
Model-Plant Mismatch Detection for Cross-directional Processes

Abstract

This paper presents a two-component framework to detect model-plant mismatch (MPM) in
cross-directional (CD) processes on paper machines under model-predictive control. First,
routine operating data is used for system identification in closed loop; second, a one-class sup-
port vector machine (SVM) is trained to predict MPM. The iterative identification method
alternates between identifying the finite impulse response coefficients of the spatial and tem-
poral models. It converges, and the parameter estimates are asymptotically consistent. Co-
efficient estimates drawn from normal operation are used to train a one-class SVM, which
then detects model-plant mismatch in subsequent routine operation. This approach applies
to routine operating data without requiring external excitations. It can also distinguish mis-
matches in the process model from changes in the noise model. Examples of CD processes
on paper machines are provided to verify the effectiveness of both components.

Keywords: Routine closed-loop identification, Support vector machine, High-order ARX,
Cross-directional processes, Process monitoring.

1. Introduction

Model-predictive control (MPC) is used in a wide range of industrial processes, from re-
fining petroleum and processing metal to making paper (Qin and Badgwell (2003)). MPC
effectively handles complex multivariable processes. Its actuation commands optimize user-
defined objectives while meeting physical constraints on inputs, outputs, and states. Under-
lying all these impressive features is a model of the process being controlled: an accurate
model is essential. Indeed, most observed deteriorations in MPC performance can be traced
to degradations in model quality (Botelho et al. (2016)). There is a clear need for an auto-
mated and highly-reliable scheme for monitoring the process model accuracy.

The discrepancy between a plant’s true dynamics and the model used in MPC is known
as model-plant mismatch (MPM). Incorrect process models can lead to suboptimal control
actions or even closed-loop instability. Hence, detecting and eliminating MPM is priority.
Despite recent progress (Wang et al. (2016); Julien et al. (2004)), two key issues remain:
distinguishing between MPM and noise model changes (Sun et al. (2013); Botelho et al.
(2016)), and the role of external excitations (Badwe et al. (2010, 2009)). First, changes in
a process’s noise model have some symptoms in common with MPM, such as inflating the
variance of process variables. However, an accurate process model is more critical for the safe
operation of the system. Thus an ideal MPM detection approach would be robust to changes
in the noise model, and not mistake them for MPM (Botelho et al. (2016)). Separating
these two effects is rather difficult. Approaches built on variance-based metrics (e.g., Harris
(1989)), are at a disadvantage. Second, most current approaches to identify MPM directly
rely on external excitations, such as dither signals or setpoint changes. Such interventions
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perturb the system and compromise its performance. It is clearly preferable to detect MPM
during routine operation. In Lu et al. (2017b, 2020), we proposed a one-class SVM to
detect errors in the plant model for low-dimensional systems. A sequence of measurements
acquired when the system is operating with an accurate model is used to construct clusters
of process and noise models. Then, the SVM compares process and noise models derived
from subsequent routine operating data with their respective normal clusters. This approach
effectively detects MPM and is robust to noise model changes. However, implementing it in
spatially-distributed systems remains a challenging problem.

Our research is motivated by the control of paper machines. A typical paper machine
transforms a slurry of water and wood fibres into a sheet of paper. An array of actuators at
the headbox adjusts the properties of pulp across the sheet and an array of sensors at the
far end of the machine measures the paper properties of interest. The control objective is to
manipulate the actuators to achieve desirable product properties Morales and Heath (2011).
The developing paper sheet moves in the machine direction (MD); the cross-direction (CD) is
perpendicular to this. The CD process is large-scale and its process characteristics vary over
time for a host of reasons, with user-commanded changes in the product properties being
only the most obvious. Practitioners need to maintain high-quality CD models.

In this work, as in most industrial settings, we assume that the spatial and temporal
responses are the same for all CD actuators, and also that these responses are separable.
These conditions allow the CD process to be described by a high-dimensional Hammerstein
model with a static (spatial) part concatenated with a dynamic part (Narendra and Gallman
(1966)). Compared with Lu et al. (2017b, 2020), in this work, we propose a novel system
identification method for efficiently identifying the complex CD process models. We also
provide a theoretical guarantee on the performance of the proposed closed-loop identification,
and this addresses the main challenge in developing the CD MPM detection algorithm.

This paper is organized as follows. A description of the closed-loop CD process is given
in Section 2, together with an overview of our MPM detection scheme. Section 3 is devoted
to the development of a routine CD closed-loop identification method. Section 4 details the
application of a one-class SVM to MPM detection. Two illustrative simulations are provided
in Section 5. Section 6 provides our conclusions.

Notation: Normal-weight symbols denote scalar-valued quantities. Bold font is reserved
for vectors and matrices, as in v and G. Signals like s(t) have discrete inputs (t = 0, 1, 2, . . .),
and may be acted upon by the one-step shift operator q−1; the corresponding long-term
expectation is E[s(t)] = limN→∞

1
N

∑N
t=1 E[s(t)]. We abbreviate “with probability one” as

“w.p.1”, and use ‖·‖ for the Euclidean norm for vectors and the Frobenius norm for matrices.
For the direct sum of two sets, we write ⊕.

2. Preliminaries

2.1. CD process model

The following single-array CD process model is widely employed in paper machine control:

y(t) = g(q−1)Gu(t− d) + v(t), t ∈ Z. (1)

Here y(t) ∈ Rm and u(t) ∈ Rn represent the measured output signal (controlled variable,
CV) and input signal (manipulated variable, MV), respectively. Note that the steady-state
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components for the MD process have been removed from the input and output in (1). Assume
that k ≥ 1 equally-spaced measurements are taken for each actuator, so that m = kn. In
(1), v(t) ∈ Rm is a colored noise vector, d ∈ N is a time delay in samples, and g(q−1) is a
first-order scalar filter modeling the process’s temporal dynamics. Typically

g(q−1) =
h

1− fq−1
, (2)

where h is a constant gain and f = exp(−Ts/Tp), with time constant Tp and sampling interval
Ts. Let θT = [h f ]T ∈ ΩT with ΩT denoting a compact set of feasible values. Denote θ◦T as
the true temporal parameter. The constant matrix G ∈ Rm×n in (1) captures the steady-
state spatial responses of the actuator array. Each column of G is a shifted version of the
same symmetric spatial impulse response, in which the coordinate x determines

b(x) =
1

2

[
ϕ

(
x

ξ
+ β

)
+ ϕ

(
x

ξ
− β

)]
, with (3)

ϕ(r) = γe−αr
2

cos(πr). (4)

The scalar parameters describing attenuation α, divergence β, gain γ, and width ξ are key
elements of the system model. In principle, the elements of G should be Gij = b(i− c̄j), where
c̄j ∈ [1 : m] is the spatial response center of actuator j. (In the special case where k = 1,
so m = n and c̄j = j, matrix G is Toeplitz: Gij = b(i − j).) In practice, the exponential
decay in (4) is so rapid that one can choose an integer order p ≥ 1 and define G using the
truncated function bp(x) that equals b(x) whenever |x| < p, but has bp(x) = 0 for |x| ≥ p.

Now the matrix G has complicated nonlinear dependence on the scalar shape parameters
α, β, γ, ξ, but its dependence on the scalar values b(0), b(1), . . . , b(p − 1) used to define its
columns is linear. One can thus express G =

∑p
k=1 ckEk, ck = b(k−1), for suitable symmetric

“basis matrices” Ek in which every entry is 0 or 1. One can use this decomposition to identify
G by estimating the p parameters c1, . . . , cp instead of α, β, γ, ξ. Note that the temporal gain
h in (2) and the spatial gain γ in (4) enter the true model (1) only through their product hγ,
so no generality is lost in setting h = 1 in practical problems.

2.2. CD noise model

A common approach to model CD noise is to choose a diagonal noise model while forcing
the innovation sequence to have non-diagonal covariance matrix (Gorinevsky and Gheorghe
(2003); Rigopoulos et al. (1997)), to capture the spatial correlation of colored noise v(t). The
temporal correlation is modeled by a filter shared by all output channels1. In this manner,

v(t) = H(q−1)e(t), (5)

where H(q−1) is a scalar monic transfer function that is stable and inversely stable and
e(t) ∈ Rm is a zero-mean Gaussian white noise vector with covariance E[e(t)e(t − s)T ] =
δs,tΣ ∈ Rm×m. Note that here Σ can be non-diagonal to represent the spatial correlations

1This assumption can be easily relaxed to allow for different noise models in each output channel and the
identification method presented in this paper is still applicable with slight modifications.
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of CD measurement noise. In general, it is difficult to acquire prior information about
the true structure of H(q−1) in (5). For closed-loop identification, especially the direct
identification approach, incorrect specification of the noise model leads to bias in the process
model estimate (Ljung (1999)). We propose a closed-loop identification method to address
this issue in Section 3.

2.3. High-order ARX approximation of CD process model with FIR noise representation

A stable linear transfer function can be approximated arbitrarily well by a high-order FIR
model (Ljung (1999); Zhu (2002)). Thus one can represent the CD process model (1)–(5)
with a sufficiently high-order ARX structure, to avoid the bias issue in direct identification
above. Specifically, we equivalently rewrite the CD model as follows (see Appendix A for a
proof):

A(q−1, a)y(t) = B(q−1,b)

p∑
k=1

ckEku(t− d) + e(t), (6)

where A(q−1, a) = 1/H(q−1) is a monic scalar polynomial showing the FIR representation
of the inverse of the noise model. In detail, A(q−1, a) = 1 +

∑na

j=1 ajq
−j, a = [a1 . . . ana ]T .

Similarly, B(q−1,b) = A(q−1, a)g(q−1), B(q−1,b) =
∑nb

j=0 bjq
−j,b = [b0 · · · bnb

]T . Define the

parameter vector, θT = [aT bT cT ] ∈ Rna+nb+1+p. Here, due to our stability assumptions on
A(q−1, a) and B(q−1,b), finitely truncated expansions can approximate these polynomials.
(See Ljung and Wahlberg (1992); Zhu and Hjalmarsson (2016).) The CD process model is
transformed into an ARX-Hammerstein structure. We have the predictor form of (6) as

ŷ(t|t− 1) =
[
ψy(t) ψū(t− d)

] [ a
Cb

]
, (7)

where C = diag{c, c, . . . , c}, ūk(t) = Eku(t) ∈ Rm, k = 1, . . . , p, and

ψy(t) =

 ψy1(t)
...

ψym(t)

 , ψū(t) =

 ψū1(t)
...

ψūm(t)

 ,
with

ψyi
(t) = [−yi(t− 1) − yi(t− 2) · · · − yi(t− na)] ,

ψūi
(t) =

[
ū1
i (t) . . . ūpi (t)| . . . |ū1

i (t− nb) . . . ūpi (t− nb)
]
.

2.4. The presence of feedback

The version of CD MPC widely used in industry is based on quadratic programming (Fan
(2003)). Typical constraints in the MPC algorithm include actuator limits, bounds on the
changes between successive control actions, constraints on the averaged actuator profile in
an array, and bending limits. According to Bemporad et al. (2002), when some of these
constraints are active and varying, the MPC will display a piecewise linear or even nonlinear
behavior. Hence, the manipulated variable at time t emerges from a feedback function k via

u(t) = k(ut−1,yt, t), (8)
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where ut−1 = {u(1), . . . ,u(t − 1)} and yt is defined in an analogous way. In the absence
of excitations or setpoint changes, nonparametric identification methods often yield the con-
troller inverse as a process model estimate (Söderström and Stoica (1988)). One remedy is to
exploit prior knowledge (or a previous estimate) of the time-delay in the model structure in
(6) when performing the high-order ARX identification. Note that our method essentially de-
tects the discrepancy of the test data against training (or normal) data, rather than precisely
estimating process models. Therefore, knowledge of the true time-delay is not necessary.

Another important concern is closed-loop identifiability. As shown in Söderström and
Stoica (1988); Gevers et al. (2009); Shardt and Huang (2011), for linear feedback control, high-
order regulators and larger time-delay in the process generally enhance the informativeness of
closed-loop data. The specific relationships among these factors have been fully investigated
in these references. However, as commented in Ljung (1999) (p. 432), time-varying or
nonlinear regulators in (8) are usually enough to guarantee the informativeness of routine
closed-loop data. The informativeness of closed-loop has been a bottleneck for closed-loop
identification. For the CD process, the informativeness can be relatively easy to satisfy, given
the complex constraints in CD MPC (any active constraint can render the MPC nonlinear
and thus increase the informativeness). Moreover, complex operating conditions, such as
disturbances and boundary effects, can enhance informativeness.

2.5. Model-plant Mismatch Detection

The lack of excitation in routine operating data typically produces parameter estimates
with large variance. This can make it difficult to distinguish predictable inaccuracy from real
MPM. One solution is to construct a boundary around the true model that captures the range
of uncertainties attributable to model estimation (Lu et al. (2017b)). Any model that falls
inside this boundary will be regarded as normal; models that fall outside are diagnosed with
MPM. Fig. 1 illustrates the idea. Each point in the figure represents the FIR representation
of a model. The models in circles are obtained from training data. The SVM they define
determines the boundary of a benchmarking cluster. The FIR representations of models from
the testing data are shown as crosses: those that lie inside the cluster are considered normal,
and those that lie outside are considered mismatched.

For training, we start with an interval of routine operating data with satisfactory control
performance. (Periods immediately following a closed-loop experiment are likely to involve
accurate models, for example.) Consecutive closed-loop identifications are performed using
a moving window, and the resulting collections of FIR coefficients provide the training data
for a one-class SVM. We apply the same moving-window identification methods used in
training to data collected during testing intervals, and then use the SVM to assess whether
the resulting model estimates lie inside or outside the benchmarking cluster.

For the full sheet-making problem, we apply the techniques above separately to each of
the temporal, spatial, and noise models. We prefer to use FIR structures to represent process
and noise models to synthesize the effects of all parametric mismatches into a single overall
metric. This becomes particularly important when the original model has high order, since
it is possible that a single large parametric mismatch may not obviously impact the overall
behavior of a model. In this sense, the FIR form is a more fundamental characterization of
a given model.
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Figure 1: Illustration of the MPM detection idea. Here the training and testing models refer to the process
model estimates from training and test data sets Lu et al. (2020).

3. Routine CD closed-loop Identification

This section presents a novel approach to CD identification that produces convergent
and consistent estimates from routine closed-loop data. The basic techniques are similar to
separable least-squares (Golub and Pereyra (2003)), alternately identifying the spatial model
G0 and the temporal model {A0(q−1), B0(q−1)}, until the parameters converge.

3.1. Parameter Estimation

Consider a set of input-output data generated according to (6) under the controller (8),

ZN = {y(1),u(1), . . . ,y(N),u(N)}. (9)

Stack all the parameters to be estimated into θT = [aT bT cT ] ∈ Rna+nb+1+q, and define the
loss function in terms of the prediction error as follows:

VN(θ) =
1

N

N∑
t=1

εT (t,θ)ε(t,θ), where ε(t,θ) = y(t)− ŷ(t|t− 1) ∈ Rm. (10)

The optimal parameter estimate θ̂N is obtained by

θ̂N = arg min
θ∈Ω

VN(θ), (11)

where Ω = Ωa⊕Ωb⊕Ωc is the parameter domain made up of compact convex sets Ωa, Ωb, and
Ωc, respectively containing a, b, and c. The product term Cb in (7) makes the optimization
problem (11) nonconvex. However, the simple product form of this problematic term suggests
a separable least-squares approach. Fixing either C or b and optimizing over the other is
convex. As we will show, alternating between these steps leads to a convergent iterative
identification scheme. We must account for nonuniqueness in solving (11). Assuming k 6= 0,
all the pairs (b/k, kc) describe the same model. Imposing a suitable normalization (Bai and
Li (2004)) leads to the algorithm shown in Table 1. As we show in Theorem 1 below, this
iterative scheme converges to stationary points.
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Table 1: The implementation of routine CD closed-loop iterative identification

Algorithm for routine CD closed-loop identification

Input: Set â0 ← ai, b̂0 ← bi and ĉ0 ← ci. K ← maximum iteration number.
Loop: for k = 1, . . . , K, do

1: Fix the spatial parameter ĉk−1, and estimate the parameters of the high-
order ARX part in (6) by solving this least-squares problem:

{âk, b̂k} = arg min
a∈Ωa,b∈Ωb

VN(a,b, ĉk−1). (12)

2: Normalize b̂k as follows to address the non-identifiability

ρk = sign
(
b̂k(1)

)
, b̂k = ρk

b̂k

‖b̂k‖
. (13)

3: Fix the temporal parameter {âk, b̂k}, and estimate the spatial parameter
in (6) by solving this nonlinear least-squares problem:

ĉk = arg min
c∈Ωc

VN(âk, b̂k, c). (14)

End for

4: Let â ← âK , b̂ ← b̂K , ĉ ← ĉK and denote θ̂N = [âT b̂T ĉT ]T . Filter the
input-output data

ỹ(t) = A(q−1, â)y(t),

ũ(t) = A(q−1, â)G(ĉ)u(t). (15)

5: Estimate temporal model g(z−1,θT ) with ỹ(t), ũ(t) by the following multi-
experiment output-error identification:

ỹ(t) = g(q−1,θT )ũ(t− d) + e(t). (16)

6: Denote θ̂T = [ĥ f̂ ]T . Re-scale ĉ as follows:

ĉ← ĉf̂/(1− ĝ). (17)

7: Estimate the spatial parameter θS in (4) via simple nonlinear least-squares.

Call the result θ̂S.

Output: Return the parameter estimates θ̂S, θ̂T , â and the noise covariance.

3.2. Convergence and consistency analysis

Assumption 1. The input-output data ZN is bounded and generated according to the stable
closed-loop system (6) with (8), where N � na +nb and e(t) is Gaussian white noise vector.
In addition, (6) is uniformly stable for each θ in Ω.
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Assumption 2. The polynomials A(q−1, a) and B(q−1,b) are coprime for each θ in the
parameter set Ω. Also, some vector θ◦ in Ω corresponds to the true system. In particular,
the orders na, nb, and p in (6) are compatible with those of the true system.

Assumption 3. The closed-loop data ZN are informative enough for the relevant closed-
loop identification. In particular, we have both (a) and (b) below.

(a) The closed-loop input data uN is strongly persistently exciting with orders at least nb
over the basis matrices Ek, k = 1, . . . , p. Symbolically,

rank Φu = p(1 + nb), where Φu =

 ψū(1)
...

ψū(N)

 . (18)

In words, Φu has full column rank for any large N . This is similar to the persistent
excitation requirement for input signals in open-loop identification.

(b) There does not exist a common linear time-invariant feedback relationship between
inputs and outputs over all channels. Symbolically,

E
∥∥R(q−1)G(c)u(t− d) + S(q−1)y(t)

∥∥2
> 0, ∀c ∈ Ωc, (19)

where R(q−1) and S(q−1) are arbitrary scalar linear filters, and E is the generalized
expectation operator.

The above assumptions are fairly mild. In particular, it is easy to meet the persistent
excitation requirement (18) in Assumption 3(a), since in closed-loop the input signal is filtered
white noise that contains enough excitations to make Φu full column rank, especially when N
is large. For Assumption 3(b), one can find that all input-output channels have to share the
same regulator in order to falsify (19). This assumption becomes more convincing given that
most CD MPC has complex dynamics due to the complexity in the associated optimization
and constraints (Zhu (2002)). In particular, the presence of actuator constraints in MPC and
the resultant switching between active and inactive constraints due to disturbances provide
closed-loop identifiability.

Theorem 1. Consider the data ZN in (9) under Assumptions (1)–(3). Apply Algorithm 1.

If the parameter estimates âk 6= 0, b̂k 6= 0, ĉk 6= 0 for each iteration k = 1, . . . , K, then we
have the following.

(i) If N � na +nb and the sequence of parameter estimates {θ̂
k

N} converges, then its limit
is a stationary point for VN(θ). That is,

θ̂N = lim
k→∞

θ̂
k

N =⇒ ∇VN(θ̂N) = 0. (20)

(ii) The function V (θ) = E[εT (t,θ)ε(t,θ)] is the uniform limit of the loss functions VN(θ)
as N →∞. That is,

sup
θ∈Ω
|VN(θ)− V (θ)| → 0 as N →∞, w.p. 1. (21)
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Consequently
θ̂N → θ∗ as N →∞, w.p. 1, (22)

where θ∗ = arg minθ∈Ω V (θ).

(iii) The parameter estimates θ̂N are consistent, i.e., they capture the true value θ◦ in the
limit:

θ◦ = lim
N→∞

θ̂N w.p. 1. (23)

Proof. See Appendix B.

Remark 1. The convergence promised in Theorem 1(i) holds even when the assumptions
on the informativeness of closed-loop data are not satisfied (Golub and Pereyra (1973)).

Moreover, Bai and Li (2004) show that the accumulation points of {θ̂
k

N} are stationary for

VN(θ̂) even when the sequence {θ̂
k

N} cannot be shown to converge.

Remark 2. The consistency result in Theorem 1(iii) requires the knowledge of true time-
delay. However, this requirement can be relaxed when implementing the MPM detection
algorithm. As shown in Section 2.5, the essence is to detect the changes in the pattern
of test data relative to the normal training data. For this purpose consistent parameter
estimation may not be necessary and we could specify a (possibly inaccurate) time-delay
value based on our prior knowledge. As a result, the identification method could produce
biased parameter estimates. However, as long as the identified models from the test data
are showing discrepancy with respect to the nominal models from the training data, the
MPM detection algorithm will detect the difference and predict mismatch, regardless of the
inconsistent parameter estimate due to incorrect time-delay.

4. CD MPM with One-class SVM

4.1. One-class Support Vector Machines

Detecting abnormality in various processes are essentially a novelty detection problem,
since the number and variety of abnormal situations is typically too vast to imagine any single
class expressing them all. The one-class SVM (Schölkopf et al. (2001)) is a well-established
method for such cases. Here we briefly sketch the ideas to fix notation.

Consider a Euclidean space X of dimension r in which every possible data point can be
expressed as a single vector x. As detailed by Schölkopf et al. (2001), a cluster boundary in
X can be constructed as the pre-image of a hyperplane in some high-dimensional “feature
space” F under some mapping φ : X → F . Given ` data points x1, . . . ,x`, a natural quadratic
programming problem in F determines the desired hyperplane by separating the origin from
the cluster {φ(xi)}. Convex duality allows this problem to be solved, and the results to be
applied, entirely in the data space X . A popular choice for φ in the development above
corresponds to the Gaussian kernel

κ(x1,x2) = exp
(
−‖x1 − x2‖2 /c

)
, x1,x2 ∈ X . (24)
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(Here c > 0 is a tuning parameter.) The dual optimization problem generated by the ` data
points x1, . . . ,x` is

min
α∈R`

1

2

∑̀
i=1

∑̀
j=1

αiαjκ(xi,xj) (25)

s.t. 0 ≤ αi ≤
1

ν`
, i = 1, . . . , `, (26)

∑̀
i=1

αi = 1. (27)

(Here ν ∈ (0, 1] is a tuning parameter that sets the balance between penalizing incorrect
classifications and maximizing the separation margin in the feature space F .) Given a solution
α̂ for (25)–(27), the boundary of the cluster region corresponds to the zero-level set for the
prediction score, p, defined by

p(x) =
∑̀
j=1

α̂j

(
κ(xj,x)− κ(xj,xi)

)
. (28)

Given a test point x in the data space X , we say that x lies inside the data-defined cluster
if p(x) > 0, and outside if p(x) < 0. The index i in (28) can be any one for which the strict
inequalities 0 < α̂i < 1/(ν`) hold (compare (26)); all such i give the same definition.

4.2. Application of one-class SVM to CD MPM detection

As mentioned above, our approach to the full-sheet problem involves independent parallel
application of SVM-based methods to three processes—spatial, temporal, and noise. The
temporal case is representative, so we focus on it here.

4.2.1. SVM training

In the generic notation above, ` represents the number of moving windows in the training
data set. We take for each training vector xi the FIR coefficients of the temporal model
estimated from observations in i-th moving window. In symbols,

xi = [x̂1
i . . . x̂

ng

i ]T , i = 1, 2, . . . , `, (29)

where ng is the order of the identified FIR model. These ` vectors set up the dual problem
(25)–(27), whose solution α̂ yields the desired prediction function as in (28).

4.2.2. Resampling

In practice, the amount of available training data may be in short supply due to frequent
transitions in production tasks driven by customer demands. In such cases, we can synthesize
additional vectors by re-sampling from the (estimated) probability distributions of the FIR
coefficient vectors. Mahata and Söderström (2004) show that parameter estimates from the
separable nonlinear least-squares method have Gaussian distributions (assuming the noise
is Gaussian); their argument can be adapted to give the same conclusion for our iterative
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closed-loop identification algorithm. Thus we can use real operating data to construct rough
estimators for the mean µk and variance σk of each FIR coefficient x̂k, k = 1, . . . , ng,

µ̂k = µ(x̂k1, . . . , x̂
k
` ), σ̂k = σ(x̂k1, . . . , x̂

k
` ), (30)

and synthesize compatible training models by drawing new FIR coefficients xk from the
corresponding Gaussian distributions. Typical choices for µ(·) and σ(·) in (30) are the sample
mean and sample variance.

Now the estimator in (30) is likely to underestimate the true variance when ` is small.
To mitigate this, we introduce a scaling factor αT for σ̂k (subscript T means temporal) and
use Gaussian distributions of mean µk and variance αTσk for resampling. In general, αT ≥ 1:
we use αT ≈ 1 when ` is large enough to make mitigation unnecessary, and larger αT > 1
when ` is small. Intuitively, increasing αT enlarges the variability considered “normal” and
consequently reduces the sensitivity of the overall mismatch detection algorithm.

Of course, when plenty of historical data are available, re-sampling may not be needed.

4.2.3. SVM-based MPM detection

With the prediction score function p = pT (x) of (28) in hand, we generate new inputs in
the same way as we gathered the original training data. That is, we take a temporal window
of data with final time t, and apply closed-loop identification to calculate the corresponding
vector x = x(t) of FIR coefficients in Rng . The sign of p(x(t)) predicts whether this model is
compatible with the cluster constructed using normal operation. A negative value predicts
mismatch. For robustness, we use the frequency of negative results as an MPM indicator.
Thus we introduce a number nT to set the number of recent windows to consider, and define

sT (t) =
1

nT
|{t′ : t− nT + 1 ≤ t′ ≤ t, pT (x(t′)) < 0}| (31)

(Here |A| denotes the number of elements in a set A.) We have sT (t) = 0 when all nT samples
up to time t are classified as normal and sT (t) = 1 when all such samples are classified as
abnormal. Intermediate situations give intermediate values; after choosing nT , the user can
specify a threshhold for sT above which a temporal MPM alarm is raised.

Developments perfectly analogous to those just detailed for the temporal process lead to
prediction functions pN(x) and pS(x) for the noise and spatial processes, with corresponding
frequency measures sN(t) and sS(t). Fig. 5 illustrates the approach, providing plots of pN(t),
pT (t), and pS(t) for a realistic scenario detailed below.

Table 2: Tuning parameters of the CD MPC

Tuning parameters Values Tuning parameters Values
CV target weight 0.40 MV temporal movement weight 0.25
MV target weight 0.17 MV spatial picketing weight 0.14
CV target value 42 MV target value 0

Prediction horizon 25 Control horizon 4
Actuator bend limit 30 Actuator upper/lower average ±1

Actuator change rate limit 15 Actuator upper/lower limit ±20
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5. Examples

This section verifies the proposed iterative algorithm for closed-loop identification and
the effectiveness of our approach to mismatch detection using realistic simulations. The
simulation platform used here was provided by Honeywell Process Solutions. It provides
a high-fidelity surrogate for an actual paper machine. However, we stress that real paper
machine operating data is critical to ensure the effectiveness of our algorithms, which will be
part of the future work.

5.1. Example 1: Iterative CD identification in closed-loop routine operation

In a representative paper-making process, the MV is a vector of inputs for the n =
74 autoslice actuators across the headbox that release pulp slurry into the sheet-making
process. The CV is a vector of m = 222 measurements of the dry weight of the paper
product, taken at equally-spaced locations across the sheet as it emerges from the machine.
(The symbols here correspond to the overview in subsection 2.1.) Samples are taken every
Ts = 12 seconds, and the time-constant is Tp = 126.5 seconds. The time delay is d = 2 time
steps. After discretization, the true CD process has these temporal and spatial parameters:
f ◦ = 0.9095, θ◦S = [0.38 269mm 0.10 1.5]T , d = 2. The MPC controller detailed in Fan
(2003) is installed. It enforces constraints of four types: bend limits for neighboring actuators,
bound limits for the actuator average profile, upper and lower limits for the actuator profile,
and limits on each actuator’s rate of change. Key numerical values are given in Table 2.
The true noise v◦ is produced by passing Gaussian white noise e(t) with mean 0 through

a high-pass filter H◦: v◦(t) = H◦(q−1)e(t), H◦(q−1) = 1−0.6q−1+0.3q−2−0.1q−3

1+0.4q−1+0.1q−2+0.05q−3 . The variance
of each output channel is 0.01. The relevant simulation parameters are given in Table 3
(which also contains several parameters that will be used later). For this experiment, we
assume an accurate plant model (no MPM). The setpoint is left unchanged during the entire
simulation, i.e., the noise is the only external signal to the system. In addition, we assume
that the true process delay is available and is incorporated into the identification algorithm
to avoid estimating the inverse of controller as the process model. The simulation of the
closed-loop system lasts for 120 minutes (600 samples of data), as shown in Figure 2. We
collect the last 400 samples of data after initial transients for the closed-loop identification.

Table 3: Simulation and MPM detection parameters for Example 1 and Example 2

Parameters Values Parameters Values
Actuator zone width 62.5194 mm CD bin width 20.8398 mm

Sampling interval 12 seconds Iteration number 5
Initial temporal θiT [0.82 0.18] Initial spatial θiS [0.3 200 0.2 4.0]

Window size 80 min Window step size 20 min
Training data size 800 min Temporal αT 3

Spatial αS 1.5 Noise αN 3
Time noise model changes 1200th min Time MPM occurs 1600th min

The initial spatial and temporal parameters for the identification algorithm are given
in Table 3. Like most Hammerstein model identifications, our algorithm converges rapidly,
accurately approximating a local minimum in just a few iterations. The maximum iteration
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Figure 2: Simulated input-output data for the closed-loop CD process

number is set to K = 5. For the temporal model, we choose na = 20, nb = 50; the spatial
order is set to p = 30. Proper regularizations are necessary in executing this algorithm to
smooth the estimated FIR coefficients. The regularization can also ensure the numerical
stability incurred with the high-order least-squares problem (12) when the regressor matrix
has a large condition number.

The left three plots in Fig. 3 compare the impulse responses of the true and estimated
noise, temporal, and spatial models. The estimated models show high agreement with the
true models, indicating the effectiveness of the proposed routine identification algorithm.
More importantly, the noise and process models can be estimated independently, making
it possible to distinguish between changes in the two models. After steps 4–6 in Algo-
rithm 1, the estimated values of the temporal and spatial parameters are: f̂ = 0.9060 θ̂S =
[0.3442 277.0566 mm 0.0694 1.7889]T . These values agree well with true values. As an addi-
tional test, we repeat the entire closed-loop identification process above after swapping a low-
pass filter H◦ into the noise model, producing v◦(t) = H◦(q−1)e(t), H◦(q−1) = 1+0.7q−1+0.4q−2

1−0.5q−1+0.1q−2 .
The corresponding identification results are shown on the right side of Fig. 3. Again, the
impulse responses for the estimated system and the true system are in excellent agreement.
These results verify the effectiveness of our proposed CD closed-loop identification method.

5.2. Example 2: One-class SVM model-plant mismatch detection

Here we extend the simulation in Example 5.1 to focus on detecting model-plant mis-
match. We specify a relatively small spatial scaling factor αS to increase the sensitivity of
our MPM detection algorithm to spatial mismatches. The main process characteristics given
in Table 3 remain in force.

The simulation timeline for this example runs as follows. Initially there is neither MPM
nor noise model change and the noise model v◦(t) = H◦(q−1)e(t) involves H◦(q−1) = 1−0.6q−1

1+0.4q−1 .

After disposing of the initial transient part, we use the first 4000 samples (cf. Table 3) as
the training data. Then we apply moving windows, each 400 samples wide, to the training
data and identify spatial, temporal, and noise models in each window. A new window is
initiated every 100 samples. Once this step is complete, we train one-class SVMs separately
on these models and obtain the corresponding prediction functions. This procedure involves
scaling the initial cluster and re-sampling. From then on, the SVMs start to predict mis-
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Figure 3: CD closed-loop iterative identification results: noise model is a high-pass filter (left); noise model
is a low-pass filter (right);

matches. After 6000 samples, we gradually change the noise model to v◦(t) = H◦(q−1)e(t)

with H◦(q−1) = 1+0.7q−1

1−0.5q−1 . Then, at index t = 8000, the width of true plant model begins to
ramp up to 1.5 times its original value over a span of 300 samples. The true width parameter
remains at its new value thereafter. Note that throughout this simulation there is no setpoint
change or any other external excitation.

Colormaps showing the simulated input and output data are shown in Fig. 4. The plots
highlight the times at which noise model change and spatial MPM are introduced. It is clear
that the output variance increases after introducing the noise model change, and increases
even more after adding the MPM. The left plots in Fig. 5 illustrate the spatial and temporal
parameter estimates over all moving windows. The red dash-dotted line in each plot shows
the true parameter value. The blue lines display the estimated parameter values in each
moving window. Although these parameter estimates are rough due to low excitation levels
in the routine closed-loop data, they still provide valuable indications on which parameter
may have drifted. Moreover, this closed-loop identification algorithm can easily carry over to
the data collected during a closed-loop identification experiment. This means that if a closed-
loop identification is necessary, the user only needs to start injecting external excitations to
the system, with the closed-loop identification algorithm operating continuously.

Detailed results on mismatch detection are shown on the right of Fig. 5. As a baseline for
comparison, the online user-specified performance index in Lu et al. (2017a) is also used to
monitor the output. This index is strongly affected by changes in output variance. It starts
to decline immediately after the noise model changes, even before the MPM is added. This is
the main drawback of variance-based performance indices: they convey no insight about the
cause of the poor performance they detect. In contrast, the scores obtained from independent
concurrent SVM predictions clearly indicate the reasons for poor performance. Witness the
sharp and lasting drop in the SVM scores for the noise model shortly after t = 6000, while
the temporal and spatial scores remain high, followed by a similar transition in the spatial
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Figure 4: The colormap of simulated input-output data

SVM score soon after t = 8000 while the temporal score remains high. The accumulated
score metric described in section 4 absorbs transient fluctuations in the scores, leading to a
robust system for accurately detecting model-plant mismatch.

6. Summary

This work presents a novel MPM detection approach based on closed-loop identification
method that provides consistent parameter estimates for the CD process. It applies to
routine operating data without external excitation, provided that a few mild conditions on the
informativeness of closed-loop data are satisfied.One-class SVM models are developed based
on the clusters of model estimates from the training data, and used to predict classifications
of models estimated from the test data. From the predictions, we are able to detect MPM.
A key advantage of this approach is independent monitoring of changes in the process and
noise models, leading to MPM alarms that are robust to noise model changes. Moreover,
procedures for implementing this MPM detection framework are provided in this paper and
additional techniques (e.g., resampling) are also introduced to address practical issues such
as a shortage of training data. Two examples are presented to validate the effectiveness of
the proposed methods. As part of the future work, we will test our results on real paper
machine to validate the effectiveness of the proposed algorithm.

Appendix A. Proof of the asymptotic equivalence of (6) and (1)

Consider the generic scalar system y(t) = Gs(q
−1)u(t) +Hs(q

−1)e(t), where Gs(q
−1) and

Hs(q
−1) are stable and Hs(q

−1) is inversely stable. Dividing by Hs provides the equivalent
representation As(q

−1)y(t) = Bs(q
−1)u(t) + e(t) where As(q

−1) = 1
Hs(q−1)

= 1 +
∑∞

k=1 a
s
kq
−k

and Bs(q
−1) = Gs(q−1)

Hs(q−1)
=
∑∞

k=0 b
s
kq
−k. Model the system as A(q−1, ηn) = B(q−1, ηn)ut + et,

where the vector ηn stacks all the coefficients in the polynomials A(q−1, ηn) = 1+
∑n

k=1 akq
−k,

B(q−1, ηn) =
∑n

k=0 bkq
−k. Assume that u(t) is sufficiently exciting. Define sample size as

N and model order n(N) as a function of N . Suppose that as N → ∞, n(N) → ∞ but
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Figure 5: Simulated input-output data for the closed-loop CD process

n(N)3+δ/N → 0, for some δ > 0. That is, the model order goes to infinity as the sample
size N increases, but at a rate quantifiably slower than linear in N . Under these conditions,
Lemma 2.1 in Zhu and Hjalmarsson (2016) shows that as N →∞

sup
ω

∣∣∣A(e−jω, η
n(N)
N )− As(e−jω)

∣∣∣→ 0, sup
ω

∣∣∣B(e−jω, η
n(N)
N )−Bs(e

−jω)
∣∣∣→ 0. (A.1)

Informally, identification of a generic scalar model can be achieved by identifying an ARX
model of appropriate order.

Similarly, our multivariate CD model (1) can be written Am(q−1)y(t) = Bm(q−1)Gu(t−
d) + e(t), where Am(q−1) = 1/H(q−1), Bm(q−1) = g(q−1)/H(q−1). Given that both Am(q−1)
and Bm(q−1) are stable by assumption, we can approximate them by finite sums. Consider
the finitely parameterized structure (6). Much as above, suppose that Gu(t−d) is sufficiently
exciting, and that as N → ∞, the degrees na(N) and nb(N) increase to ∞ slowly enough
that na(N)3+δ/N → 0 and nb(N)3+δ/N → 0, for some δ > 0. We find that, as N →∞,

sup
ω

∣∣A(e−jω, a)− Am(e−jω)
∣∣→ 0, sup

ω

∣∣B(e−jω,b)−Bm(e−jω)
∣∣→ 0. (A.2)

The only difference is that the CD model is multivariate. Identifying the scalar filters
A(q−1, a) and B(q−1,b) in (6) can be completed by considering it as a multiple-experiment
identification. This confirms that the original CD multivariate model (1) can be approxi-
mated by a high-order ARX model as shown in (6).
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Appendix B. Proof of Theorem 1

Defining

Φy =

 ψȳ(1)
...

ψȳ(N)

 ,
it then follows from (7) that

Ŷ = [Φy Φu]

[
a

Cb

]
=
[
Φ̃y Φ̃u

] [ a
Bc

]
, (B.1)

where B = diag{b, . . . ,b}. Φ̃y and Φ̃u are easily obtained by rearranging Φy and Φy,
respectively. The loss function (10) is expressed in a more compact form,

VN(θ) = ‖Y − Ŷ‖2
2 =

∥∥∥∥Y − [Φy Φu]

[
a

Cb

]∥∥∥∥2

2

. (B.2)

(i) The proof extends the Theorem IV.1 in Bai and Li (2004). Note that to ease the
notation, the following derivations will drop the hat in the parameter estimates from (12)–
(14), but add a subscript “N” to stress the fact that these estimates are obtained from N
samples of data. It is easy to see that through the iterative identification steps (12)-(14),

VN(θkN) = VN(akN ,b
k
N , c

k
N) ≤ VN(akN ,b

k
N , c

k−1
N ) ≤ VN(ak−1

N ,bk−1
N , ck−1

N ) = VN(θk−1
N ).

In other words, VN(θkN) is nonincreasing in k. The normalization step in (13) ensures that
the sequences {bkN} and {ckN} are bounded. (Otherwise, VN(θkN) would be unbounded —
contradicting the facts that ZN is bounded, all model structures in Ω are stable, and that
VN(θ) is continuous in θ and nonincreasing.)

Now concentrate on the convergence of the identification algorithms for large N . First
let us establish a statement that when fixing the spatial parameter c, VN(θ) is convex in
temporal parameters {a,b} and vice versa. Based on (B.2), one has

VN(a,b, c) = YTY − 2YTΦ

[
a

Cb

]
+

[
a

Cb

]T
ΦTΦ

[
a

Cb

]
, Φ = [Φy Φu] . (B.3)

When the parameter c is fixed, it is easy to derive that for λ ∈ [0, 1],

VN(λa1 + (1− λ)a2, λb1 + (1− λ)b2, c) = λVN(a1,b1, c) + (1− λ)VN(a2,b2, c)

−λ(1− λ)

([
a1

Cb1

]
−
[

a1

Cb1

])T
ΦTΦ

([
a2

Cb2

]
−
[

a2

Cb2

])
. (B.4)

Due to Assumption 3, for any large N , Φ has full column rank, which renders ΦTΦ > 0.
Therefore, with the fact that a 6= 0, b 6= 0, c 6= 0, (B.4) implies that

VN(λa1 + (1− λ)a2, λb1 + (1− λ)b2, c) ≥ λVN(a1,b1, c) + (1− λ)VN(a2,b2, c).
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This verifies the convexity of VN(a,b, c) with respect to a,b. A similar conclusion can be
achieved for the convexity of VN(a,b, c) with respect to c. An immediate consequence of
these statements is that in each optimization of the iterative identification algorithm, there
exists a unique and closed-form solution. It will be shown below that even though VN(θ)
may not be convex in θ, our algorithm can always converge to its local minimum.

Now define θk to be the parameter estimate at k-th iteration. When the iterative iden-
tification algorithm (12)-(14) converges, i.e., θk → θ for some θ, it is necessary to show
that ∇VN(θ) = 0. Suppose that ∇VN(θ) 6= 0, then there always exists a direction (e.g.
negative gradient) along which VN(θ) decreases. Because the solution to (12) and to (14) is
unique, one can always minimize VN(θ) sequentially to achieve another point θ′, such that
VN(θ′) ≤ VN(θ). This contradicts the facts that VN(θ) is nonincreasing and θk converges to
θ. Thus the statement in (i) holds.

(ii) Combining (6) and (8), one can see that the closed-loop system has the form

y(t) = fS
(
t,yt−1,ut−1

)
+ e◦(t). (B.5)

According to Assumption 1, the nonlinear closed-loop system (B.5) is exponentially stable,
which satisfies S1-S3 in Ljung (1978). Moreover, with the parameterizations (6), the one-
step-ahead predictor (7) of the model is differentiable with respect to parameter θ, which
implies the condition M1 in Ljung (1978). Our selected quadratic criterion also meets the
regularity condition C1 in that paper. As a result, Lemma 3.1 in Ljung (1978) applies to
our scenario, which indicates the validity of (21). As the convergence in (21) is uniform in
θ ∈ Ω, (22) follows directly from (21).

(iii) From Assumptions 1 and 2, it follows that ε(t,θ◦) = e◦(t). Therefore,

V (θ)− V (θ◦) = E[ε(t,θ)− ε(t,θ◦)]T ε(t,θ◦)
+E[ε(t,θ)− ε(t,θ◦)]T [ε(t,θ)− ε(t,θ◦)]. (B.6)

Note that ε(t,θ) − ε(t,θ◦) = ŷ(t|θ) − ŷ(t|θ◦) which only depends on past input-output
data and thus is not correlated with current noise ε(t,θ◦). Hence, the first term in (B.6) is
zero. The second term is always nonnegative which means that V (θ) is always greater than
V (θ◦) unless ŷ(t|t − 1,θ) = ŷ(t|t − 1,θ◦). Now let us show that under the informativeness
condition of closed-loop data as in Assumption 3, ŷ(t|θ∗) = ŷ(t|θ◦) implies that θ∗ = θ◦.
From Assumption 2 and (7)

ŷ(t|θ∗)− ŷ(t|θ◦) = ψ(t)

[
a∗ − a◦

Cb∗ −Cb◦

]
, ψ(t) =

[
ψy(t) ψū(t− d)

]
. (B.7)

Plugging this into the limit loss function (B.6) yields

E[ŷ(t|θ∗)− ŷ(t|θ◦)] =

[
a∗ − a◦

Cb∗ −Cb◦

]T
E[ψT (t)ψ(t)]

[
a∗ − a◦

Cb∗ −Cb◦

]
. (B.8)

From Assumption 3a, (18) holds for any large N . Thus asymptotically, E[ψū(t)] has full
column rank. Moreover, according to (19), columns of E[ψū(t− d)] are linearly independent
of those in E[ψȳ(t)]. This implies that E[ψT (t)ψ(t)] has full column rank. Therefore, the

only situation making V (θ∗) − V (θ◦) = 0 is a∗ = a◦, Cb∗ = Cb◦. Note that the rescaling
(step 6) of the algorithm gives rise to C∗ = C◦, b∗ = b◦, and this ends the proof of (23).
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