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Abstract

Data-driven disciplines such as biostatistics and chemometrics are undergoing a
period of transformation propelled by powerful advances in computational hard-
ware, parallel processing and algorithmic efficiency. Process systems engineering
is positioned for concurrent advances in data-driven sub-disciplines such as mod-
eling, optimization, control, fault detection and diagnosis. This work embodies
this transformation as it addresses a novel industrial fault detection problem from
both traditional and contemporary approaches to process analytics. Traditional
approaches such as partial least squares are compared with powerful new tech-
niques inspired by deep representation learning such as convolutional neural net-
works. Novel contributions include the formulation and introduction of a novel
industrial predictive classification problem, the design and implementation of a
comprehensive machine learning workflow that converts raw industrial data into
critical operational insights, and the presentation of a robust comparative analy-
sis between traditional and contemporary approaches to representation learning
and binary classification. Specifically, this work addresses the unexpected loss of
plasma arc in the electric arc furnace of a large-scale metallurgical process. The
objective is to learn an efficient and informative representation from the raw in-
dustrial data that enables the prediction of an arc loss event such that operators can
take corrective actions. A comprehensive representation learning and predictive
classification framework is presented for development of the inferential sensor
from large quantities of historical industrial process data.
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1. Introduction1

Representation learning is described as a subset of machine learning (ML)2

and a superset of deep learning. Classical ML is distinguished from represen-3

tation learning through the selection of features. In classical ML features are4

hand-designed whereas in representation learning the features are learned from5

the data. Moreover, in deep representation learning there exist additional layers of6

abstraction between simple learned features and more complicated features that7

may further improve representation [1]. Representation learning is defined as the8

means by which an efficient and informative representation can be learned that ex-9

tracts useful information to improve the performance of classification, regression10

or prediction models [2]. The labor intensive procedure of engineering features is11

excellent at leveraging application specific domain knowledge but this approach12

lacks efficiency and ease of applicability across various domains [3]. With repre-13

sentation learning the important discriminatory features can be learned from the14

data in a systematic fashion allowing for much faster deployment of effective ML15

models for problems from a variety of domains [2].16

The use of deep representation learning algorithms for process systems engi-17

neering (PSE) applications (e.g., control, process monitoring, and fault detection)18

is a relatively new, but highly active research area [4]. The Tennessee Eastman19

(TE) process has been used as a fault detection and diagnosis (FDD) benchmark20

to validate many advanced neural architectures including stacked sparse auto-21

encoders [5], deep belief networks [6], and deep convolutional neural networks22

(CNNs) [7]. A limitation of these studies is that they do not extend the validation23

to industrial case studies which include many added complexities. The design24

of the three phase flow facility by Cranfield University has improved this predica-25

ment by providing a benchmark for comparative process monitoring studies based26

on real experimental data [8, 9]. This work offers a different form of contribution27

as it validates and compares traditional and advanced process monitoring methods28

on historical data taken from a real, large-scale industrial process. Another limita-29

tion of these studies is that they focus on detecting and diagnosing faults that have30

already occurred. Alternatively, this work is distinguished by the fact that we aim31

to predict our fault approximately five minutes before it occurs.32

In this paper we develop and introduce an end-to-end workflow for industrial33

fault prediction that includes data pre-processing, representation learning and pre-34

dictive classification. Traditional and contemporary approaches to representation35
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learning and binary classification are compared in a comprehensive analysis for36

their ability to predict the fault using large quantities of historical industrial data.37

Extensive cross-validation and hyper-parameter optimization trials are performed38

to obtain rigorous empirical results and maximize the accuracy of fault prediction.39

The fault that we aim to detect and predict is the unexpected loss of plasma arc in40

an industrial direct current (DC) electric arc furnace (EAF) that serves as a smelter41

to refine ores into base metals.42

Ore is transported from the mine and passed through a series of hammer mill43

grinders, flash dryers, preheater cyclones, calciner combustion chambers and flu-44

idized bed reducers. This processing provides a fine particulate feed that is dried,45

heated and reduced to maximize the efficiency of the energy intensive twin elec-46

trode DC EAF, illustrated in Figure 1. An open plasma arc spans from the graphite47

electrodes (i.e., the cathode) to the surface of the molten slag (i.e., the anode) pro-48

viding energy required to maintain the slag and alloy at target temperatures over49

1400◦C [10]. The roof and side walls of the furnace are water cooled whereas the50

bottom anode is air cooled to maintain safe structural temperatures [11]. Hot off-51

gas released from the furnace is recycled to provide upstream preheating. The feed52

enters from multiple ports along the roof whereas the slag and alloy are tapped in-53

termittently from launders [12]. This work is directly relevant to a variety of EAF54

operations including nine in the Canadian steel-making industry [13].
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Figure 1: An illustration of a direct current electric arc furnace [14].
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Stable EAF operation is critical for maximizing production efficiency and55

profitability. Unexpected loss of the plasma arc is a recurring and unresolved56

fault that significantly impacts the production rate and the electrical efficiency of57

the furnace. There are three primary categories of suspected arc loss mechanisms,58

i.e., electrical disturbances from the DC power supply, feed disturbances from59

the upstream metallurgical processes and the operation of the EAF. Therefore, a60

broad process aspect ratio is considered in the representation learning analysis that61

includes dozens of measured variables (MVs) from the power supply, numerous62

upstream unit operations, and the EAF. Moreover, an entire year of high frequency63

operating data is collected and analyzed to develop the arc loss predictor.64

The goal of the fault predictor is to provide operators with a warning five to ten65

minutes in advance of an event with a 75% or higher probability of inducing arc66

loss such that operators can take preventative measures. Operators require at least67

two minutes prior to the arc loss event in order to take the neccesary corrective68

actions. Figure 2 illustrates the entire ML workflow including the data prepro-69

cessing tasks resulting in segmented datasets ready for representation learning70

and predictive classification. Note, some classification methods bypass explicit71

representation learning and instead learn from the raw features. There are also72

hidden feedback connections between the modules as the workflow progresses in73

a largely iterative fashion. Initially this alarm will serve as a tool for engineers74

and operators but ultimately the goal is to implement an advanced controller that75

can automatically take corrective action.76

Data Cleaning Data
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Raw Data Data Structuring Output Labeling

Representation
Learning

Data
Visualization

Predictive
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Figure 2: Flowchart illustrating the overall data analytics workflow.

The novel contributions presented in this work include the introduction of the77
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DC EAF arc loss problem and the formulation of this problem as a supervised78

ML problem. Successful problem formulation is a significant contribution that79

includes transforming a year of raw industrial operating data into cleaned, struc-80

tured, labeled, and segmented datasets that are amenable to further statistical ML81

analysis. Labeling the data requires the introduction of rigorous quantitative con-82

ditions to detect the arc loss. Given a precise problem formulation and procured83

training data, the remaining contribution is the development of the arc loss predic-84

tion inferential sensor. This contribution also includes a comprehensive validation85

and comparison of traditional and advanced approaches to representation learning86

and predictive classification on real industrial operating data.87

2. Data preprocessing and visualization88

Data preprocessing produces the datasets that are used to train, validate, and89

test the predictive models. Therefore, the preprocessing methodology is a signifi-90

cant factor for the generalization performance of a supervised ML algorithm [15].91

The goal of the preprocessing module is to transform the raw process historian92

data into a form that is amenable for statistical ML algorithms. Moreover, this93

transformation should maximally retain information from the raw data, minimize94

extraneous information injected during preprocessing and remove redundant data.95

Finally, the preprocessing procedure should maintain generality and flexibility for96

efficient deployment to other PSE applications. The remainder of this section in-97

cludes a description of the raw data followed by an overview of the methods used98

to structure, visualize, clean and segment the data.99

2.1. Wrangling big data - size and quality100

Big data is a contentious term primarily because the meaning of big in data101

science has undergone rapid semantic changes as the standard size of data-sets102

across various disciplines and domains has grown rapidly. Not only is the amount103

or volume of data context dependent but the velocity, variety and veracity of typi-104

cal data-sets vary widely across both time and disciplines [16]. This work qualifies105

as big data analysis from both contextual and pragmatic perspectives as most in-106

ferential sensing literature in PSE relies on significantly less data (e.g., Tennessee107

Eastman and penicillin fermentation benchmarks) and there is too much data for108

straightforward processing on most consumer-grade hardware.109
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The raw data used in this work involves one year of daily exports from a110

real industrial process historian. Our scope encompasses approximately all of the111

process variable data collected from a metallurgical process from the milling of112

crushed ore to the refining of base metals. Each day of operation is captured and113

stored as a comma separated value (CSV) file with approximately 228 columns114

and thirty thousand rows. Half of the 228 columns are process variables (PVs) and115

the other half are corresponding timestamps. In total, the entire year of operating116

data has an uncompressed size of 17.4 gigabytes (GB) and thus requires more than117

16 GB of random access memory (RAM) to simply load the data into a data-frame.118

2.2. Data structuring and output labeling119

The columns of each daily export have a varying number of rows with more120

densely sampled PVs having up to thirty thousand rows and others having as few121

as ten samples. The raw data contains asynchronous data with both numerical PVs122

such as furnace temperature and categorical PVs such as valve positions. The raw123

data contains errors such as missing values, bad inputs and not a number (NaN)124

values. Systematically structuring the raw data and removing the corrupted data125

is one of the first stages of preprocessing.126

Each of the 365 daily CSV file exports is loaded as a data-frame to replace127

non-numeric inputs (e.g., ‘tag not found’) with NaN values and remove rows and128

columns with overwhelming NaN values (e.g., rows with less than three non NaN129

values). The illustration in Figure 3 shows the preprocessing of three consecutive130

days and represents time horizontally. Each MV is represented by a green row and131

the accompanying timestamp is represented by a blue row with the dashed rows132

representing the differing frequency of measurements. The top of Figure 3 shows133

the structured dataset that has an equivalent number of samples for each MV, one134

unified timestamp and no NaN values. To preserve information the most densely135

sampled variable from each day is identified and the corresponding timestamp is136

used as a unified timestamp (blue bars at the top of Figure 3) for all PVs. To137

minimize insertion of synthetic data the less frequently sampled variables are re-138

sampled using a simple forward fill or zero order hold operation.139

Once the data is cleaned and structured it amounts to only 5.6 GB of uncom-140

pressed memory with each file having approximately 110 columns and twenty141

eight thousand rows per column. The data is now suitable for generating the arc142

loss labels. To ensure the labels are robust, all three conditions in Figure 4 regard-143
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Figure 3: Preprocessing consecutive days of historical data.

ing the power of an electrode must be met in order to constitute a loss of arc in144

that electrode. Specifically, the power must be stable within a standard deviation145

of 2 MW for approximately 11.5 minutes, there must be a power drop greater than146

10 MW within the past 36s, and the power must recover to within 5 MW of the147

original stable power within a period of approximately 10 minutes. These condi-148

tions are applied to each sample for both electrodes to generate output labels that149

are binary indicators of arc loss in the respective electrode.150

t-36 t
Time (seconds)

t+591t-675

Po
w

er
 (M

W
)

∆ > 10

|∆| < 5

 σ < 2

Figure 4: Illustration and quantitative definition of conditions constituting arc loss.

2.3. Data visualization151

Data visualization provides key insights into the frequency of the faults and152

the severity of the arc loss on overall production efficiency. Visualization also as-153
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sists in troubleshooting and validation of data pre-processing and output labeling,154

respectively. A sanity check is performed on the binary arc loss labels, such as155

that shown in Figure 5, to ensure that they correspond to a representative power156

drop. Three discrete arc loss labels are shown in the top plot of Figure 5 and the157

corresponding drops in power of arc A are shown in the bottom plot of Figure 5.158
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Figure 5: Visual validation of the arc loss labels.

The frequency of arc loss events is clear from Figure 6 which shows the num-159

ber of arc loss events per day for each plasma arc throughout a year of operation.160

Arc loss is a significant problem that can either occur as often as twenty five times161

per day (indicating a chain of arc losses) or not at all for multiple consecutive162

days. This distinction provides motivation to apply data-driven pattern recogni-163

tion techniques to determine the difference in operation between arc loss cascades164

and stable operation. Although the average sequence of positive arc loss indica-165

tions is less than one minute in duration, the disruption to the EAF of a single loss166

event can cause up to twenty minutes of lost production. This visualization not167

only provides motivation but it also helps to recognize the class imbalance in our168

output labels due to the short average duration of each arc loss indication. Class169

imbalance is an important consideration addressed at the end of Section 2.170

Finally, the severity of the arc loss fault on EAF operation is visualized in171

Figure 7 by comparing a period of relatively stable operation (top) to a period172

of faulty operation (bottom) using the power applied to each arc and the furnace173

feed rate. The occurrence of arc loss has a significant impact on the furnace feed174

rates and subsequently on the production rate of the EAF. Thus, it is imperative to175
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Figure 6: Daily arc loss events in each electrode over one year of operation.

prevent loss of the plasma arc in order to sustain economic viability of the process.176
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Figure 7: Visually comparing stable operation (top) to faulty operation (bottom).

177

2.4. Data cleaning178

The quality of any ML model depends on the quality of the input it receives.179

Here, data cleaning involves setting PV limits using process knowledge to fil-180

ter out nonsensical values (e.g., negative feed rates), removing problematic PVs,181

and removing data from plant shut-downs. Erroneous process data and outliers182

can induce spurious correlations and increase the rate of misclassification for ML183

classifiers [17]. Removal of this data is accomplished through domain expertise184
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and consultations with our collaborators at BBA. A set of minimum and maximum185

limits are agreed upon for each PV and measurements outside of these limits are186

set to either the nearest limit or three standard deviations from the mean.187

The left side of Figure 8 shows the power values for arc A as a histogram with188

a normally distributed probability density function (PDF) and PV limits shown by189

the vertical red lines. There are some negative power values that are subsequently190

adjusted to zero during data cleaning. Using process knowledge to set PV limits191

is not an infallible strategy. Sanity checks are necessary to ensure the PV limits192

are correct as demonstrated by the right side of Figure 8 which shows the crucible193

heat loss as a PDF with the original PV limits as vertical red lines. All of the194

crucible heat loss data is outside the original PV limits but instead of cleaning this195

data the PV limits are re-evaluated and it is deemed acceptable. This PV limit and196

sanity check procedure was conducted for all of the PVs.

Figure 8: Setting PV limits with process knowledge to filter out erroneous data.

197

Outliers are often considered to be values that are greater than three standard198

deviations away from the mean. Box plots are commonly used to show the dis-199

tribution of a variable and indicate the number of outliers. Treatment of outliers200

is application specific and modeling abnormal behavior requires retention of data201

that may be statistically defined as outliers. Figure 9 shows the use of box plots202

to visualize the number of furnace feed values greater than 1.5 times the inter-203

quartile range (shown by the black circles). The statistical outliers at the top of204

Figure 9 are considered feasible whereas the outliers with a negative value at the205

bottom of Figure 9 are deemed irrelevant and are removed from the data.206

Two final tasks remain for data cleaning, i.e., removing unhelpful PVs and207
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Figure 9: Box-plots illustrating outliers that represent abnormal process behavior.

removing shut-down data that is not representative of the process during opera-208

tion. Five laboratory measurements were deemed to have too low of a sampling209

frequency for use as a fault predictor and were therefore removed entirely from210

the dataset. Seven PVs were removed based on prior knowledge that they had211

consistently faulty or inaccurate measurements (i.e., PVs that are not decommis-212

sioned from the historian correctly). A shut-down is a series of steps to take a213

chemical process from a normal state of operation to an idle state of operation214

until all required maintenance is complete. Two plant shutdowns are clearly visi-215

ble in Figure 6 in May and early October. The data for these periods is carefully216

removed for all PVs during data cleaning to preserve useful information during217

the initial shutdown and initial startup phases. By carefully structuring and clean-218

ing the data we obtain a significantly smaller set of data that has preserved useful219

process information and is more amenable to subsequent modeling.220

2.5. Data segmentation221

For binary classification problems with a large degree of class imbalance, the222

vast majority of instances fall into the majority class while significantly fewer in-223

stances fall into the minority class (i.e., the class of interest for fault detection).224

Most binary classification methods perform poorly on imbalanced datasets due to225

assuming the data are drawn from the same distribution and assigning equal error226

value to both classes. Classifiers aim to achieve the highest accuracy along the227

whole range of data and therefore tend to largely ignore the minority class which228

has relatively negligible impact [18]. Previous studies suggest techniques to ad-229
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dress class imbalance can be divided mainly into three categories: re-sampling,230

feature engineering, and classifier manipulation [19]. Artificially re-sampling the231

instances to balance class distributions can be performed by either under-sampling232

the majority class or over-sampling the minority class [20]. Under-sampling is at233

risk of discarding information from the majority class while over-sampling in-234

creases the likelihood of over-fitting by duplicating instances from the minority235

class [21]. More advanced methods include explicitly combining separate fea-236

tures from the minority and majority classes as well as manipulating the classifier237

weights internally [22].238

The arc loss dataset is highly imbalanced with 99.67% of the samples labeled239

as the majority class (i.e., no arc loss) and only 0.33% of the instances labeled with240

arc loss. A random under-sampling approach is taken to address class imbalance241

by extracting a segment that contains 55 minutes worth of data in the 5-60 minute242

period before every arc loss. All 1526 arc loss events (taken from both arc A and243

arc B) are extracted to represent the minority class. The majority class is randomly244

under-sampled and only 1526 segments that correspond to 55 consecutive minutes245

taken 5 minutes prior to periods of extended stable operation are extracted. The246

data segmentation process is illustrated in Figure 10. The entire dataset containing247

3052 segments is further divided with 85% (or 2594 balanced segments) for cross-248

validated training and 15% (or 458 balanced segments) for testing. With the data249

finally procured to a suitable format it can be used to train the representation250

learning and predictive classification algorithms.251
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Figure 10: Illustration of data segmentation to create a balanced data-set.
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3. Learned representations and predictive classifiers252

This work focuses on studying and validating the benefits of using represen-253

tation learning (e.g., dimensionality reduction) and deep learning for predictive254

classification with real industrial operating data. A comprehensive methods se-255

lection is illustrated in Figure 11 with explicit representation learning algorithms256

on the left and the predictive classifiers on the right. Partial least squares (PLS)257

and principal components analysis (PCA) are compared for generating explicit258

representations while logistic regression (LR), linear support vector classifier (L-259

SVC), kernel SVC (K-SVC), artificial neural networks (ANNs), and CNNs are260

all compared as predictive classification models. Note, the not applicable (N/A)261

indicates the use of raw features instead of explicit representation, but the K-SVC,262

ANN, and CNN methods have internal representations with kernels, hidden layers263

and convolutions, respectively. Altogether, Figure 11 shows fifteen experimental264

combinations with seven algorithms that are introduced in what follows.265

N/A

PCA

PLS

LR

L-SVC

K-SVC

ANN

CNN

Figure 11: Experimental configurations with representations (left) and predictive classifiers (right).

3.1. Explicit representations with reduced dimensionality266

Two traditional process analytics tools are applied to learn explicit dimension-267

ally reduced representations from raw features, i.e., PCA and PLS.268
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3.1.1. Principal component analysis269

The PCA statistical procedure was introduced in the early 20th century to de-270

compose a multivariate dataset into a basis set of linearly uncorrelated orthogonal271

variables called principal components [23]. It was subsequently developed for use272

in multivariable quality control and has since been further extended and applied in273

PSE where it is categorized along with PLS and ANNs as a quantitative process274

history based method for FDD [24, 25, 26, 27, 28]. The convention for fault de-275

tection is to calculate the Hotelling T 2 statistic with the largest singular values and276

the Q statistic with the smallest singular values. The T 2 statistic defines normal277

process behavior and any observation vectors that fall outside of the T 2 region278

indicate that a fault has occurred. Alternatively, the Q statistic is used to define279

a threshold that indicates whether or not the characteristics of the measurement280

noise have changed significantly [29, 30].281

Consider a pre-processed set of historian data that has been centered (i.e., col-282

umn means subtracted), X ∈ Rn×d where X includes the output label data as283

additional columns. The covariance matrix of X is denoted S ∈ Rd×d and is284

given by S = X>X/(n − 1). The typical eigendecomposition of S is given by285

S = V ΛV −1 where the i-th column of V ∈ Rd×d is the eigenvector vi of S or286

alternatively, the loading vectors or principal directions of the data X . The diag-287

onal matrix Λ ∈ Rd×d contains eigenvalues λi of decreasing magnitude. Given a288

symmetric matrix S with distinct eigenvalues λi, the eigenvector columns of V are289

orthogonal (i.e., V −1 = V >) and the eigendecomposition becomes S = V ΛV >.290

The principal components or principal component scores can be calculated by291

projecting the data onto the principal directions, i.e., C = XV , where the i-th292

column of C is the i-th principal component of X [31]. Alternatively, PCA can293

be conducted with singular value decomposition of the centered data matrix X294

where singular values (σ) are related to eigenvalues, i.e., λi = σ2
i /(n− 1) [30].295

3.1.2. Partial least squares296

As with PCA, PLS (also known as projection to latent structures) is a linear297

representation learning method with a rich history of use in PSE. The PLS ap-298

proach was first introduced by Herman Wold in the 1970s and has since been used299

extensively in chemical process industries as a chemometrics method for applica-300

tions such as FDD [32, 33]. One drawback of PCA is that although some principal301

components may describe significant variance in X , those same principal com-302
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ponents might not be relevant for predicting the output labels. As a supervised303

learning method, PLS regression (PLSR) maximizes the covariance between the304

input data, X , and output data (or labels), Y ∈ Rn×dy , in the latent space via the305

non-linear iterative partial least squares (NIPALs) algorithm [34].306

The centered input matrix X and output matrix Y are each decomposed as,
X = LP> + E and Y = MQ> + F , where L ∈ Rn×a and M ∈ Rn×a are latent
score matrices, P ∈ Rdx×a and Q ∈ Rdy×a are loading matrices, E ∈ Rn×dx and
F ∈ Rn×dy are residual matrices and a is the PLS component or reduction order
[35]. The iterative PLSR algorithm initializesX1 := X and Y1 := Y and then pro-
ceeds to maximizing l>i mi (for each iteration i) by initializing m1 as one column
of Y and solving the following set of equations until convergence is achieved:

w1 =
X>1 m1

‖X>1 m1‖
, l1 = X1w1, q1 =

Y >1 l1
‖Y >1 l1‖

, and m1 = Y1q1, (1)

where ‖· · ·‖ represents the Euclidean norm or `2 norm. The X-weights (w1) are307

updated with the Y-scores (m1) until the change in l1 is negligible or below some308

specified error [32, 35]. The same procedure is repeated for the next iteration by309

replacing X and Y with the residual matrices, i.e., Xi+1 = Ei = Xi − lip>i and310

Yi+1 = Fi = Yi −miq
>
i where pi = X>i li/‖l>i li‖.311

3.2. Predictive classification and implicit representations312

The right side of Figure 11 lists the five predictive classification methods that313

are trained and tested with the raw features, representations learned through PCA,314

and representations learned through PLS.315

3.2.1. Logistic regression316

Choosing LR for binary classification is natural as the standard logistic func-
tion (i.e., the sigmoid function) given by

P (Z) =
exp(Z)

1 + exp(Z)
=

1

1 + exp(−Z)
(2)

provides a bounded output between zero and one that can be interpreted as the317

probability of a binary outcome and mapped to discrete classes (e.g., arc loss or318

no arc loss). The input, Z = α + βX , to the logistic function illustrates the319
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connection with linear regression where X is the preprocessed data (or a learned320

representation thereof), α is a scalar bias and β is a weight vector. Historically,321

LR dates back to the early 19th century when the logistic function was invented to322

describe population growth and autocatalytic chemical reactions [36]. Recent ap-323

plications of LR in PSE include methods that combine LR with dominant trend ex-324

traction and dependent binary relevance classifiers to perform nonstationary fault325

diagnosis and multi-label fault classification, respectively [37, 38].326

3.2.2. Support vector classifiers327

The basis for the L-SVC predictive classification technique used in this work328

is the soft margin support vector machine (SVM) (or support vector network)329

introduced in 1995 which is itself an extension of the hard margin SVM, concep-330

tualized solved in 1965 [39, 40]. The difference between hard margin and soft331

margin SVM is that hard margin SVM assumes the classes are linearly separable332

and thus tries to find a hyperplane such that no point is misclassified whereas soft333

margin SVM allows for some misclassification that is proportionally penalized334

in the objective function. Binary SVC aims to construct a separating hyperplane335

between the two classes of data such that the margin (i.e., distance) between the336

hyper-plane and the nearest data points of each class is maximized [41].337

Nonlinear formulations of SVMs utilize the kernel trick, i.e., kernel SVC (K-338

SVC), such as the parametric polynomial kernel or the non-parametric radial basis339

function kernel with important properties that allow for enhanced representation340

capacity and efficient optimization [34, 42]. Recent applications of SVMs in PSE341

include applying one-class SVM on finite impulse response (FIR) data to detect342

model-plant mismatch (MPM) in a paper machine control system [43, 44] and343

using nonlinear SVM-based feature selection for FDD [45]. This work studies344

linear and kernel based SVCs with a variety of configurations (e.g., kernel and345

regularizer choices) provided in Section 4.346

3.2.3. Artificial neural networks347

Conceptually, ANNs were inspired by the structure and function of neurons348

in the human brain [46]. Neural networks have undergone at least three historical349

waves of popularity beginning with cybernetics in the mid 20th century, connec-350

tionism in the late 1900s and the current manifestation of deep learning that began351

in 2006 [1]. The deep learning wave of popularity resulted from a breakthrough352
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in the efficiency of training deep networks by Geoff Hinton’s research group, re-353

ferred to as greedy layerwise unsupervised training [2]. Deep learning tackles the354

problem of representation learning by using complex neural architectures to gen-355

erate nested representations that are functions of simpler representations [1]. The356

versatility and non-linear representation capacity of ANNs has drawn immense357

interest from the scientific community as a classifier for modeling complex rela-358

tionships [47].359

The perceptron, introduced by the psychologist Frank Rosenblatt, is the first
and most simple example of a modern neural network that was explicitly used for
binary classification of linearly separable functions [48][49]. The perceptron is a
building block for complex multi-layered ANNs that involve input layers, hidden
layers, and output layers consisting of neurons connected with learned weights
[50]. Linear combinations of inputs and weights at each layer are followed by
nonlinear activation functions that help with increasing the depth of the network
and modeling nonlinear relationships [51]. It is important to select a suitable
activation function as it can have a significant influence on the ANN performance
[52]. Types of activation functions include sigmoid functions, rectified linear unit
(ReLu) functions softmax functions and many more. The non-linear output after
the application of the activation function is represented by:

Z = (
n∑
i=1

xiwi + b) y = f(Z), (3)

where x1, x2, . . ., xn represent the n inputs of the perceptron, w1, w2, . . ., wn are360

the weights given to the respective input, b is a bias term, and f represents the361

chosen activation function for this layer.362

In the context of binary classification, the output layer of the ANN consists of
a single output neuron that indicates the class of the segment by computing the
weighted sum of hidden values from the last hidden layer, followed by a sigmoid
function, i.e.,

Z = (
n∑
i=1

xLi w
L
i + b) y = f(Z) =

exp(Z)

1 + exp(Z)
, (4)

where the superscript L refers to values and weights from the neurons in the final363

hidden layer. If the output of the sigmoid neuron is greater than or equal to 0.5, it364

outputs 1 (i.e., arc loss). However, if the output is less than 0.5, it outputs 0 (i.e.,365
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stable operation). In this work, flattened input segments are fed to a multi-layered366

fully connected perceptron model to predict arc loss as illustrated in Figure 12.367

Back propagation is used to train the network by propagating the error from the368

output layer to the hidden layer to update the weight matrix [53].
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Figure 12: Illustrating the use of a fully-connected ANN to predict arc loss from input segments.

369

3.2.4. Convolutional neural networks370

In the late 1980s CNNs were introduced to address visual pattern recognition371

problems such as handwritten digit recognition [54]. Instead of exclusively using372

fully-connected layers, CNNs use local connections (i.e., local receptive fields)373

to extract elementary features which are then combined by subsequent layers in a374

hierarchical feature extraction procedure [55]. Convolution with a kernel whose375

weights are learned through back-propagation creates the local receptive field for376

each feature map [56]. The receptive field and the dimensions of the resulting377

feature map are governed by the size of the kernel and the stride that the kernel378

takes over the input image (or input feature map). For a single input image, the379

number of output feature maps after the first convolution layer is equivalent to the380

number of learnable kernels specified for that layer.381
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For convolutional layer l, the output of the jth feature map is given by [57]:

xlj = f
(∑
i∈Mj

xl−1i ∗ kli,j + blj

)
(5)

where Mj is the set of input feature maps, ∗ is the discrete convolution operation,382

ki,j is the learnable kernel from input map i to output map j, and bj is the addi-383

tive bias for output map j. It is common to follow convolution layers in a CNN384

with a sub-sampling procedure known as a pooling layer. The output feature map385

from the convolutional layer is sub-sampled to create a lower dimensional feature386

map by applying a receptive field that converts the output at a certain location to a387

summary statistic of nearby outputs [1]. Two common types of sub-sampling op-388

erations are max pooling and average pooling. Pooling layers can help to improve389

computation and prevent overfitting [7]. As shown in Figure 13, the output of the390

last pooling layer is flattened before being passed to a fully-connected network.391
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Figure 13: Illustration of the architecture for the CNN predictive classifier

State of the art performance has been achieved using CNNs on object recogni-392

tion and natural language processing tasks [2]. Moreover, CNNs have been stud-393

ied for PSE applications such as FDD on the TE process [7], the three phase flow394

facility at Cranfield University [9], and in a semiconductor manufacturing process395

[58]. To our knowledge this is the first time CNNs have been studied for fault396

prediction in an industrial manufacturing process with historical operating data.397

Many alternative algorithms could be chosen, but the purpose of this study is to398

compare traditional methods with contemporary methods in order to highlight ar-399

eas for future investigation. We intend to explore more advanced representation400

learning methods (e.g., auto-encoders) and we also hope to release this dataset401

to the PSE community so that others can develop inferential sensors with better402

performance.403
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4. Experimental Setup404

The experiments primarily consist of training, validating, and testing the fif-405

teen experimental configurations shown in Figure 10. Our experimental setup has406

the following two key factors that distinguish our work from previous FDD stud-407

ies in PSE: i) simulating a production trial by preserving the temporal integrity408

of our training data with respect to our testing data and ii) performing rigorous409

cross-validation and hyperparameter optimization to compare models.410

The preprocessed data segments are split into two groups; the training and411

validation group consists of 2594 segments and the testing group consists of 458412

segments. Prior experimental designs performed random selection of segments413

for training and testing sets throughout the entire year of operation. Random sam-414

pling is common in literature as well, but because we aim to develop an inferential415

sensor for a real industrial process our experimental design mimics that of a pro-416

duction trial. As shown in Figure 14, our simulated production trial trains and417

validates models on the first ten months of operation while the last two months of418

operation are strictly used for testing the final models.
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Figure 14: Dividing segments into training and testing sets based on their date.
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4.1. Stratified k-fold cross-validation420

A stratified k-fold cross-validation strategy is used to compare different hyper-421

parameter configurations in our predictive classifiers. As shown in Figure 15, ten422

non-overlapping folds are created where each fold contains a balanced number of423

arc loss segments and stable operating segments. For each hyperparameter opti-424

mization trial (i.e., corresponding to a specific configuration) the model is trained425

on 90% of the training data and validated on the remaining 10%. This is repeated426

ten times, once for each fold, where the validation data changes as shown by the427

yellow highlight in 15. The result of the trial is the average accuracy of all ten428

validations which serves as a score to rank the hyperparameter configuration.429

Class Distributions Fold 1 Fold 2 Fold 3 Fold 10

Class 0

Class 1

Training 

Validation

. . . . .

Figure 15: Each model is trained and validated with stratified k-fold cross-validation.

4.2. Hyperparameter optimization430

A robust and transparent hyperparameter optimization strategy is critical for431

an impartial comparison of ML algorithms and the reliable development of a pre-432

dictive inferential sensor. The efforts taken here aim to contribute a high level of433

rigor to hyperparameter optimization in the context of PSE. A broad space of pos-434

sible hyperparameters is defined for each predictive classifier and then a Bayesian435

sequential model-based optimization (SMBO) algorithm searches this space us-436

ing a tree-structured Parzen estimator (TPE) to suggest the best configurations by437

maximizing expected improvement (EI) [59][60]. Multiple trials are conducted438

for each hyperparameter configuration where the TPE specifies the configuration439

for the next trial based on the EI.440
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4.2.1. Optimizing hyperparameters for learned representations441

Recall from Figure 10, the predictive classifiers are provided segments in the442

raw feature space or a latent space of reduced dimensionality using either PCA443

or PLS. The only hyperparameter that is considered while generating the PCA444

and PLS representations is the number of components for each method, i.e., the445

dimensionality of the latent space. Exhaustive search is performed by performing446

ten-fold cross-validation with LR classification while iteratively increasing the447

number of components for PCA and PLS. Figure 16 shows the resulting validation448

accuracy as the number of components increases. The peak validation accuracy449

occurs at 16 components for PLS (i.e., PLS-16) and 41 components for PCA (i.e.,450

PCA-41). Each of the five predictive classifiers is optimized and tested with data451

from three representations, i.e., raw features, PCA-41, and PLS-16.452
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Figure 16: Selecting the number of components for PCA and PLS with cross-validation.

4.2.2. Optimizing hyperparameters for predictive classifiers453

The Bayesian SMBO with a TPE is performed on the predictive classifiers,454

i.e., the methods on the right hand side of Figure 10. The number of trials selected455

for each method is manually selected based on the size of the hyperparameter456
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search space along with consideration for computational limitations. Optimizing457

the hyperparameters for these models, particularly for the deep learning models,458

is by far the most computationally demanding aspect of this work.459

The classifiers are divided into traditional ML algorithms (i.e., LR, L-SVC,460

and K-SVC) and deep learning algorithms (i.e., ANNs and CNNs) for the purpose461

of describing the hyperparameter optimizations. The hyperparameter search space462

for the traditional ML algorithms and the deep learning algorithms are provided in463

Appendix A. Search options for the tolerance and the regularizer strength (λ) are464

the same for all traditional methods but some of the remaining hyperparameters465

only apply to one method (e.g., kernel type only applies to K-SVC). Notably,466

the penalty denoted elast. refers to elastic net, the squared-hinge (SH) loss is467

abbreviated, and the three kernels are abbreviated as poly. for polynomial basis,468

sig. for sigmoid basis, and the radial basis function (RBF). Thorough explanation469

of each hyperparameter is beyond our scope, inquisitive readers are referred to the470

literature for further information [61].471

For each traditional ML classifier there are three explicit representations of the472

data that are separately optimized for hyperparameters. The result is nine exper-473

imental configurations of traditional ML algorithms with optimized hyperparam-474

eters specified in Table 1. Notably, an RBF kernel was selected for all K-SVCs,475

an SH loss was selected for all L-SVCs, and the optimized regularization strength476

varies significantly depending on the representation.

Table 1: Hyperparameter selection for traditional ML algorithms.

λ tolerance penalty loss kernel

NA
LR 10 0.001 elast.

L-SVC 1000 0.001 `1 SH
K-SVC 0.1 0.0001 RBF

PCA-41
LR 10 0.001 elast.

L-SVC 100 0.00001 `1 SH
K-SVC 0.01 0.0001 RBF

PLS-16
LR 0.001 1e−5 `2

L-SVC 100 0.001 `1 SH
K-SVC 0.1 1e−5 RBF

477
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For the deep learning methods the hyperparameter search space is significantly478

larger than the traditional ML methods. Although many more hyperparameter op-479

timization trials are conducted for the deep learning methods, the percentage of480

the search space covered by these trials is still significantly smaller. This is due481

to the fact that the search space for the deep learning methods is orders of magni-482

tude larger than the traditional ML methods and it is simply infeasible to conduct483

enough trials to search over an equivalent percentage of such a large space. Even484

with the use of cloud computation platforms to mitigate computational limita-485

tions, we are still constrained by the number of convolutional layers, batch size,486

and number of learned filters in our architecture.487

After a series of challenging cross-validation trials the final choice of ANN488

and CNN hyperparameters are shown in Table 2 for each of the representations.489

The choice of optimizers, regularization strengths (λ), and fully connected layer490

(FCL) activation functions are the same for both ANN and CNN models. Some491

hyperparameters that are unique to the CNN include the number of convolutional492

layers (CLs) and the number of learnable filters.

Table 2: Hyperparameter selection for deep learning algorithms.

representation NA PCA-41 PLS-16

classifier ANN CNN ANN CNN ANN CNN

optimizer Adagrad SGD Adam SGD Adagrad RMSprop
λ 0.1 0.05 0.01 0.001 0.1 0.0001

FCL activation relu elu elu tanh elu elu
no. of FCLs 5 2 9 1 10 1

FCL size 128 32 32 24 128 64
batch size 128 32 128 16 32 32

no. of CLs 1 1 1
CL activation tanh elu tanh

filters 6 24 16
filter size (5,5) (20,20) (3,3)
pool size (1,1) (2,2) (2,2)

493

Ultimately, the fifteen experimental configurations in Figure 10 are outfitted494

with the parameters in Table 1 and Table 2. These models are tested on segments495

from two months of subsequent operation as shown in what follows.496
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5. Experimental Results497

Classification results from supervised learning studies can be represented as a498

contingency table, known as a confusion matrix, with a dimension for the actual499

class values (i.e., y = 1 or y = 0) and a dimension for predicted class values (i.e.,500

ŷ = 1 or ŷ = 0). An arc loss event is considered a positive event with y = 1 and501

no arc loss (i.e., stable operation) is considered a negative event with (i.e., y = 0).502

The confusion matrix consists of four values; two of which correspond to correct503

or truthful predictions, and two of which correspond to false predictions. False504

predictions can be either false positive (FP) or false negative (FN), referring to505

either type I error (false alarm) or type II error (missed alarm), respectively. True506

predictions can be either true positive (TP) or true negative (TN), i.e., correctly507

predicting arc loss or correctly predicting no arc loss, respectively.508

For a particular experimental configuration (e.g., LR with PCA), the model509

produces an output estimate for each segment in the testing set. Each output510

estimate is compared to the true output label allowing the categorization of that511

prediction as either FP, FN, TP, or TN. Therefore, the sum of these four values is512

equivalent to the total number of segments in the testing dataset and the resulting513

confusion matrix summarizes the prediction fidelity of the model with respect514

to both the positive and the negative class. Various performance metrics (e.g.,515

accuracy) can be derived for each model from the confusion matrix of that model.516

The confusion matrix resulting from testing each of the fifteen experimental517

configurations in Figure 10, with parameters shown in Table 1 and Table 2, is518

provided in Table 3. In addition to the confusion matrix, two key performance519

metrics are tabulated in Table 3 for each configuration, i.e., the accuracy (ACC)520

and the recall, otherwise known as the true positive rate (TPR), with maximum521

values emphasized in bold font. Accuracy is simply defined as the sum of true522

predictions (i.e., TP and TN) divided by the sum of all predictions (i.e., the total523

number of segments). The most accurate experimental configuration is with an524

LR classifier on a 41 principal component representation followed very closely by525

an LR classifier on the raw data itself.526

The second critical performance metric provided in Table 3 is the recall which527

focuses on the cases which precede an arc loss event. Specifically, recall is de-528

fined as the number of times arc loss is correctly predicted divided by the number529

of times arc loss occurs, i.e., TPR = TP/(TP + FN). The experimental configura-530
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Table 3: Summary of the experimental results.

TP FP TN FN ACC TPR

NA

LR 182 49 151 76 0.727 0.705
L-SVC 185 46 141 86 0.712 0.683
K-SVC 167 64 156 71 0.705 0.702
ANN 176 55 152 75 0.716 0.701
CNN 181 50 141 86 0.703 0.678

PCA

LR 186 45 148 79 0.729 0.702
L-SVC 176 55 151 76 0.714 0.698
K-SVC 144 87 158 69 0.659 0.676

d = 41 ANN 176 55 142 85 0.694 0.674
CNN 181 50 149 78 0.721 0.699

PLS

LR 184 47 130 97 0.686 0.655
L-SVC 169 62 146 81 0.688 0.676
K-SVC 166 65 149 78 0.688 0.680

d = 16 ANN 166 65 147 80 0.683 0.675
CNN 147 84 161 66 0.672 0.690

tion with the best recall in this study is a logistic regression classifier on the raw531

data. Interestingly, the runner-up for recall is a tie between a logistic regression532

classifier on a 41 principal component representation and a kernel support vector533

classifer on the raw data.534

Aside from accuracy and recall, performance metrics for precision, also known535

as positive predictive value (PPV), F1 score, and Fβ score are tabulated in Ap-536

pendix A. The F1 score represents the harmonic mean of precision and recall,537

whereas the Fβ score allows user specification of β which controls the weight-538

ing of recall and precision, i.e., recall is β times more important than precision.539

For this application recall is a much higher priority than precision because the540

operating cost associated with false alarms is relatively negligible compared to541

the operating cost associated with missed alarms (i.e., FN). Therefore, a choice542

of β = 0.25 is selected for tabulating the Fβ scores. The best configuration with543

respect to precision and F1 score is an LR classifier with a PCA representation,544

whereas the configuration with the highest Fβ score is, unsurprisingly, the same545

as that with the highest recall, i.e., an LR classifier on the raw data.546
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Figure 17 provides a visually intuitive comparison of the classification accu-547

racy results across the various experimental configurations. Comparing the differ-

Figure 17: Comparing the testing accuracy (left) and recall (right) of each configuration.

548

ent representations in terms of accuracy, the raw data and the PCA representation549

consistently outperform the PLS representation with the only exception being for550

the K-SVC classifier. Comparing classifiers in terms of accuracy, the LR classifier551

had the two highest accuracy scores with 72.9% and 72.7% on PCA components552

and raw data, respectively. A similar situation arises with respect to the com-553

parison of recall scores across the different representations, i.e., PLS is generally554

outperformed by PCA and raw data representations with the raw data providing555

the best recall score on average (across classifiers) as well as the highest recall of556

70.5% with a LR classifier. Overall, logistic regression demonstrates better gener-557

alization performance relative to the deep learning methods. Ultimately, given the558

importance of recall in this application, a logistic regression classifier on the raw559

data is the most promising configuration for development of an inferential sensor560

to predict arc loss.561

Deep learning methods contain a very large number of parameters which al-562

lows them to model complex nonlinear functions if they have enough data to train563

on. Although the logistic regression method performed slightly better in these ex-564

periments, it is possible that the deep learning methods would perform better in565

an experiment with multiple years of historical operating data. This is is demon-566

strated by Figure 18 which demonstrates the superior performance increases deep567

learning methods relative to traditional methods when more data is provided. An-568

other common issue with deep learning methods is over-fitting but special care569

was taken to prevent over-fitting by introducing regularization and early stopping.570
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Figure 18: Comparing the classification accuracy of logistic regression with convolutional neural
networks while varying the amount of training data.

Finally, sensitivity to hyper-parameters and network initialization is another po-571

tential concern for deep learning methods.572

6. Conclusions and Future Directions573

In this work we have introduced a novel industrial predictive classification574

problem, i.e., to predict arc loss in a DC EAF five minutes prior to the arc loss575

event. Moreover, we have proposed an end-to-end ML workflow that takes raw576

industrial data as input and yields an inferential sensor model that can predict577

arc loss events five minutes prior to occurrence with an accuracy of 72.7% and a578

true positive rate of 70.5% on unseen data from two subsequent months of oper-579

ation. Given that the unexpected loss of plasma arc in the DC EAF under study580

is an ongoing problem resulting in millions of dollars of lost production annu-581

ally, this work has the potential to contribute both significant economic savings582

and an improved environmental outcome as energy and material are consumed583

more efficiently. The final contribution of this work is the comprehensive em-584

pirical comparison between traditional and contemporary ML methods for rep-585

resentation learning and predictive classification during the development of the586

inferential sensor.587
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The use of representation learning algorithms for process data analytics is an588

emerging research area that offers significant benefits to the process industry. This589

work is a small part of a larger movement to migrate advanced data analytics tech-590

niques from statistics and computing sciences to process industries. The explicit591

representations considered in this work include traditional process analytics meth-592

ods such as PCA and PLS, whereas implicit learned representations include the593

multiple fully connected layers for the ANN and convolutional layers with multi-594

ple learned filters for the CNN. Given all of the recent interest surrounding deep595

learning methods we initially expected these methods to handily outperform the596

traditional ML classifiers and representations. Having put forward a significantly597

greater computational effort to optimize and train the deep learning methods rel-598

ative to the traditional ML classifiers it was indeed surprising to conclude that599

applying the logistic regression classifier to the raw data was the best performing600

experimental configuration.601

Although the performance metrics in this study did not highlight the benefits602

of representation learning, it is important to note that training and optimizing the603

deep learning methods become much more computationally feasible when a lower604

dimensional representation is used. For example, given a fixed computational605

budget, using a CNN classifier with a lower dimensional representation enables606

a much more comprehensive hyperparameter optimization, both in terms of trials607

and search space, relative to using the raw data as the input to the CNN. Although608

the PLS representations delivered slightly lower performance across various clas-609

sifiers, the PLS representations also had the lowest dimensionality which led to610

more convenient hyperparameter optimization. In future studies it is desirable to611

implement more advanced variants of PCA and PLS as well as explicit nonlinear612

deep representation learning methods such as deep autoencoders.613

To further the development of the inferential sensor there are minor changes614

to the experimental setup that can be made in future studies. For example, it is615

desirable for future implementations to be tested on continuous raw data from the616

process instead of relying on the procurement of a testing set composed of seg-617

ments balanced by class. Such an experimental configuration would represent a618

much more challenging evaluation of the inferential sensor, but it would also be a619

significant step forward in terms of preparing for deployment. On the other hand,620

one change that would likely improve performance while maintaining operational621

integrity is to decrease the period over which the model is evaluated without being622

updated. Two months is an unnecessarily large amount of time to have a model623
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be evaluated on new data without being updated. Instead, a more sensible config-624

uration would be to evaluate the model over a shorter period (e.g., a week or less),625

update the model weights with the new data from that period, and then continue626

the evaluation with the updated model for the following week.627

The arc loss predictor is designed to assist operators but ultimately it will be628

up to operators to decide how it influence their actions. Operators may choose629

to incorporate auxiliary information when deciding whether or not to act upon630

the alarm. Ideally, the alarm will be accompanied by a confidence score which631

could be designed using information about the quality of the model inputs and632

prior knowledge of the process. Production trials will be critical for learning the633

best practices for incorporating process knowledge into the model predictions.634

Finally, ongoing work includes the procurement of a benchmark industrial arc635

loss dataset that can be released to the process analytics community in order to636

supplement the available simulation benchmarks such as the Tennessee Eastman637

and penicillin fermentation datasets. Process analytics researchers could use this638

dataset to evaluate their ML algorithms on a real industrial data with a process639

fault that continues to have an unknown diagnosis.640
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Appendix A. Supplemental Experiment Details647

The relatively small search space over which hyper-parameters are optimized648

for the traditional ML algorithms is presented in Table A.4.

Table A.4: Hyperparameter search space for traditional ML algorithms.

LR L-SVC K-SVC

λ (0.001, 0.01, 1, 10, 100)

tolerance (0.001, 0.0001, 0.00001)

penalty (`1, `2, elast.) (`1, `2)
loss (hinge, SH)

kernel (RBF, poly., sig.)
degree (2, 3, 4, 5)

649

The vast search space over which hyper-parameters are optimized for the deep650

learning algorithms is presented in Table A.5.

Table A.5: Hyperparameter search space for deep learning algorithms.

ANN CNN

optimizer (RMSprop, Adagrad, Adam, Adadelta, Adamax, SGD)

λ (0.1, 0.01, 0.001, 0.0001)

FCL activation (relu, tanh, selu, elu)

no. of FCLs (1, 2, . . ., 10) (1, 2, 3, 4)
FCL size (32, 64, 128, 256, 512) (32, 64, 128)
batch size (32, 64, 128) (16, 32, 64, 128)

epochs (25, 35) (20, 30, 40)

no. of CLs (1, 2)
CL activation (relu, tanh, selu, elu)

filters (8, 16, 32, 64)
filter size [(3,3), (5,5)]
pool size [(2,2), (4,4)]

651
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The precision (i.e., PPV), F1 score and Fβ (β = 0.25) score for each experi-652

mental configuration are provided as supplementary result metrics in Table A.6.653

Table A.6: Supplemental experimental result metrics.

TP FP TN FN PPV F1 Fβ

NA

LR 182 49 151 76 0.788 0.744 0.708
L-SVC 185 46 141 86 0.801 0.737 0.687
K-SVC 167 64 156 71 0.723 0.712 0.702
ANN 176 55 152 75 0.762 0.730 0.703
CNN 181 50 141 86 0.784 0.727 0.681

PCA

LR 186 45 148 79 0.805 0.750 0.705
L-SVC 176 55 151 76 0.762 0.729 0.701
K-SVC 144 87 158 69 0.623 0.649 0.674

d = 41 ANN 176 55 142 85 0.762 0.715 0.677
CNN 181 50 149 78 0.784 0.739 0.702

PLS

LR 184 47 130 97 0.797 0.719 0.659
L-SVC 169 62 146 81 0.732 0.703 0.678
K-SVC 166 65 149 78 0.719 0.699 0.682

d = 16 ANN 166 65 147 80 0.719 0.696 0.676
CNN 147 84 161 66 0.636 0.662 0.688

654
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