering elastic net could select features and redaosdel complexitythe number of inputs
used in elastic net is also included in tabl€dble 2 lists th@umber of inputs used in GCA causal

feature learning algorithm
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Table 1. Number of inputs BCA latent causal feature learning

Inferential sensor Number of inputs
PCA+GCA 3

PCA 24

SFA+GCA 6

SFA 38

variable+GCA 13

variable 66

elastic net 17

Table 2. Number of inputs in GCA causal feature learning

Inferential sensor Number ofinputs
GCA+PCA 9
GCA+SFA 7

variable+GCA 13

B. Transfer Entropy

In this sectionnonlinearcausality analysis methottansfer entropy is implemented to find the
causality relationship between 66 dynamic features @egendentvariable. The causality
relationship between them can be seen from fig@r@ he white area represents that the value of
the transfer entropy fatl to pass the significance test. The red area represents that there is a

causality relationship between dynamic feature dapgendentvariable, and the deeper color

means the stronger causality.



Similar with GCA, two different schemes are applied to extract dynamic latent causal features.
The results of latent causal feature learning based on TE are giveriiilfig Fig 12 shows the
number of causal featuresagpendent variablis 28. Fig B-14 show the numbers of PCA, SFA
causal features are 1 and 2 respectively. Furthermore, we can find tla#¢rtheausal feature of
PCA in inferential sensor is the first principaneponents and tHatent causal features of SFA in

inferential sensor are the first slestand third slowest components.
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Figurel2 TE analysis for all dynamic features

3
I
L

From variable (cause)
@
T
L

5 10 15 20 25
To variable (result)

Figure B. TE analysis for PCA
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Figure 4. TE analysis for SFA
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used in TE latent causal feature learning algorithafle 4 lists the number of inputs used in TE

causal feature learning algorithm.

Table 3. Number of inpstin TE latent causal feature learning

Inferential sensor

Number of inputs

PCA+TE 1
SFA+TE 2
variable+TE 28

Table 4. Number of inputs in TE causal feature learning

Inferential sensor

Number of inputs

TE+PCA 9
TE+SFA 13
variable+TE 28

4.2.Results of Inferential Sensor based on Causality Analysis

A. Comparison between Causality Analysis and Regularization

Figl5 shows the results of dynamic least square regrefBIoBR), elastic netPLSR with TE
feature selection, andLSR with GCA fedure selectionThe inputs number of these inferential

sensors are 68,7, 28, 13 respectivelyi.he left side is the training process and the right side is test



processTable 5 lists the results of different inferential sensors.

Figure B. Results otausality analysis and noncausality analysis in inferential sensors

Table 5. Performance of causal and noncausal inferential sensors

Inferential lrain RMSE .i n M est RMSE
DLSR 0.82057 0.21733 0.47437 0.29359
Elastic Net 0.7283 0.26047 0.50901 0.27188
TE+DLSR 0.73536 0.25768 0.48383 0.27904
GCA+DLSR 0.76934 0.24292 0.49706 0.28036

B. Inferential Sensor based on GCA

In this part, causal feature learning and latent causal feature learning based on GCA are analyzed.
For causal feature learning inferential sensors, we first select causal features, and then extract latent
featuresFig 1617 show the results chusafeature learning in training process and test process,
respectivelyTable 6 lists the results of causal feature learning inferential sensors based on GCA.

In training process, as was expect&MSE,, of inferential sensors without caliseature

learning is lower and, ., is higher. However, in test process, the performance of causal feature

rain

learning is better.



