
Data-driven dynamic inferential sensors based on causality analysis 

Liang Cao1, Feng Yu2, Fan Yang2, Yankai Cao1, Bhushan Gopaluni1* 

1. Department of Chemical and Biological Engineering, University of British Columbia, 

Vancouver, BC, Canada V6T 1Z3 

2. Department of Automation, Tsinghua University, Beijing 100084, China 

 

Abstract: Considering the stringent requirements for product quality of complex industrial 

processes, the purpose of this study is to apply causality analysis to select causal features of 

quality-relevant variables; and then to improve the prediction performance and interpretability of 

inferential sensors. Based on the idea that low-dimensional causal features can approximate the 

underlying information of the process instead of the original high-dimensional measurements, 

feature causality analysis is proposed in this work. To describe dynamic information and extract 

efficient latent features, dynamic latent variable models are utilized to combine with feature 

causality analysis. After dynamic latent causal feature extraction, two kinds of inferential sensors 

are developed with extracted dynamic latent causal features. Several comparison studies have been 

implemented on the Tennessee Eastman benchmark process; the results show that the inferential 

sensors based on dynamic latent causal features obtain the best performance. 
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1. Introduction 

    The process industry is an indispensable aspect of the global economy. With the increasing 

demands for higher product quality and cost efficiency, the complexity and automation of 

industrial processes is continuously growing [1]. As the complexity of industrial plants grows, the 

industrial plants face high risk of accidents [2]. Therefore, it is important to enhance the safety and 

reliability of process industry through process modeling and monitoring [1-8]. 

1.1 Background and Motivation 

 The inferential sensor (soft sensor) [4-7] provides a framework for dealing with imperfections 

in the measurements of complex processes using data-driven algorithms. In industrial processes, 

inferential sensor models are commonly developed to monitor variables that are associated with 

the quality of products, by establishing mathematical models between dependent variables 

(quality-relevant) and independent variables.  

 Feature selection (throughout the paper, for simplicity, features and variables are equivalent) is 



an important first step in building inferential sensors, it is very complicated and often there is no 

unique of doing so. Causality analysis is a powerful tool to define whether a feature is ‘important’. 

However, there are few applications of this technique in feature selection.   In addition, traditional 

data-driven inferential sensors commonly rely on the assumption that processes operate at steady 

states and the data are temporally independent. However, there are often dynamic characteristics 

that define the relationship between the independent and dependent variables. Therefore, 

traditional steady-state inferential sensors are prone to inaccuracies and lack of robustness. When 

building inferential sensor model, introducing latent variable methods has some important benefits. 

One obvious benefit is to include features of interest that cannot be directly measured into process 

industry. These latent features are usually more efficient than the measurable variables in 

developing inferential sensors.   

In this work, dynamic latent variable models are utilized to extract dynamic latent features. In 

addition, to select efficient latent features from the extracted latent features, we proposed two 

causality analysis methods to describe causality relationship between the extracted latent features 

and quality-relevant variables and select latent features that have high causality with quality-

relevant variables. Finally, two kinds of inferential sensors are developed to address the above-

mentioned problem with dynamic latent causal features. 

1.2 Literature Review 

    This section contains a detailed literature survey on recent work for dynamic modeling, feature 

selection, causality analysis and latent variable model. 

 To effectively model dynamic characteristics that exist in industrial process, several methods 

have been proposed and they can be classified into three categories: vector augmentation by lagged 

samples [5], recurrent neural network [7] and system identification [6]. Vector augmentation by 

lagged samples is one common approach to model dynamics in inferential sensors. System 

identification is another approach that has been successfully used in process control and 

monitoring. In [6], an impulse response template model based on Wiener structure is used to 

describe the dynamic relationship between variables by introducing impulse response function. 

Recurrent neural network is an example of deep learning, and it has also been successfully used in 

dynamic inferential sensors. 

Currently, most common feature selection approach is search and score, it defines score function 
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independent variables and dependent variables , s is the number of selected features) and then 

search for the set S  with best score; 0L  regularization and 1L  regularization are the most common 

score functions [9]; forward selection and backward selection are the most common search 

methods [10]. However, this approach is usually computationally expensive on real process data 

due to the large number of sets of variables. It is also difficult to define an appropriate ‘score’ 

function and ‘search’.  

In inferential sensors, we usually identify causal effects between independent variables and 

dependent variables by “forcing” the independent variable to take a certain value and then 

measuring the effect in dependent variable. If there is strong dependence between the variables, it 

indicates that the corresponding independent variable is important for predicting the dependent 

variable and there is a causal effect. With the ability to mine the causal dependency, causality 

analysis can provide valuable information about the process when expert knowledge is limited. 

Causality analysis [11-18] has played a key role in alarm root causality analysis and fault diagnosis 

[13-15]. However, there are few applications of this technique in inferential sensors. To develop a 

more interpretable and more accurate inferential sensor while maintaining the simplicity of the 

model, this work uses causality analysis to capture causality hidden in process data; and exploit 

features that have causal relationship with dependent variables to develop inferential sensors.  

For time series process data, there are several effective methods (time delay, conditional 

probabilities, energy transfer) to capture and quantify causality. These methods can be classified 

into parametric and nonparametric, linear and nonlinear, etc. For simplicity, we use one of the 

methods proposed in [18] to classify causality analysis methods into two categories: linear and 

nonlinear. 

Among these methods, Granger causality analysis (GCA) [11-12] and transfer entropy (TE) [13-

14,16-17] are two of the most common methods for establishing pairwise causality of variables 

and therefore have been used in many areas, like economics, biology and process industries. In 

[11], the author concluded that TE theoretically provides more information about the causal 

relationship especially when the data are limited, but both methods generally exhibit similar 

performance with enough data. It needs to be pointed that many other effective methods [19-20] 

are also reported with the increasing attention on causality analysis, which are not covered in this 

work. 



 

Figure1. Classification of causality analysis methods 

A ‘latent variable’ in multivariate statistical process monitoring is a random variable that is 

unmeasured but contains abundant information about process data.  Many multivariate statistical 

models use latent variables such as principal component analysis (PCA) [8], slow feature analysis 

(SFA) [1], canonical correlation analysis (CCA) [8], partial least square (PLS) [5].  In addition, 

some nonlinear latent variable models, like variational autoencoder (VAE) [21] and stacked 

autoencoder (SAE) [22] have also been proposed and applied in inferential sensors. 

1.3 Contribution and Paper Organization 

The present work aims to develop a more interpretable and more accurate inferential sensor 

while maintaining the simplicity of the model. For a high-dimensional industrial process, it is 

important to find a subset of the ‘important’ features to predict dependent variables as more 

variables imply the complex model while less variables mean the loss of useful information. As 

an important contribution, this work uses causality analysis to capture causality hidden in process 

data; and exploit features that have high causality relationship with dependent variables to develop 

inferential sensors. Based on this idea, two types of advanced dynamic latent causal inferential 

sensors are proposed. Unlike traditional methods which either cannot provide precise prediction 

using simple model or suffer from high model complexity; the model complexity of this proposed 

algorithm is reduced significantly by introducing causality analysis and latent variable model. The 

case study shows that proposed inferential sensors are highly efficient in improving prediction 

performance and reduce model complexity.  

This article is organized as follows. Section 2 reviews algorithms of causality analysis, dynamic 



inferential sensor, as well as latent variable model and regularization methods. In Section 3, new 

approaches for proposed dynamic latent causal inferential sensors are put forward, with detailed 

implementation procedures and algorithmic analysis. Section 4 gives comparison case studies on 

the Tennessee Eastman benchmark process to verify the effectiveness of proposed methodology. 

Concluding remarks are presented in section 5. 

2. Algorithm Principle 

   Our intended problem is to find a subset of dynamic causal latent features, so that an accurate 

and simple inferential sensor can be easily found. Several algorithms and methods about causality 

analysis, dynamic modeling and latent variable model will be given comprehensive discussion in 

this section. 

2.1. Causality Analysis 

Based on causality analysis categories that mentioned in introduction, two causality analysis 

methods, Granger causality analysis (linear) and transfer entropy (nonlinear) will be introduced in 

the following section. 

A. Granger Causality Analysis 

The idea of Granger causality originally came from Wiener, which could be expressed as: time 

series ( ) nx t R causes ( ) ny t R if the predictability of ( )y t  could be improved by introducing 

the information of ( )x t . Granger [12] used a bivariate auto-regressive model to formalize the idea, 

that is, the introduction of the historical information of ( )x t  reduces the prediction error of ( )y t  

in a bivariate autoregressive model compared with the model only using the past information of 

( )y t . Supposing that ( )x t  and ( )y t  could be modeled as an autoregressive model: 
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Jointly, they could be described by a bivariate autoregressive model: 
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where scalar p  is the model order, 1y  is the variance of residual ( )1y t . 1y measures prediction 

accuracy of ( )y t  using its own information while 2 y  measures prediction accuracy of ( )y t  

using information of both ( )x t  and ( )y t . According to the definition of Granger causality, if 2 y  

is less than 1y , then it is concluded that ( )x t  causes ( )y t . The strength of causal connectivity 

can be measured as follows: 
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x t y t
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The figure 2 gives an intuitive explanation of Granger causality. In Granger causality analysis, 

statistical significance tests need to be performed before a causal link can be established. After the 

statistical significance test, a causal map could be built between each variable. 

 

Figure 2. Intuitive explanation of Granger causality 

B. Transfer Entropy 

     It is well known that entropy measures “randomness” of a set of variables, low entropy means 

“very predictable” and high entropy means “very random”. Based on this idea, transfer entropy 

was proposed by Schreiber to measure the uncertainty reduction between variables [16]. Namely, 

transfer entropy measures the uncertainty reduction in future y given past information of x and y, 

compared with only using the past information of y. 

Supposing that ( ) ( ) ( ) ( )1 , , , , nT

x t x x Ri x n=     , ( ) ( ) ( ) ( )1 , , , , nT

y t y y Ri y n=     , 

and the transfer entropy from ( )x t to ( )y t can be calculated as follows: 
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where ( )p  is the complete or conditional probability density function (PDF), ,l k are the order of 

variables ( ) ( ),x t y t , h is the prediction horizon. 
( ) ( ) ( ) ( )= , , 1 ,

Tj

tx x t j x t x t− −   and similar for 

( )j
ty . 

The figure 3 gives an intuitive explanation of transfer entropy. Based on the definition of transfer 

entropy in (4), we can conclude that, if there is uncertainty reduction in ( )y t  given past values of 

( )x t , we would say that ( )x t  causes ( )y t  and the value of 
( ) ( )

0
x t y t

T
→

 . As with Grange causality 

analysis (GCA), a significance test is also needed to determine whether there is a causal 

relationship between variables. The significance threshold could be obtained by using a Monte 

Carlo method with surrogate data [17].  

The TE method is a type of nonlinear causality analysis approach based on information theory 

and has a wide range of applications in causality analysis. It is based on probability theory and 

does not depend on the model, so we can directly use this method to find important independent 

variables that have pairwise causal relationships with dependent variables.   

 

Figure 3. Intuitive explanation of transfer entropy 



2.2 Dynamic Inferential Sensor 

For independent variables ( ) ( ) ( )1 2, ,..., mX x t x t x t=   
n mR   and dependent variable ( )y t
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T

y y i y n=   
nR , assume that ( ) ( ) ( ) ( )1 , , , , nT
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thk  variable, where ( )kx i  is the value of thk  variable at time i . When using vector augmentation 

by time lag d  on ( )kx i , one gets: 
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Before vector augmentation by lagged samples, the vector of independent variable at time i  is 
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  as input and choose least square regression to predict ( )y t , then we can get the 

algorithm called dynamic least square regression and this algorithm will be used in case study 

section. 

 

Figure 4. The structure of vector augment by lagged samples method 

2.3 Latent Variable Analysis 

    In the following section, we give brief introduction on PCA and SFA that used in this work. 
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A. Principal Component Analysis 

Principal component analysis (PCA) is a classical feature extraction method to find those latent 

variables that carry the most variance information from the original data. For a standardized data 

matrix
n mX R   , PCA tries to decompose X as the following equations: 

 
TX TP E= +  (6) 

where 
1 2[ , ,..., ] nT t t t R 



=   is the score matrix,
mP R   is the loading matrix, 

n

it R  is the latent 

variable known as the principal component,
n mE R   is the residual matrix. The computation of 

PCA can be done with singular value decomposition, gradient descent, etc.   is the number of 

principal components and it could be selected according to the methods proposed in [23].  

B. Slow Feature Analysis 

Industrial processes have significant inertial characteristics and usually operate steadily, so they 

possess slow dynamic characteristics in most cases. The central idea of slow feature analysis is to 

extract the slowest components from the time series data and treat them as main features. The slow 

changes can be assumed to represent the fundamental characteristic features of a process, while 

the fast changes can be treated as short-term noise.  

For a given time series signal ( ) nx t R , the speed of change can be measured by
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t
x t x t = , ( ) ( ) ( )= - -1x t x t x t  is the time difference and ( ) ( )
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i

x t x t
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time averaging value of a certain time series with n observations. For data matrix 

( ) ( ) ( ) ( )1 2, ,..., mX t x t x t x t=    , the purpose of SFA is to find a set of slow features 

( ) ( ) ( ) ( )1 2, ,..., mS t s t s t s t=     such that the slowness of extracted feature is minimal. The objective 

of this optimal problem is: 
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where ( )ig  is the scalar function that needs to be optimized, ( ) ( )T

i is t w X t=  for linear function. 

Shang [1] gave a detailed introduction of the solutions of SFA problem. To determine the number 

of slow features, a q -upper quantile value of the slowness of inputs is introduced as follows: 



   | maxq

e i i j jM card s s x=     (8) 

where card{}  represents the number of elements in set and eM  is the number of features that are 

ought to be removed. 

2.4. Elastic Net 

In this work, we will use elastic net as one of the comparison studies to show the effectiveness 

of causality analysis in feature selection of inferential sensors. Elastic net [24] is the combination 

of 2L  regularization (ridge regression) and 1L regularization (Lasso). 2L  regularization adds 

penalty on the 2L norm of and 1L regularization adds penalty on the 1L norm of w  to generate 

sparse solutions and select features. For nonnegative   and ( )0,1  ,  the cost function of elastic 

net based on least square can be written as: 
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1 1
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2 2
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This cost function is the same as the cost function of  ridge regression when =0  and  Lasso when 

=1 . For 1L regularization, it is robust when there are a number of irrelevant features as those 

features are ignored (many jw  tend to be zero) in the prediction of y. But the solution of 1L

regularization is not unique as there may be multiple w values that achieve the minimum. 2L  

regularization can provide unique solution as it is strongly convex. Therefore, by combing 2L  and 

1L regularization, the elastic net can simultaneously select features and provide sparse, unique 

solutions.  

Remark: It is worth pointing out that under the assumption of Gaussian likelihood and Gaussian 

prior, the maximum a posteriori (MAP) estimation is equivalent to solving the 2L  regularized least 

squares problem in the “loss plus regularization” framework. Similarly, Laplace prior leads to 1L  

regularization. The choice of prior corresponds to the choice of regularization and this requires us 

to give plausible assumption about w  in real applications when using regularization.   

3. Proposed Methodology 

As mentioned in introduction, it is extremely necessary to find a subset of the ‘important’ 

measurable features or latent features that are well-defined and interpretable to dependent 

variables. The high-dimensional measurements in industrial processes are often highly correlated 



[8]. There is often a low-dimensional feature space that explains the most important information 

in observations [25]. In other words, some causal features could fully represent the underlying 

information of the process instead of all the original variables.  

In this section, a dynamic inferential sensor based on causality analysis is proposed using the 

idea of feature learning in industrial processes. To develop a more interpretable and more accurate 

inferential sensor, this work uses causality analysis to capture causality hidden in process data; and 

exploit features that have causal relationships with dependent variables to develop inferential 

sensors. After feature causality analysis, the causal features could be selected as the independent 

variables to predict dependent variables. A detailed description of proposed methodology is given 

in the following section. 

3.1. Causal Feature Learning of Dynamic Inferential Sensor  

For a high-dimensional industrial process, it’s hard to select appropriate independent variables 

to predict dependent variables due to the trade off between the complex of model and the loss of 

useful information. Obviously, a set of variables which have causal influence on dependent 

variables are the most important variables. Using this idea, causal feature learning of dynamic 

inferential sensor is proposed in this work.  

 Figure 5 shows the framework of causal feature learning of dynamic inferential sensor. Vector 

augmentation by lagged samples is performed initially to obtain dynamic features 
( 1)d n m dX R  +

of original process data. Then, given dependent variable to be analyzed, causality analysis is 

conducted to select the causal features
d n cX R  ( ) ( )( ),1 1d

ix t i c m d   + by measuring their 

causal influence on the dependent variables  because an important feature should exert more causal 

influence on the dependent variables. The causal features 
dX  are the subset of features 

dX . Then, 

latent variable model is performed to extract latent features
n lZ R  ( )( ),1iz t i l  of causal 

features. With latent causal features, to build dynamic model for inferential sensor, dynamic latent 

causal features
( )1n l ddZ R


  +
 ( )( ,1d

iz t i


  ( ))1l d  + are obtained as inputs to the inferential 

sensor.  



 

Figure 5. causal feature learning framework 

3.2. Latent causal feature Learning of Dynamic Inferential Sensor 

In some cases, process data possesses strong correlation and collinearity. Hence, finding directed 

causality between original independent variables and the dependent variables may be hard and 

complicated. However, there is no correlation between each feature in most latent variable models 

like SFA, PCA; as a result, small causal links could be assumed among these latent features, which 

is useful for selecting latent features in building inferential sensors. 

Figure 6 illustrates how latent causal feature learning of dynamic inferential sensors is 

performed. Like the approach in section 3.1, vector augmentation by lagged samples is initially 

performed to obtain dynamic features
dX of the original data. Then, latent variable model is used 

to extract essential latent features ( )( ),1n l

iZ R z t i l   of dynamic features. Then, given 

dependent variable to be analyzed, causality analysis is conducted to select the latent causal 

features 
n cZ R  ( )( ),1iz t i c l    by measuring pairwise causality between latent features and 

dependent variables. Similarly, the latent causal features Z  are the subset of latent features Z . 

After determining all the important latent causal features, to build dynamic model for inferential 

sensor, dynamic latent causal features 
( )1n c ddZ R


  +
 ( ) ( )( ),1 1d

iz t i c d
   +  are obtained as 

inputs of inferential sensor.  
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Figure 6. latent causal feature learning framework 

3.3. Inferential Sensor Design and Analysis 

    For the proposed algorithms, the major difference between the two proposed dynamic inferential 

sensors is the order of causality analysis and latent feature learning. The implementation of these 

two algorithms can be split into four stages.   

1. Dynamic feature extraction: In this step, data preprocessing will be performed to deal with the 

missing values, data outliers and drifting data. After data preprocessing, choose appropriate lagged 

time d  for all independent variables and get the initial dynamic features for inferential sensors. 

Remark: Considering the different structures of two proposed algorithms, we can find that the 

stage 2 and 3 of them are roughly opposite, which means the stage 2 of causal feature learning 

algorithm is the stage 3 of latent causal feature learning algorithm and vice versa. For simplicity, 

we only introduce stage 2 and 3 of the latent causal feature learning algorithms. 

2. Latent feature extraction: Some efficient latent feature extraction algorithms, like PCA and SFA, 

could be used in this stage. As dynamic features of independent variables have been obtained in 

stage 1, we can apply dynamic PCA, dynamic SFA or other dynamic latent variable models to 

extract dynamic latent features. 

3. Causality analysis: To select appropriate latent features for regression model, we could utilize 

causality analysis methods, such as GCA, TE or Bayesian network, to measure causality and select 

latent features that have strong causality with dependent variables. 
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4. Dynamic regression model: After selecting latent causal features, appropriate lagged time d  

for these latent causal features is chosen in stage 4 to get dynamic latent causal features.  Some 

regression methods, such as least square, support vector regression or neural network, could be 

used to develop model.  

Figure 7 shows the flowchart of two different structures of inferential sensor design based on 

causality analysis. For these two dynamic inferential sensors, red 1 represents causal feature 

learning while blue 2 represents latent causal feature learning. For offline learning, two feature 

learning methods are applied to get the dynamic latent causal features of dependent variables. Once 

a model has been developed and thoroughly tested offline with tons of data, it needs to be validated 

and evaluated online with real time data. In online monitoring, latent feature extracting algorithm 

and causality analysis methods learned in offline learning are applied to real time process data. 

Latent causal features could be extracted according to their indices in offline learning. With trained 

model parameters, assuming dynamic latent causal features as the inputs of the inferential sensor, 

real time predicted values of dependent variables could be obtained. 

 

Fig 7. The flowchart of inferential sensor based on causality analysis 

4. Case Study 

Tennessee Eastman Problem (TEP) provides a benchmark for realistic industrial process 

monitoring. In this section, the effectiveness of proposed methodology is illustrated based on TEP 

[26]. Figure 8 shows the diagram of the TEP process. There are 52 different variables in this 

process, among which 33 variables can be measured in real time while another 19 variables need 

to be analyzed respectively.  
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In this case study, 33 variables are chosen as the independent variables and XMEAS (31), 

component C in purge gas, is chosen as the dependent variable to be predicted. The normal 

condition data is used to verify proposed methods, of which 960 samples for training and 500 

samples for testing.  

For dynamic independent variables, two causality analysis methods, Granger causality analysis 

(linear) and transfer entropy (nonlinear), are used to select features that have high causality 

relationships with dependent variables; two latent variable models, PCA and SFA, are used to 

extract latent features. Finally, dynamic least square regression method is used to build inferential 

sensors. In addition, elastic net and basic dynamic least square regression (DLSR) are performed 

for comparison studies. Correlation coefficient (r) between the predicted values and real values 

plus a root mean square error (RMSE) are calculated to show the performance. 

 

Figure 8. TEP flowchart 

The detailed coefficients of each part of proposed algorithms are given as follows. The time lag 

d  is set to 1 for original independent variables, so 33 independent variables will become 66 

dynamic independent variables. The number of principal components is set when cumulative 

percent variance is greater than 0.85 and the number of slow features is determined by q -upper 

quantile value which is set to 0.1. For Granger causality analysis, history length is set to 5 and the 



significance level is set to 0.05. The mean of TE value obtained by surrogate data is set as 

significance threshold of TE. The time lag d  of regression model is set as 5; the coefficient   of 

elastic net is selected by using 5-fold cross-validation and the   is set as 0.75.  

4.1. Results of Causality Analysis 

A. Granger Causality Analysis 

In this section, in order to give a complete demonstration of the effectiveness of our method, 

GCA is implemented to find the causality relationship between 66 dynamic features and all 19 

dependent variables. We proposed two different algorithms, feature learning and latent feature 

learning, to extract dynamic latent causal features.  

Firstly, the results of latent causal feature learning based on GCA are given in fig 9-11. Fig 9 

shows that for all 19 dependent variables, the number of causal features is less than 20 and the 

number of latent causal features is less than 15, which means sharp decreases in the number of 

inferential sensor inputs.  

Figure 10 and 11 show maximum and average causal connectivity strength of 19 variables 

respectively. High average and maximum causal connectivity strength are expected when 

evaluating the performance of proposed algorithms. It is obvious that for different dependent 

variables, the performance of PCA and SFA is different; PCA outperforms SFA in some cases 

while SFA outperforms PCA in other cases. 

In the following part, we will focus on dependent variable 31. The green box in fig 9 shows 

different numbers of causal features and latent causal features of variable 31. To compare the input 

number of different inferential sensors, table 1 lists the number of inputs used in GCA latent causal 

feature learning algorithm and original inferential sensor without causality analysis. In addition, 

considering elastic net could select features and reduce the model complexity, the number of inputs 

used in elastic net is also included in table 1. Table 2 lists the number of inputs used in GCA causal 

feature learning algorithm. 



 

Figure 9. Number of causal features in GCA 

 

Figure 10. Maximum causal connectivity strength in GCA 



 

Figure 11. Average causal connectivity strength in GCA 

Table 1. Number of inputs in GCA latent causal feature learning 

 

 

 

 

 

 

Table 2. Number of inputs in GCA causal feature learning 

 

 

 

 

B. Transfer Entropy 

In this section, nonlinear causality analysis method, transfer entropy is implemented to find the 

causality relationship between 66 dynamic features and dependent variable. The causality 

relationship between them can be seen from figure 12. The white area represents that the value of 

the transfer entropy failed to pass the significance test. The red area represents that there is a 

causality relationship between dynamic feature and dependent variable, and the deeper color 

means the stronger causality. 

Inferential sensor Number of inputs 

PCA+GCA 3 

PCA 24 

SFA+GCA 6 

SFA 38 

variable+GCA 13 

variable 66 

elastic net 17 

Inferential sensor Number of inputs 

GCA+PCA 9 

GCA+SFA 7 

variable+GCA 13 



Similar with GCA, two different schemes are applied to extract dynamic latent causal features. 

The results of latent causal feature learning based on TE are given in fig 12-14. Fig 12 shows the 

number of causal features of dependent variable is 28. Fig 13-14 show the numbers of PCA, SFA 

causal features are 1 and 2 respectively. Furthermore, we can find that the latent causal feature of 

PCA in inferential sensor is the first principal components and the latent causal features of SFA in 

inferential sensor are the first slowest and third slowest components. 

 

Figure 12. TE analysis for all dynamic features 

 

Figure 13. TE analysis for PCA 



 

Figure 14. TE analysis for SFA 

To compare the inputs number of different inferential sensors, table 3 lists the number of inputs 

used in TE latent causal feature learning algorithm. Table 4 lists the number of inputs used in TE 

causal feature learning algorithm.  

Table 3. Number of inputs in TE latent causal feature learning 

 

 

 

Table 4. Number of inputs in TE causal feature learning 

 

 

 

4.2. Results of Inferential Sensor based on Causality Analysis 

A. Comparison between Causality Analysis and Regularization 

Fig15 shows the results of dynamic least square regression (DLSR), elastic net, DLSR with TE 

feature selection, and DLSR with GCA feature selection. The inputs number of these inferential 

sensors are 66, 17, 28, 13 respectively. The left side is the training process and the right side is test 

Inferential sensor Number of inputs 

PCA+TE 1 

SFA+TE 2 

variable+TE 28 

Inferential sensor Number of inputs 

TE+PCA 9 

TE+SFA 13 

variable+TE 28 



process. Table 5 lists the results of different inferential sensors.  

Figure 15. Results of causality analysis and noncausality analysis in inferential sensors 

Table 5. Performance of causal and noncausal inferential sensors 

Inferential 

Sensor 

rtrain RMSEtrain rtest RMSEtest 

DLSR 0.82057 0.21733 0.47437 0.29359 

Elastic Net 0.7283 0.26047 0.50901 0.27188 

TE+DLSR 0.73536 0.25768 0.48383 0.27904 

GCA+DLSR 0.76934 0.24292 0.49706 0.28036 

 

B. Inferential Sensor based on GCA 

    In this part, causal feature learning and latent causal feature learning based on GCA are analyzed. 

For causal feature learning inferential sensors, we first select causal features, and then extract latent 

features. Fig 16-17 show the results of causal feature learning in training process and test process, 

respectively. Table 6 lists the results of causal feature learning inferential sensors based on GCA. 

In training process, as was expected, trainRMSE of inferential sensors without causal feature 

learning is lower and trainr is higher. However, in test process, the performance of causal feature 

learning is better.  



 

Figure 16. Results of GCA causal feature learning inferential sensors in training process 

 

Figure 17. Results of GCA causal feature learning inferential sensors in test process 

Table 6. Performance of GCA causal feature learning inferential sensors 

Inferential Sensor rtrain RMSEtrain rtest RMSEtest 

DLSR 0.82057 0.21733 0.47437 0.29359 

GCA+DLSR 0.76934 0.24292 0.49706 0.28036 

GCA+PCA+DLSR 0.70104 0.27116 0.50352 0.27857 

PCA+DLSR 0.78292 0.23656 0.48556 0.28376 

GCA+SFA+DLSR 0.73025 0.25978 0.50558 0.27877 

SFA+DLSR 0.82043 0.21741 0.4758 0.29315 

 



For latent causal feature learning inferential sensors, we first extract latent features and then 

select causal features. Fig 18-19 show the results of training process and test process, respectively. 

Table 7 lists the results of latent causal feature learning inferential sensors based on GCA. 

 

Figure 18. Results of GCA latent causal feature learning inferential sensors in training process 

 

Figure 19. Results of GCA latent causal feature learning inferential sensors in test process 

Table 7. Performance of GCA latent causal feature learning inferential sensors 

Inferential Sensor rtrain RMSEtrain rtest RMSEtest 

DLSR 0.82057 0.21733 0.47437 0.29359 

GCA+DLSR 0.76934 0.24292 0.49706 0.28036 



PCA+GCA+DLSR 0.67901 0.27915 0.51042 0.27235 

PCA+DLSR 0.78292 0.23656 0.48556 0.28376 

SFA+GCA+DLSR 0.72514 0.26184 0.45914 0.28359 

SFA+DLSR 0.82043 0.21741 0.4758 0.29315 

 

C. Inferential Sensor based on TE 

In this part, causal feature learning and latent causal feature learning inferential sensors based 

on TE are analyzed. Fig 20-21 show the results of causal feature learning in training process and 

test process, respectively. Table 8 lists the results of causal feature learning based on TE. Fig 22-

23 show the results of latent causal feature learning in training process and test process, 

respectively. Table 9 lists the results of latent causal feature learning based on TE. 

 

Figure 20. Results of TE causal feature learning inferential sensors in training process 



 

Figure 21. Results of TE causal feature learning inferential sensors in test process 

Table 8. Performance of TE causal feature learning inferential sensors 

Inferential Sensor rtrain RMSEtrain rtest RMSEtest 

DLSR 0.82057 0.21733 0.47437 0.29359 

TE+DLSR 0.73536 0.25768 0.48383 0.27904 

TE+PCA+DLSR 0.73671 0.25713 0.49924 0.27555 

PCA+DLSR 0.78292 0.23656 0.48556 0.28376 

TE+SFA+DLSR 0.76284 0.24587 0.5121 0.27442 

SFA+DLSR 0.82043 0.21741 0.4758 0.29315 

 

 

Figure 22. Results of TE latent causal feature learning inferential sensors in training process  



 

Figure 23. Results of TE latent causal feature learning inferential sensors in test process 

Table 9. Performance of TE latent causal feature learning inferential sensors 

Inferential Sensor rtrain RMSEtrain rtest RMSEtest 

DLSR 0.82057 0.21733 0.47437 0.29359 

TE+DLSR 0.73536 0.25768 0.48383 0.27904 

PCA+ TE+DLSR 0.67091 0.28197 0.52133 0.2695 

PCA+DLSR 0.78292 0.23656 0.48556 0.28376 

SFA+ TE+DLSR 0.70026 0.27146 0.49235 0.27563 

SFA+DLSR 0.82043 0.21741 0.4758 0.29315 

 

Similar with the results of GCA, it can be easily found that TE combining with the latent variable 

models has the best performance with minimal inputs compared with other inferential sensors. 

5. Discussions 

Table 10 lists detailed comparison results of different inferential sensors. The number in bold 

blue means the best performance in all algorithms while the bold red means the worst performance. 

Generally, the best performance of only using causality analysis (GCA, TE) is RMSE:0.27904 and 

r: 0.49706; the best performance of only using latent variable model (PCA, SFA) is RMSE:0.28376 

and r: 0.48556; However, almost all performance of latent causal feature learning or causal feature 

learning are better than only using causality analysis or latent variable model, it is obvious that the 

performance is improved when combining them.  

In addition, the maximum input of latent causal feature learning is 6 and maximum input of 

causal feature learning is 13, the minimum input of causality analysis is 13 and the minimum inputs 



of latent variable model is 24. These results show that proposed algorithms have better 

performance with fewer inputs, which proves that the integration of causality analysis and latent 

variable models is powerful in simplifying model without losing important information.   

It can be seen that latent causal feature learning based on PCA+TE has the best results, which, 

only using 1 latent causal feature, achieves the minimal 
testRMSE and maximum testr . Compared 

with the results of elastic net, original variables, the results of causality analysis show that the 

model complexity is reduced. Compared with the results of latent variable model and causality 

analysis, it shows that there exist some unimportant features in both methods; the combination of 

causality analysis and latent variable model makes it possible to find which features are important 

for building inferential sensors. 

Table 10. Comparison of different inferential sensors 

 

 

 

 

 

 

 

 

Based on the previous discussion, unlike traditional methods (Latent variable model, Elastic net) 

which either cannot provide precise prediction using simple model or suffer from high model 

complexity, the advantages of proposed dynamic inferential sensor based on causality analysis are 

as follows: 

A. Inferential sensor based on causality analysis is more robust since causal features reflect 

underlying dynamics of the process data, while original independent variables contain lots of noise 

information. The introduction of causality analysis can select important features and achieve noise 

reduction.  

B. There are many feature-extraction methods in industrial processes, making it hard to tell which 

types of features are important. However, the introduction of causality analysis making it possible 

to find important features. 

C. The inputs of inferential sensor are causal variables, and these input causal variables have 

Performance index rtest RMSEtest Input numbers 

Inferential sensors GCA TE GCA TE GCA TE 

Latent causal PCA 0.51042 0.52133 0.27235 0.2695 3 1 

feature learning SFA 0.45914 0.49235 0.28359 0.27563 6 2 

Causal feature learning 
PCA 0.50352 0.49924 0.27857 0.27555 9 9 

SFA 0.50558 0.5121 0.27877 0.27442 7 13 

Causality analysis  0.49706 0.48383 0.28306 0.27904 13 28 

Latent variable mode 
PCA 0.48556 0.28376 24 

SFA 0.4758 0.29315 38 

Elastic net  0.50901 0.27188 17 

Original Variables  0.47437 0.29359 66 



causality relationship with the outputs, Therefore, the interpretability of proposed inferential 

sensor is enhanced. 

D. The integration of causality analysis and latent variable models is very useful, since there is no 

correlation between each latent feature in most latent variable models like SFA and PCA. This 

advantage is very useful in reducing the negative impact of correlation and simplifying the 

inferential sensor model. 

6. Conclusion 

Using the idea of causality analysis, two types of dynamic feature learning schemes based on 

causality analysis are proposed to develop inferential sensors. With dynamic latent causal features 

obtained from causal feature learning or latent causal feature learning, the proposed inferential 

sensors are more robust since causal features reflect underlying dynamics of the process data. The 

interpretability of inferential sensor is enhanced with causal feature selection and latent feature 

extraction. Case studies demonstrate that the complexity of inferential sensor is sharply decreased 

while the prediction performance is improved. This study has shown that integration of causality 

analysis and latent variable model is promising in designing inferential sensors. 
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