
RESEARCH ARTICLE

Identifying indicator species in ecological

habitats using Deep Optimal Feature Learning

Yiting TsaiID
☯*, Susan A. Baldwin☯, Bhushan Gopaluni

Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada

☯ These authors contributed equally to this work.

* yttsai@chbe.ubc.ca

Abstract

Much of the current research on supervised modelling is focused on maximizing outcome

prediction accuracy. However, in engineering disciplines, an arguably more important goal

is that of feature extraction, the identification of relevant features associated with the various

outcomes. For instance, in microbial communities, the identification of keystone species can

often lead to improved prediction of future behavioral shifts. This paper proposes a novel

feature extractor based on Deep Learning, which is largely agnostic to underlying assump-

tions regarding the training data. Starting from a collection of microbial species abundance

counts, the Deep Learning model first trains itself to classify the selected distinct habitats. It

then identifies indicator species associated with the habitats. The results are then compared

and contrasted with those obtained by traditional statistical techniques. The indicator spe-

cies are similar when compared at top taxonomic levels such as Domain and Phylum,

despite visible differences in lower levels such as Class and Order. More importantly, when

our estimated indicators are used to predict final habitat labels using simpler models (such

as Support Vector Machines and traditional Artificial Neural Networks), the prediction accu-

racy is improved. Overall, this study serves as a preliminary step that bridges modern,

black-box Machine Learning models with traditional, domain expertise-rich techniques.

Introduction

The main motivation of this work is to propose a Machine Learning-based feature extractor

which works generally for non-linear datasets of high dimensionality, then assess its efficacy

on a real biological case with pre-determined features, to determine whether it is sufficiently

reliable to be used for other similar studies. Biologically-related disciplines are often faced

with the task of modelling on high-dimensional datasets (i.e. many raw input variables). In

disciplines such as disease diagnosis and prevention, much of the current research focus

is on maximizing prediction accuracy of outcome labels. For example, the authors of [1]

compared and contrasted the performances across a large arsenal of predictive models (ex.

Logistic Regression, Support Vector Machines, Random Forests, Naives Bayes k-Nearest

Neighbors) for the task of diabetes-2 diagnosis. However, in other disciplines such as ecol-

ogy, dimensionality reduction and feature engineering are arguably equally important tasks,
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which aid the intuitive understanding of these datasets. In ecological datasets, community

interactions between individual species (the input variables) can be difficult to model.

Therefore, tasks such as the identification of indicator species (i.e. keystone or leader species)

can be challenging, as the user is often perplexed as to which dimensionality reduction algo-

rithm(s) are suitable. In past literature, methods such as IndVal [2] have traditionally been

used for indicator species identification. Successful implementations can be seen in publica-

tions such as [3–5]), where abundance counts of microbial species are available from various

sites. The IndVal method uses Multi-Dimensional Scaling [6] followed by Correspondence

Analysis (CA) and Detrended Correspondence Analysis (DCA) [7] to rank the topology of

sites. The indicator species groups are then identified using using Hierarchical [8] and k-

means clustering [9]. The final indicator value of a particular species can be roughly

described as its frequency of occurrence across all clusters, across all sites. However, due to

the ever-increasing complexity and non-linear nature of modern datasets, the use of these

traditional statistical tools may reduce the overall algorithm’s ability to generalize to a wide

range of interactions between features.

Indicator species identification can be considered a special case of a more general category

of modelling tasks, known as feature analysis. Given a data matrix X with N total samples as

rows and d columns as raw variables, the precise definition of feature analysis can be subtly

distinguished as the follows:

1. Feature selection: Determining whether each raw variable xj(j 2 [1, � � �, d]) contributes sig-

nificantly to the model output(s).

2. Feature extraction: Determining linear or non-linear combinations of raw variables

(ex. x1 � log(x2)) which contribute sigificantly to the model output(s).

The limitations of current state-of-art feature extraction methods are two-fold. The first

problem is that many extractors simply use feature selection techniques, which are univariate

in nature and are therefore unable to detect any multivariate interactions. More specifically, in

some cases individual variables may not be relevant by themselves, but contribute significantly

to the final outcome when they co-exist (in linear or non-linear fashions). The second problem

is the limiting assumptions of the dimensionality reduction algorithms used in multivariate

feature extractors. For example, extractors which prioritize the intuitiveness and interpretabil-

ity of latent features often use Principal Component Analysis (PCA) [10] as a tool. This algo-

rithm assumes that the underlying latent space is a linear combination of raw inputs (i.e.

species), which may not be an accurate representation of many biological systems. Another

example algorithm is k-means, which assumes that the underlying distributions of data are

multivariate Gaussians (due to k-means being a special case of Gaussian mixtures [11]). If k-

means were used to analyze a dataset which is highly non-Gaussian, then the results obtained

could be misleading or meaningless.

In the current literature, most feature selection techniques are univariate approaches which

assign “yes” or “no” labels to each raw variable, with respect to its relevance. A simple example

is the addition of a ℓ1 or lasso regularizer [12] to any model objective function. Other methods

include Mean Decrease in Accuracy (MDA) and Mean Decrease in Gini (MDG) [13], which are

used in conjunction with Random Forest (RF) models. In MDA, individual features are per-

mutated (scrambled) randomly and the resulting effect on model accuracy is determined,

compared to the base-case where no features are scrambled. In MDG, the feature importance

is determined by observing how many times a feature is used to create a decision split in the

RF model. The disadvantages of these methods are mainly their univariate nature, as well as

significant false discovery (positive or negative) rates.
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On the other hand, feature extraction techniques attempt to recognize multivariate interac-

tions between raw variables. A detailed review of the state-of-art methods in this area can be

found in the work of [14]. One straightforward and computationally-inexpensive method is

the aforementioned PCA, which discovers linear combinations of raw inputs. A previous pub-

lication of similar topic is [15], which used PCA to determine proteomic biomarkers. Another

successful example is the work of [16], in which the authors used an enhanced PCA algorithm

to correctly determine the latent features which best predict diabetic retinopathy in patients.

In other cases, however, PCA may yield poor approximations due to the presence of non-lin-

ear latent features. These non-linearities can be partially mitigated by the use of methods such

as Isometric Mapping (ISOMAP) [17], Locally Linear Embedding (LLE) [18], t-Stochastic

Neighbor Embedding (t-SNE) [19], and Uniform Manifold Approximation and Projection

[20]. The aforementioned algorithms provide lower-dimensional representations of data

which are easy to visualize. For instance, a recent paper by [21] showed that t-SNE can be used

to group similar eco-provinces in order to elucidate the community structures in each region.

However, a major shortcoming of these non-linear methods is that extracted latent features

are difficult to express in terms of the original raw variables. An example of this is the Super-

vised Locally Linear Embedding (SLLE) paper by [22]. In this work, the authors showed that

three flower classes within the Fisher Iris dataset [23] can be compressed down to three distinct

regions in a 2-d space. However, the intuitive relationships between the 2 latent components

and the original 4 features are never explicitly explored. Most multivariate dimensionality

reduction methods prioritize either understanding of extracted features (ex. PCA), or easy

visualization of clusters (ex. t-SNE), but few exist that satisfy both. Finally, the choice of

dimensionality reduction method also depends on the amount of domain knowledge available.

For example, when the functional structure of the latent features is well-known, then kernels
[24] (a list of basis functions such as polynomials, square roots, exponentials, etc.) can be used

to pre-determine the desired feature representation. On the other hand, if little to no domain

knowledge is available, then the user resorts to fitting each kernel to find an appropriate one. If

the non-linear structure is too complex, then none of the pre-established basis functions are

suitable. Therefore, there exists a clear need for a dimensionality reduction procedure, which

does not rely on copious amounts of prior knowledge.

Recent advances in computing power have supported the emergence of a powerful class of

models known as Deep Learning (DL) [25]. These models are capable of training highly-accu-

rate models to solve classification problems, due to deep neural networks being good universal
approximators [26, 27] (i.e. capable of fitting any non-linearity using activation functions, if

trained sufficiently). Works such as [28–31] demonstrate the high predictive capabilities of DL

used in supervised learning cases. In these studies, the desired features are either pre-engi-

neered using PCA, or by neural networks in black-box fashions that render them difficult to

interpret. In applications that prioritize predictive accuracy, knowledge of the exact identities

of the latent features may not be important. However, in other applications that prioritize diag-

nosis and root-cause analysis, the feature extraction step becomes critical in telling the user

which combination variables to seek, and which to avoid. To the best of our knowledge, our

work is one of few which explores the efficacy of DL models when designed to address both

fronts: predictive accuracy and ability to identify the correct associated features.

In this work, we focus the application of this DL model to bioinformatics problems, an

example being ecological habitat prediction and identification of indicator species associated

with each habitat. These datasets include species abundance counts as samples; each sample

consists of a large number of taxonomic units identified by 16S rRNA amplicon sequencing,

represented either as Operational Taxonomic Units (OTUs) [32] or Amplicon Sequence Vari-

ants (ASVs) [33]. The corresponding outcome is usually a class label distinguishing its source
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(ex. lake, river, ocean, etc.) or its habitat (natural, disturbed, etc.). The goal of predictive

modelling is to estimate the correct habitat label of new samples, given their abundance counts

of all species. While the model’s test-set prediction accuracy is the focus of many ML research

efforts, one can argue that remediation applications obtain more actionable information from

feature extraction. Therefore, the motivation of our work in the context of bioinformatics

applications can be clarified as follows:

1. Estimate the habitat label of each site using Machine Learning models, to produce a second

set of labels which can be compared and contrasted to those obtained using traditional

methods.

2. Identify the indicator species associated with each habitat, thereby eliminating the need to

know abundance counts from all available species. This significantly reduces time and

financial costs associated with manual sample collection and laboratory analysis.

We end this section by summarizing the scope, objectives, and advantages of our work as

follows: develop a Deep Learning-based feature extractor for binary classification problems,

with two main advantages over existing extractors:

1. It is agnostic to the true non-linear structure of the underlying feature space.

2. It still produces interpretable latent features.

We accomplish this by taking advantage of the universally-approximating property of Deep

Learning, i.e. the ability of neural networks to learn any non-linear structure through brute-

force combinations of activation functions (ex. ReLU, SELU, sigmoid, tanh, etc.). In order to

maintain interpretability of the latent features, we use ReLU activations, which results in affine

combinations of raw inputs, similar to those obtained from PCA. Finally, the general and case-

specific objectives of our work can be summarized as follows:

1. Build and train a Deep Learning model for binary classification, which predicts the class

labels of new samples with sufficiently high accuracy.

2. Identifies a latent space that optimally separates the two classes, which is then used to

extract the most relevant features for prediction.

3. Demonstrate the efficacy of the proposed method on a real ecological dataset, by comparing

the predicted class labels and extracted features with those identified previously using tradi-

tional methods.

In this paper, we will conform to standard Machine Learning notation regarding numerical

matrices and vectors associated with datasets. The nomenclature will mirror those used in

texts such as [25] and [11].

Nomenclature

The following is a compiled list of abbreviations used within this manuscript:

ANN: Artificial Neural Net

ASV: Amplicon Sequence Variants

CA: Correspondence Analysis

DCA: Detrended Correspondence Analysis

DL: Deep Learning

GAN: Generative Adversarial Network

IID: Independent and Identically Distributed

k: Number of latent features
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k[l]: Number of neurons in the lth hidden layer of a DL model

ISOMAP: Isometric Mapping

LLE: Locally Linear Embedding

MA: Moving Average

MDA: Mean Decrease in Accuracy

MDG: Mean Decrease in Gini

MDS: Multi-Dimensional Scaling

ML: Machine Learning

NaN: Not a Number

OTUs: Operational Taxonomic Unit

PCA: Principal Component Analysis

PCoA: Principal Coordinate Analysis (equivalent to MDS)

rRNA: r-Ribosomal Ribonucleic Acid

RF: Random Forest

SVM: Support Vector Machine

t-SNE: t-Stochastic Neighbor Embedding

VAE: Variational Autoencoder

x(i): The ith data sample (all features)

xj: The jth data feature (all samples)

xðiÞj : The ith sample of the jth data feature

z[l]: The lth hidden layer of a DL model

z½l�j : The jth neuron in the lth hidden layer of a DL model

Materials and methods

The proposed modelling and feature extraction workflow will be performed on datasets of a

general nature, by adhering to the workflow depicted in the following Fig 1:

The paper will provide a brief introduction of the methods employed for Steps 1 and 2.

Most of the focus will be emphasized on Steps 3 and 4, which describe the concept behind the

novel Deep Learning feature extractor as well as the interpretation of its results.

Fig 1. Overall data analysis workflow in block diagram form. (Step 1): The collection of raw input data samples, as

well as a corresponding set of labelled “ground-truth” targets. (Step 2): The pre-processing of raw input data into

suitable structures for modelling, guided by any available domain or expertise knowledge. (Step 3): The training of

several types of classification models (including Deep Learning), which maps inputs to their corresponding discrete

class labels. (Step 4): The design of special objective function within a Deep Learning classification, which identifies a

latent space with improved class separation. The most dominant latent features are then distinguished by the

magnitude (ex. ℓ2 norm) of the neural network weights.

https://doi.org/10.1371/journal.pone.0256782.g001
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Collection of raw data and ground truths

Any modelling task requires the availability of data regarding the system of interest. An exam-

ple of a combined chemical-biological dataset is shown in the following Fig 2.

In accordance with ML literature, the raw input data are structured in aRN�d
matrix that

has N total rows representing the number data samples, and d total columns representing the

number of raw variables. Inputs are usually continuous values; in some cases categorical labels

may appear, but these can be discretized and transformed into numerical labels.

On the other hand, since this is a classification problem, the output or target variable is a set

of discrete values. These represent the membership of each sample to a specific class, within a

finite set of classes. Class labels can be easily transformed into numeric labels (ex. 0, 1, 2, etc.),

even if they were not originally labelled as such. The accuracy of these outputs will inevitably

affect the quality of any model trained using them. Therefore, the target variables for a dataset

are often screened and scrutinized by domain experts and data scientists, before they can be

ascertained as ground truths. They must be absolutely “correct” in the sense that few deviations

from reality exist due to noise or other sources of error.

This work investigates the Mount Polley tailings storage breach, which occurred in the

Quesnel region of British Columbia, Canada, in 2014. The paper [34] is one major publication

which reports the disturbance to the soil and sediment microbiological communities (sur-

rounding Mount Polley). The report is also accompanied by a dataset containing abundance

counts of microbial species in every site; therefore, we will treat the findings and conclusions

as “ground truths.” In other words, the binary habitat labels of each collected sample—natural
or disturbed—were determined by soil ecology experts and are thus considered baselines for

any new classification models. The following section provides more details on this case study

as well as its implications.

Ground truth case study: Mount Polley tailings storage breach. In 2014, the Quesnel

region (located in central British Columbia, Canada) suffered a major ecological disturbance,

caused by the breach of the Mount Polley tailings dam. The released tailings material travelled

and deposited into the nearby Hazeltine Creek, Quesnel, and Polley Lakes. The physical, bio-

logical, and ecological impacts of this breach have been thoroughly explored in publications

such as [35] and [34], in attempt to characterize both the spatial and temporal changes within

the microbial communities.

This paper will focus and expand upon the established results in [34], which has attempted

to model the microbial community shifts using 16S rRNA and full metagenome sequencing.

Fig 2. Printout of pandas dataframes containing raw data collected directly from ecological sites. (Left) Dataframe

containing raw input variables. (Right) Dataframe containing output class labels.

https://doi.org/10.1371/journal.pone.0256782.g002
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The main finding of [34] was that the identification of indicator species associated with natural

and disturbed sites allowed the prediction of future biogeochemical trajectories in said sites.

Specifically, ecologists could model just as accurately using the much smaller sub-set of bio-

markers as when using the entire list of available species. This results in a significant reduction

in both the complexity and cost of ongoing ecosystem health monitoring. Therefore, a strong

justification can be made for the discovery of indicator species using other methods, such as

Machine Learning, in order to complement those identified using the available statistical tools.

The data collected from the Mount Polley breach can be collected in a single input matrix

X, which contains N = 70 total samples as rows and dffi 22000 total raw variables as columns.

Out of the 70 total samples, 41 belong to an undisturbed habitat, while the remaining 29

belong to a disturbed habitat. The exact descriptions of these C = 2 habitats (or classes) can be

expanded as follows:

1. Class 0: Natural habitat of organic-rich soil related to a wetland community.

2. Class 1: Disturbed habitat originally consisting of native subtrate, which has been replaced

by a mixture of fine tailings and sands.

The exact analysis steps of this study can be summarized as follows:

1. Step 1: Label each sample as either natural (Class 0) or disturbed (Class 1).

2. Step 2: Identify indicator species associated with either habitat.

The proposed feature extractor in this paper will be used to find an optimal latent space Z,

which serves as a transient between the mapping from X to the target habitats y. Note that the

raw input matrix X is considered “small-N-big-d” (i.e. few samples compared to a large num-

ber of raw variables), with a significant amount of noise confounding the raw variable space.

Thus, traditional classification methods (ex. SVMs, RFs, feedforward networks, etc.) and clus-

tering methods (ex. PCA, MDS, etc.) are expected to produce confounded class predictions or

clusters with significant overlap. The desired transformation of the data space is illustrated in

the following Fig 3.

Pre-processing of biological variables

Due to the presence of microbial data in the form of species abundance counts, extra transfor-

mations were necessary to refine these entries. The abundance counts of many species are zero

across most sites, thus resulting in a heavily low-skewing distribution. If these sparse counts

are then used for modelling with no transformation, the models would place heavy emphasis

on the many sparse species. This could result in spurious results caused by the vast negligence

of highly-abundant but rarely-occurring species. In order to provide a more sensible count

matrix which can be used for microbial community analysis, the following steps were taken:

1. Removal of extremely sparse species: The original count table includes 21721 total species.

The abundance counts of each species was summed across all available samples. The counts

of the top 50 species with respect to overall sum were selected as raw input variables.

2. Log-transforms of remaining abundance counts: In order to mitigate the low-leaning

skew even more, a base-10 logarithmic transformation was applied to the remaining species

counts, using the equation:

xspecies;log ¼ log10ðxspecies þ 1Þ ð1Þ
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The value of 1 was added at the end of Eq 1 to prevent taking logarithms of zero-counts.

The result of each subsequent pre-processing step can be observed in Fig 4, and the maxi-

mum abundance counts in each bracket are shown in Fig 5.

The roles of rarely-occurring species may be influential in a microbiological community,

and ultimately decisive with regards to an outcome. In order to preserve the stark contrast in

their high abundance compared to the many low-abundance species, an autoscaling transfor-

mation was not applied to the species counts. If one were applied, then each species would

essentially have the same mean and variance in terms of counts, which would render them

indistinguishable in subsequent modelling.

Predictive modelling using machine learning

The case studies presented in this paper are categorized, in the ML field, as classification prob-

lems. A classification model describes a possible mapping between measured samples of raw,

input variables X, and corresponding measurements of a target variable y which are discrete

membership (or class) labels. In contrast, a problem dealing with a continuous target y is

known as a regression model. The methods presented in this paper will apply exclusively to

classification and not regression problems.

The discussion will start with an introduction of two popular classification models—Ran-

dom Forests (RFs) and Support Vector Machines (SVMs). However, these relatively simple

models will only serve as a baseline of performance (i.e. model accuracy) to compare against.

Most of the analysis will be focused on predictive classifiers using Deep Learning (DL) archi-

tectures, as well as its optimally-separating variant which we propose as an improved feature

extractor.

Fig 3. Discovery of an optimally-separating latent feature space. (Top Left) The high-dimensional and confounded

raw inputs X makes class separation a challenging task.(Bottom Left) A case example including six microorganism

species (A through F) which are entangled in the raw input space. (Top Right) A DL model which learns a latent space

Z that optimally separates the classes. (Bottom Right) The disentanglement of the six species into distinct classes, which

can be further aggregated into two major classes—Class 0 (A and B) and Class 1 (C through F).

https://doi.org/10.1371/journal.pone.0256782.g003
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Traditional classification models

Two traditional classifiers are used in this work to obtain a baseline model performance, and

they are:

1. Random Forests (RFs) [36]

2. Support Vector Machines (SVMs) [37]

RFs are a type of classifier in which the final membership label of each sample is decided by

splitting each raw variable conditionally, in a binary manner. For example, one of the first

splits in a RF model may be decided using the following set of binary conditions:

• xj� thresh

• xj< thresh

Fig 4. Species abundance counts after each pre-processing transformation. (Top) Distribution of counts from all

21721 species; the density is extremely skewed towards the low end. (Middle) Distribution of only the top 50 species by

sum. (Bottom) Distribution of the top 50 species after a log10 transformation. Rarer but higher-abundance species are

now recognizable.

https://doi.org/10.1371/journal.pone.0256782.g004
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Here, xj represents the jth raw variable in the input data, and the threshold is a critical value

which further decides how the data samples are classified. Since this process repeats through-

out the d total available raw variables, the computational cost of exploring every possible com-

bination becomes too astronomical to be feasible by conventional algorithms. RFs overcome

this problem by splitting on a randomly-selected set of variables with each iteration, then

aggregating across the results obtained from a large number of iterations. This strategy is

known as an ensemble approach. It is often accompanied by bootstrapping, which selects a sub-

sample of all available N data samples with replacement. Therefore, RFs are considered a mem-

ber of the bagging (or bootstrap aggregating) family of models.

SVMs are a type of classifier which is popularly used in datasets with a modest number (i.e.

tens) of raw variables d [11]. If d is too large, then SVM is susceptible to the curse of dimension-
ality phenomenon like many other ML models. In SVMs, the input data are assumed to take

on a variable-space, where the different classes can be distinctly clarified by separating margins,
which are illustrated in the following Fig 6.

In vanilla SVM, the separating margin is a linear hyperplane which is found by maximizing

its respective distance to the closest members of each opposing class. Mathematically, this is

achieved by minimizing the following Eq 2, known as the hinge loss:

min
w

1

2
jjwjj

2
þ
XN

i¼1

maxf0; 1 � yðiÞw>xðiÞg ð2Þ

The physical intuitions behind this loss can be interpreted, in words, as:

min
parameters

finverse of separating marginsg þ fmisclassification rateg ð3Þ

Note that if the raw data do not conform to a linear structure, such as the example shown in

Fig 6, then the vanilla SVM may fail to achieve high training and/or testing accuracy. These

scenarios are traditionally tackled by use of the kernel trick [38]. This strategy transforms the

raw input space into a higher-dimensional space, described by nonlinear basis functions which

are determined a priori. If the non-linearity structure is well-known, then the kernel trick will

efficiently transform the data into a linearly-separable form. Similarly, when the exact non-lin-

ear structure is unknown but the degree of non-linearity is low, then an adaptation of the

Fig 5. Histogram of maximum abundance counts.

https://doi.org/10.1371/journal.pone.0256782.g005

PLOS ONE Deep Learning and feature extraction

PLOS ONE | https://doi.org/10.1371/journal.pone.0256782 September 10, 2021 10 / 30

https://doi.org/10.1371/journal.pone.0256782.g005
https://doi.org/10.1371/journal.pone.0256782


kernel trick known as Sparse Identification of Nonlinear Dynamics (SinDy) [39] is equally pow-

erful. However, in the worst-case scenario where both the structure and degree of non-linear-

ity are high and unknown, there is no guarantee that a linearly-separable latent space can be

found, even after a lengthy shopping-list of kernels has been exhausted.

This is where our proposed Deep Optimal Feature Learning comes into fruition. The fol-

lowing sections will outline how Deep Learning is generally used as classification models, as

well as how we propose to shape the existing Deep Learning objective functions in order to

achieve a latent space with improved class separation.

The proposed deep optimal feature extractor

Consider a typical binary classification problem, which has a total of C = 2 classes (Fig 7). In

many cases, due to non-linear interactions between the raw variables, the classes cannot simply

be separated using a linear hyperplane (or separating boundary). Therefore, linear classifiers

such as traditional Support Vector Machine (SVM) [37] will often generalize poorly for new

samples (i.e. have a low test-set accuracy).

Although this non-linear classification problem can be solved with a sufficient number of

iterations using One-Versus-One (OVO) and One-Versus-Rest (OVR) SVM variants [11],

finding a latent space which optimally separates the two classes would arguably be a more pru-

dent strategy. Instead of assigning the functional form of the latent space a priori by using ker-

nels, we instead propose the use of a Deep Learning model which optimizes the following Eq

4, expressed in words:

min
parameters

� fseparating marginsg þ fmisclassification rateg

subject to separating margins < 1

ð4Þ

Fig 6. Visualization of a linear separating hyperplane and separating margins in a 2-class SVM model.

https://doi.org/10.1371/journal.pone.0256782.g006
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Note that this objective function is expressed as a minimization, which is standard in

Machine Learning literature. Minimizing the negative margins is equivalent to maximizing the

margins, under the constraint that the margins remain finite. If this constraint did not exist,

then one could arbitrarily choose a latent space where the two classes shown in the right figure

of Fig 7 are pushed infinitely far away from each other.

Eq 4 is inspired by the hinge loss (Eq 2), the original objective function in the SVM paper by

[37]. In Eq 2, the term w refers to the weights or parameters of the SVM model, and the term

kwk2 is exactly the inverse of the separating margins. Therefore, the inclusion of the term kwk2

within the minimization is equivalent to sustaining the finite separating margin constraint out-

lined in Eq 4. The last summation term represents the total number of misclassified samples,

and when visualized on a 2-dimensional plot gives a hinge-like shape (hence its name). The

concept of maximizing accuracy and separating margins simultaneously can be extended to

DL models. For instance, consider a two-layer neural network as shown in Fig 8.

The square-bracket superscript [L] refers to the Lth hidden layer, as conforming to the neural

network nomenclature in [25]. The input layer X can be considered the first layer in the net-

work, Z[0]. Since the interclass separation occurs between layers Z[1] and y, the hinge loss in Eq

2 can be re-written in terms of the neurons and parameters in said layers. Since y = A[2](w[2]

z[1] + b[2]) and z[1] = A[1](w[1] x + b[1]), the hinge-loss with respect to this network is:

min
w½1�; w½2�

1

2
jjw½2�jj

2
þ
XN

i¼1

max
�

0; 1 � A½2� w½2�>A½1�ðw½1�>x þ b½1�Þ þ b½2�
� �

�

w½2�> � A½1�ðw½1�>xþ b½1�Þ
�

ð5Þ

Once this neural network has been sufficiently trained (i.e. value of its loss function has

decreased past an acceptable threshold), the combination of raw inputs with the largest impact

on the outcome can now be identified. Here, we propose a feature extraction method which

takes direct advantage of the optimal separating latent space discussed previously. The concept

behind this method is illustrated in the following Fig 9.

Fig 7. Visualization of a classification problem with a non-linear separation boundary between the two classes.

(Left) The raw feature-space spanned by raw variables x1 and x2 renders linear separation impossible. (Right) A desired

latent feature space which optimally separates the two classes. The goal of the DL model is to learn its coordinates, z1

and z2.

https://doi.org/10.1371/journal.pone.0256782.g007
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In order to easily visualize this concept, we illustrate it using the special case of a 2-neuron

first hidden layer, and point out that the idea applies for any number of neurons k[1]. We con-

sider the first hidden layer because it is optimally-separated due to Eq 5. It is also located right

after the input layer in the neural network architecture, which means that it is directly affected

by the magnitudes of both weights W[1] and input values X. In this 2-dimensional hidden

layer, z½1�1 and z½1�2 represent the two neurons. The positive and negative classes are separated

from one another by a separating margin, which is equal to the Euclidean distance between the

two closest points from each opposing class. Moreover, the directional vector of this separating

margin can be characterized by m*, which is simply the subtraction of the coordinates between

the two closest opposing samples, z(+) (positive class) and z(−) (negative class). Intuitively, m*

represents the direction which best classifies the two opposing classes, as opposed to any other

direction found in the latent space spanned by z½1�1 and z½1�2 . This property can be realized by

projecting all data samples onto the vector m*, observing the class separation on this 1-dimen-

sional line, then repeating the exercise for any other directional vector and comparing the

resulting class separations. The elements of m* can be expressed in the general case (for any

value of k[1]) as:

m* ¼ ½m1m2 � � �mk½1� � ð6Þ

Since the direction of m* is characterized by its largest elements, we specify a number topn
then extract the same number of top elements (by magnitude). These can top elements can

Fig 8. A two-layer neural network with a hinge-loss-like objective function.

https://doi.org/10.1371/journal.pone.0256782.g008
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then be collected and expressed as:

m*
top
¼ ½mtop1

� � �mtopn
� ð7Þ

Each of the top elements corresponds to a neuron in the first hidden layer, and hence can

be expressed as an activated affine combination of input variables. For instance, if we consider

the neuron corresponding to the largest element mtop1
, then the following equation holds for

any data sample (i):

z½1�ðiÞtop1
¼ A½1�ðw½1�11x

ðiÞ
1 þ w½1�12x

ðiÞ
2 þ � � � þ w½1�1dx

ðiÞ
d þ btop1

Þ ð8Þ

From the previous Eq 8, the topw largest weights (by magnitude) can then be selected from

the weight array w11 � � � w1d �½ as:

wtop ¼ ½wtopw1
� � �wtopw

� ð9Þ

The input variables multiplied to these top weights, xtopw1
� � � xtopw �

�
, are therefore the

input combinations with most impact on the model output. The rationale behind this weight

selection procedure can be best visualized using the basic concepts of matrix multiplication,

and is clarified using a simple example shown in Fig 10.

In this example, the first layer values Z[1] are a result of matrix multiplication between the

input matrix X and the first hidden layer weight matrix W[1]. Suppose the direction of separa-

tion m* has its largest vector element located at position top, and we only consider this top

Fig 9. Feature selection based on direction of optimal separation.

https://doi.org/10.1371/journal.pone.0256782.g009
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element (i.e. topn = 1). The values in column Z½1�top are a direct consequence of matrix multiplica-

tion between all d columns in X and all elements in the column W ½1�

top. Therefore, if we now

identify the topw = 2 largest elements in this column, their positions wtop1
and wtop2

correspond

to the two most impactful input variables within the set x1 x2 � � � xd �½ .

The entire feature extraction procedure can be summarized as follows. First, train a binary

classifier with the loss objective specified in Eq 5, until the loss value falls below an acceptable

threshold. Repeat model training over a sufficiently-large number of experiments, such that

the results from each random initialization can be later aggregated. Then, perform the follow-

ing for each model training experiment:

1. Calculate the Euclidean distance matrix between all pairwise samples in the two binary clas-

ses. Identify the two opposing-class samples z(+) and z(−) that span the separating margin as

the pair with the shortest distance.

2. Calculate m*, the direction of separation, by substracting either the coordinates of z(−) from

those of z(+), or vice versa.

3. Calculate the absolute values of all elements in m*, then identify the topn largest elements

based on these absolute values.

Fig 10. Selection of relevant input variables, by reverse-engineering matrix multiplication.

https://doi.org/10.1371/journal.pone.0256782.g010
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4. For each top neuron ztopj , identify the topw largest weights in the activated affine combina-

tion z½1�ðiÞtopj ¼ A½1�ðw½1�11x
ðiÞ
1 þ w½1�12x

ðiÞ
2 þ � � � þ w½1�1dx

ðiÞ
d þ btop1

Þ. The combination of input vari-

ables xtopw1
� � � xtopw �

�
multiplied to these top weights are therefore the most impactful

features.

In order to reduce variance caused by random initializations of the DL model, this process

should be repeated over a large number of experiments. In each experiment, a DL model

should be initialized from scratch and trained, and the extracted weights from each experiment

should be recorded. Once all experiments are complete, the most impactful weights can then

be ranked by majority vote across all experiments. Note that in Step 4 of the previous proce-

dure, the topw largest weights can be identified based on absolute values, if the goal is to simply

extract a set of the most relevant features. However, if a distinction is required between posi-

tively and negatively-correlated weights, then the weight ranking should be performed in

terms of their unmodified values.

Summary of data analysis steps

The following Fig 11 is a visualization of the data analysis procedure detailed in the previous

sections, which transforms raw input data into a set of predictions as well as relevant extracted

features.

The pre-processed data is used to train two classification models. The first is a traditional

Deep Learning classifier, with the expected softmax loss function. The second is the proposed

optimally-separating Deep Learning classifier, which uses Eq 5 as its loss function in order to

improve clarification between the data classes. Two important results from each model—the

class (habitat) predictions and extracted features (indicator species)—are compared and con-

trasted against the results cited in [34].

Deep Learning model implementation

The Deep Learning models were implemented by code written in iPython 3.7 Jupyter note-

books, using the PyTorch package. PyTorch was preferred over Tensorflow for two reasons.

First, the customization of the activation functions and order of computations is less cumber-

some in PyTorch. Secondly, the proposed optimally-separating cost function in Eq 5 requires

an optimization to be performed directly on the neural network parameters. These parameters

can be directly obtained in PyTorch, by recursively storing the parameters calculated during

Fig 11. The overall data analysis workflow applied to the Mount Polley case study.

https://doi.org/10.1371/journal.pone.0256782.g011
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each epoch then recalling them. In Tensorflow and keras, these parameters are much more dif-

ficult to access and modify.

We will now describe in detail the architecture of each ANN constructed, which can be gen-

eralized using a common set of rules. The layers of each ANN can be generalized as follows:

1. Layer 0: The input layer, with number of dimensions equal to the number of raw features

(in this case, number of species).

2. Layers 1� (L − 1): The hidden layers, with number of neurons in each layer stored in an

array.

3. Layer L: The output layer, with C total neurons and a softmax activation for classification.

The neural network therefore has L + 1 total layers, L layers if the input layer is ignored,

and L − 1 layers if only the hidden layers are counted (i.e. excluding both input and output lay-

ers). The sequence of computations in the lth hidden layer, applied to each data sample, can be

described as follows:

1. Affine function: w[l]> z[l−1] + b[l]

2. Activation function: z[l] = A[l](w[l]> z[l−1] + b[l])

The affine function is performed on the neuron values obtained from the last layer, z[l−1].

The neuron values of the current layer, z[l], is the value of the affine function transformed by

the currently desired activation, A[l]. This activation is chosen as ReLU for all neural networks

used in this study. Finally, the output layer (layer L) of each ANN obeys the following sequence

of computations:

1. Affine function: w[l]> z[l−1] + b[l]

2. Activation function: A[l](w[l]> z[l−1] + b[l])

3. Softmax transformation: z[L] = softmax(A[L](w[L]> z[L−1] + b[L]))

At the last (Lth) layer, C neurons are present, with each neuron value representing a logit.
These can be considered unscaled log-likelihoods of the data sample belonging to each class.

More specifically, logit 1 represents the log-likelihood of the sample belonging to Class 1,

going all the way up to logit C with a similar interpretation. The final softmax function trans-

forms all these logits into proper probabilities that sum up to 1. Hence, the final array output-

ted by the softmax contains C elements, with each element representing the 0� 1 probability

that it belongs to class c 2 C.

In order to achieve a rational compromise between underfitting and overfitting, each ANN is

set to train for a maximum of 1000 epochs, with two overfitting mitigation strategies employed:

1. Regularization: An ℓ2-regularizer is introduced in each layer, which adds the term αkw[l]k2

to the cost function (Eq 5) for the weights in all layers.

2. Early-stopping: The loss value from Eq 5 is calculated and stored for every epoch. If the

loss values have not changed by more than ESthresh over the last nES epochs, then the train-

ing terminates prematurely even if the maximum number of epochs has not been reached.

The regularizer coefficient α is typically set to 0.01. The number of epochs for early-stop-

ping nES is set to 5, and the early-stopping threshold value ESthresh is set to 10−3. These values

may differ slightly for each ANN in order to maintain the underfitting-overfitting balance.

The ANN used for indicator identification in the environmental case study can be visual-

ized in the following Fig 12. The number of raw variables in the input layer is d = 50. The
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number of neurons in the first hidden layer of the ANN is usually determined by systematic

search methods such as [40, 41], or simply specified as a value close to the number of raw vari-

ables d. Therefore, in this particular case study, we have chosen 32 as the number of neurons

in first hidden layer. The second hidden layer uses 8 neurons; this compression serves as a “fea-

ture mapping” which extracts only the most relevant latent combinations for classification.

Similarly, the third hidden layer uses 4 neurons. Finally, the last hidden layer uses 2 neurons,

since this number must be equal to the total number of classes C = 2 in order for the softmax
activation to make sense. Each hidden layer uses a ReLU activation, except for the last layer

which uses the softmax activation required for classification.

Results

The efficacy of the optimally-separating feature extractor is first demonstrated on the well-

known benchmark dataset, the Fisher Iris [23]. Two Deep Learning models were built and

trained with identical architectures. The only difference in these models was the loss function:

one used a traditional softmax loss whereas the other used the proposed optimally-separating

loss. The results show that the optimally-separating model produces much larger separating

margins between the binary classes, whilst still achieving perfect test accuracy when compared

to the traditional. It is also capable of identifying the same relevant features in the Iris problem

as those expected from domain knowledge.

The second portion of the results will demonstrate the optimally-separating feature when

applied to the environmental monitoring case study. We will show that the keystone

Fig 12. The ANN neuron architecture used in the Mount Polley case study.

https://doi.org/10.1371/journal.pone.0256782.g012
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microorganisms identified using our proposed method are similar compared to the ones

found by [34], in terms of taxonomic composition.

Proof of concept: The Fisher Iris dataset

Problem statement. The Fisher Iris [23] dataset contains N = 150 total samples, with

d = 4 features:

• x1: Sepal length (cm)

• x2: Sepal width (cm)

• x3: Petal length (cm)

• x4: Petal width (cm)

The three types of Iris flowers or outcomes, split evenly with 50 samples each, are:

• y1: Iris Setosa

• y2: Iris Versicolor

• y3: Iris Virginica

Domain knowledge states that the flower types are decided according to the last two fea-

tures, x3 (Petal length) and x4 (Petal width), whereas the first two features (sepal length and

width) have a much less noticeable impact. In order to formulate this problem as a binary clas-

sification task, we only consider the first N = 100 samples of the dataset, which includes the

two outcome classes of Iris Setosa (Class 0) and Iris Versicolor (Class 1).

For this proof-of-concept, two ANNs are trained—a traditional ANN with the typical soft-
max loss function, and an optimally-separating ANN with the loss function specified in Eq 5.

Both ANNs are constructed with the architecture shown in Fig 13, and hyperparameters

detailed in Table 1.

Fig 13. The 4-layer ANN architecture used to classify the Fisher Iris dataset.

https://doi.org/10.1371/journal.pone.0256782.g013
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Note that the training and testing samples, while being randomly selected, is performed

such that the ratio of positive to negative class samples is preserved to be the same as in the

overall dataset. Moreover, each ANN model is trained over a large number of experiments,

since the ANN parameters may initialize in poor locations that converge to high local minima

far away from the true global minimum. These result in different top weights, and conse-

quently, different features being extracted. The results are aggregated across all experiments.

For each experiment, random training and testing sets are selected with a 80: 20 train:test split

ratio.

The results obtained from these two types of loss functions will be compared against one

another using the following metrics:

• Model accuracy on the training and testing sets.

• Separating margin between the two classes, i.e. Euclidean (ℓ2) distance between the two clos-

est opposing samples.

After each of the 10000 ANN models is trained for each case, we first compare the training

and testing accuracies of each ANN model, as shown in Table 2.

Since the Iris benchmark is a fairly straightforward classification problem, it is no surprise

that both ANN models are able to achieve perfect training and testing accuracies, especially

when the samples have been reduced to a binary set.

Now that the model generalization accuracy has been ascertained, we compare the inter-

class separation distances in each hidden layer.

The results in Table 3 show that the positive and negative class clusters in the optimally-sep-

arating ANN have been pushed much farther apart, than in the traditional ANN counterpart.

This indicates that the hinge-like loss in Eq 5 is working as intended. However, both ANNs

Table 1. Iris ANN classifier details.

Hyperparameter Value/Type

Activation in each layer (except last) ReLU
Train:Test ratio 80: 20

Early-Stopping criterion Average loss over past 5 iterations differs by no more than 1%

Total epochs per experiment 1000

Total experiments 10000

https://doi.org/10.1371/journal.pone.0256782.t001

Table 2. ANN training and testing accuracies on the Iris dataset.

Model Average Training Acc. (%) Average Testing Acc. (%)

Traditional 100 100

Optimally-Separating 100 100

https://doi.org/10.1371/journal.pone.0256782.t002

Table 3. Comparison of separating margins between traditional and optimally-separating ANNs, for the Iris classification problem.

Sep. Margin Traditional Max. Separating

Hidden Layer 1 2 3 1 2 3

Avg 1.78 1.87 2.04 6.28 23.27 107.7

Max 2.14 2.37 2.63 13.49 84.24 506.9

Min 1.33 1.36 1.33 1.70 3.45 40.9

https://doi.org/10.1371/journal.pone.0256782.t003
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achieve 100% accuracy due to the fact that the two classes are easily separated, as shown in

Fig 14.

Finally, we now analyze the feature extraction capabilities of the proposed, optimally-sepa-

rating ANN. Following the weight-ranking procedure outlined in the previous Proposed Deep
Optimal Feature Extractor section, we selected topn = 2 largest vector elements, then the topw =

2 largest input weights for each top vector element. The input weights were ranked using their

absolute values (rather than their unmodified values), due to no need of differentiation

between positively and negatively-correlated weights. The final input variable rankings, i.e.

fraction of experiments in which each input variable x1 x2 x3 x4 �½ was identified as hav-

ing the top weights, are reported in Table 4.

The results indicate that the combination of Petal Length (x3) and Petal Width (x4) input

features dominate in terms of deciding the final binary outcome. This agrees with the afore-

mentioned domain knowledge of this well-known dataset. Note that these ranking percentages

may change significantly, since we only set a threshold of 10000 experiments due to the limita-

tions of our computing power. However, if a sufficiently large number of experiments could

be conducted (ex. 100000 or more), then a more reliable and consistent ranking list could be

obtained.

Indicator species case study results

The Fisher Iris benchmark results from the previous section indicate that our proposed feature

extractor is capable of identifying the correct combination of relevant features impacting the

outcome. Now we perform our proposed algorithm on the environmental monitoring dataset,

Fig 14. Visualization of data separation within the first ANN hidden layer. (Left) Inter-class separation distance in

the traditional ANN, between Class 2 (red) samples and Class 1 (black) samples. (Right) Inter-class separation distance

in the optimally-separating ANN.

https://doi.org/10.1371/journal.pone.0256782.g014

Table 4. Feature-ranking of the Iris dataset, according to our proposed optimally-separating ANN.

Input Variable Frequency (%)

Sepal Length (x1) 0.0

Sepal Width (x2) 0.0

Petal Length (x3) 54.2

Petal Width (x4) 47.8

https://doi.org/10.1371/journal.pone.0256782.t004
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and observe whether the extracted species features are similar to the indicator species identi-

fied by the authors of [34].

The first objective of the DL model is to train itself to correctly predict the habitat label of

each sample to the best of its ability, given input data in the form of species abundance counts.

The second objective of the DL model is to identify indicator species with respect to both the

undisturbed and disturbed classes. By considering each class as a biocommunity, these key-

stone species can then be considered main actors which influence the behavior of each bio-

community as a whole. The indicators may subsequently help environmental engineers

mitigate the aftermaths of similar spills in the future, by revealing potential ecological shifts in

microbial communities.

Finally, after all results are presented, we will compare and contrast the indicator species

identified by the Deep Learning feature extractor and the original indicators provided by [34].

The results show that although the two sets of identified indicator species show distinct differ-

ences, they also share several similarities. More importantly, the results also indicate that sub-

sequent predictive models can be constructed with higher accuracy when using the new

indicator species (from our proposed method) as inputs, as opposed to using the indicators

identified by [34].

Predictive modelling results

A total of 21721 species are present in the raw dataset. However, many of these species are

sparsely-occurring, meaning their abundance counts are zero across most samples. Consider-

ing the extremely small number of samples to start with (N = 70), we use a reasonably propor-

tional number of features to prevent the curse of dimensionality as much as possible. Therefore,

we have chosen to include only the top 50 species, in terms of total abundance counts across

all existing samples. Using these abundance counts, we build two ANNs, both with the the

architecture specified in Fig 12. One of the ANNs is an optimally-separating one, which uses

the loss function prescribed in Eq 5. The other ANN is, of course, a traditional one with a

straightforward softmax loss. Both traditional and optimally-separating ANNs were trained

and tested on the Mount Polley dataset. A comparison of their accuracies (average, maximum,

minimum and standard deviations) across 5000 runs (for each case) can be observed in the fol-

lowing Table 5.

Note that the test accuracies are essentially the same across the two types of ANN models.

The main reason behind this phenomenon can be observed in the following Figs 15 and 16,

which shows two-dimensional plots of the largest separation margins within the layers of each

ANN, for the first 4 experiments. Notice that while the separating margins in the traditional

ANN (Fig 15) are significantly smaller (in terms of Euclidean distance) compared to those in

the optimally-separating ANN (Fig 16), in both cases perfect separation of the binary classes

are achieved. Therefore, the increased separating margin does not result in a visible increase in

prediction accuracy, as it is expected to do so for cases where the traditional ANN would be

unable to cleanly separate the classes.

Table 5. Testing-set accuracy comparison between traditional and optimally-separating ANNs.

Test Acc. (%) Traditional Optimally Separating

Avg 98.6 98.7

Max 100.0 100.0

Min 84.6 84.6

Std 2.1 2.1

https://doi.org/10.1371/journal.pone.0256782.t005
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The exact Euclidean distances of the separating margins, averaged across all 5000 runs, are

tabulated in the following Table 6. Notice that the increases in margins afforded by the opti-

mally-separating ANN range between 3 to 10 times on average.

After the predictive models—traditional and optimally-separating ANNs—are built and

trained adequately, they are then used to extract the indicator species associated with both

undisturbed and disturbed habitats. This was performed using the weight-tracing procedure

Fig 15. Inter-class separations in the traditional ANN. Black samples belong to the undisturbed class. Red samples

belong to the disturbed class. Only the first 4 out of the total 5000 runs are shown.

https://doi.org/10.1371/journal.pone.0256782.g015

Fig 16. Inter-class separations in the optimally-separating ANN. The separations are noticeably larger than those in

Fig 15. Black samples belong to the undisturbed class. Red samples belong to the disturbed class. Only the first 4 out of

the total 5000 runs are shown.

https://doi.org/10.1371/journal.pone.0256782.g016
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outlined in the previous “Proposed Deep Optimal Feature Extractor” section. The set of indica-

tors identified from the proposed method were used to train 3 types of predictive models—

Random Forests, Support Vector Machines, and (traditional) Artificial Neural Networks. This

procedure was then repeated using the indicators identified by [34]. The average test-set accu-

racies across 5000 runs, as well as their standard deviations, are tabulated in the following

Table 7.

When the top 50 species (by abundance sum) are used for training, the generalization capa-

bility of all three types of predictive models are higher compared to the case where the indica-

tors identified by [34] are used. When the indicators estimated using the optimally-separating

feature extractor are used, generalization capability increases slightly for SVM and ANN mod-

els, but decreases for the RF model. This is an interesting observation which appears opposite

to the expected results between SVMs and RFs. More specifically, the SVM is a linear classifier,

whereas the RF is an ensemble method which is able to map out non-linear underlying struc-

ture by sheer brute force (i.e. majority votes over a large number of experiments). Since the

raw data is highly non-linear in nature, the RF is expected to perform better. Overall, the SVM

and ANN test accuracies are the highest when using the estimated indicators, followed by the

50 top species, and worst when using the Garris [34] indicators. These results suggest that in

terms of habitat prediction, the set of estimated indicators contain less noisy and/or irrelevant

species combinations compared to both Garris [34] and the original dataset.

Indicator species identification

The arguably more important goal of data analytics, in the context of bioinformatics, is to pro-

vide insight into the relevant features affecting each specific outcome. In this specific case

study concerning the Mount Polley tailings dam breach, we identify indicator species using

our proposed strategy, then compare and contrast them to the indicators identified by [34].

The results are shown in the following Table 8:

Two important results in Table 8 are worthy of mention. First, 15 out of the 25 estimated

indicators have also been previously been identified by [34]. This implies a healthy extent of

overlap between the two vastly different identification methods. Moreover, Species1 has been

identified as an indicator by both methods. This species is lithotrophic, (i.e. it survives by feed-

ing off inorganic material, including solid minerals). It is abundantly present in disturbed hab-

itats that predominantly consist of tailings, which are mineral in origin with little organic

Table 6. Comparison of separating margins between traditional and optimally-separating ANNs.

Sep. Margin Traditional Optimally Separating

Hidden Layer 1 2 3 1 2 3

Avg 0.88 1.50 1.37 2.77 10.67 15.21

Max 1.93 4.49 4.01 7.99 48.92 73.11

Min 0.36 0.34 0.13 1.52 4.19 6.94

https://doi.org/10.1371/journal.pone.0256782.t006

Table 7. Testing-set accuracy comparison between classifiers, using either all species or only indicator species as

inputs. Plus-minus value represents one standard deviation.

Test Acc. (%) 50 top species (by sum) Garris Ind. only Estimated Ind. only

RF 97.9±1.4 97.36±1.6 96.62±1.7

SVM 98.7±1.5 97.37±1.7 98.72±1.7

ANN 98.7±1.6 97.41±1.8 98.71±1.8

https://doi.org/10.1371/journal.pone.0256782.t007
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material present. In order to compare these results at a more detailed level, we report the indi-

cator species in terms of the taxonomic levels of Domain (Fig 17), Phylum (Fig 18), and Class
(Fig 19). The proportional total number of indicators belonging to each category within each

taxonomic level can be visualized in the following Figs 17 through 19. Only the first 3 taxo-

nomic levels were considered, as any level below class showed species divisions which were too

fine for meaningful comparison. At the domain level, our proposed feature extractor identified

a similar number of Bacteria species, but less Archaea species, when compared to the Garris

indicators. At the phylum level, our method identifies Proteobacteria as the predominant type

of indicators, which strongly agrees with the Garris results. Both methods also identify Bacter-
oidetes and Acidobacteria as indicator types of similar proportionality. On the other hand, our

method identifies less Euryarchaeota and more Chloroflexi indicators. Finally, at the class level,

our method identifies Betaproteobacteria as the predominant type of indicators, which again

agrees with the Garris results. However, several indicator species have only been identified by

one method alone. For example, Garris et al recognized Cyanobacteria and Chloroplast species

as indicators, while none of them were recognized by our method. In contrast, our method

picked up many species such as Thermoleophilia, Methanobacteria, etc., which were not recog-

nized by Garris et al. Nevertheless, the overall results indicate a satisfactory degree of overlap

between our feature extractor and that of [34].

Table 8. Indicator species identified by our proposed feature extractor, compared to those identified by [34]. The Frequency column denotes the number of times each

species has been identified as a top weight, divided over all 5000 experiments. The Garris column represents whether each species has been identified in the paper [34], and

if so, which habitat it belongs to. The maximum and mean abundance counts of each species are also shown, along with the Class taxonomy level.

Species ID Frequency (%) Garris [34] Mean(Natural) Max (Natural) Mean (Disturbed) Max (Disturbed) Taxonomy (Class)

Species39 22.00 N/A 5 28 3 35 Acidobacteria

Species11 10.69 N/A 26 435 12 236 Methanomicrobia

Species1 9.27 Disturbed 3 13 305 1310 Betaproteobacteria

Species17 9.21 Disturbed 2 4 35 218 Flavobacteriia

Species53 7.96 Natural 12 74 2 9 unclassified

Species172 4.62 Natural 8 36 2 7 Methanomicrobia

Species13 3.28 Disturbed 3 13 37 302 Gammaproteobacteria

Species88 3.12 Natural 6 36 2 5 Anaerolineae

Species29 3.08 N/A 6 56 3 9 Cyanobacteria

Species16 3.07 N/A 2 2 24 215 Flavobacteriia

Species42 1.73 Disturbed 5 28 2 3 Methanomicrobia

Species52 1.73 Disturbed 11 64 7 38 Flavobacteriia

Species102 1.70 Disturbed 4 19 28 255 Betaproteobacteria

Species10 1.61 N/A 8 37 6 51 Betaproteobacteria

Species8 1.61 Natural 8 118 9 39 Betaproteobacteria

Species21 1.60 Natural 9 29 4 18 Deltaproteobacteria

Species4 1.58 N/A 2 5 126 488 Bacilli

Species14 1.58 Disturbed 2 9 27 490 Gammaproteobacteria

Species41 1.57 Natural 13 31 3 9 Betaproteobacteria

Species15 1.54 Natural 16 137 3 9 Gammaproteobacteria

Species26 1.51 N/A 4 61 2 13 Betaproteobacteria

Species62 1.51 Natural 9 60 2 12 Deltaproteobacteria

Species9 1.50 N/A 2 4 35 129 Bacilli

Species18 1.49 N/A 10 97 2 5 Cyanobacteria

Species54188 1.49 N/A 8 53 3 12 Chloroplast

https://doi.org/10.1371/journal.pone.0256782.t008
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Fig 17. Taxonomic comparison of indicator species at the domain level. Blue bars represent the indicators identified

by Garris et al [34]. Purple bars represent the indicators identified by our proposed feature extractor. The horizontal

axis represents the percentage of indicators belonging to each species.

https://doi.org/10.1371/journal.pone.0256782.g017

Fig 18. Taxonomic comparison of indicator species at the phylum level. Blue bars represent the indicators identified

by Garris et al [34]. Purple bars represent the indicators identified by our proposed feature extractor. The horizontal

axis represents the percentage of indicators belonging to each species.

https://doi.org/10.1371/journal.pone.0256782.g018
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Conclusion

In this work, we introduce a novel feature extraction algorithm based on Deep Learning, suited

specifically for binary classification problems. The algorithm uses a hinge-like loss function in

place of a traditional cross-entropy loss, in order to optimally separate the two distinct classes

in the discovered latent spaces. The most relevant input features are extracted by determining

the vector which describes the direction of inter-class separation in the latent space, then

selecting the largest elements within said vector. We first demonstrate our algorithm on the

benchmark Fisher Iris classification problem, and show that it is capable at accurate prediction

as well as identifying the correct relevant features (i.e. sepal length and sepal width). We then

test our proposed strategy on an environmental monitoring dataset collected from the Mount

Polley tailings breach, which includes microorganism species abundance counts from natural

and disturbed habitats. The first set of results show that our proposed feature extractor identi-

fies indicator species with similar domain and phylum taxonomic levels, when compared to

those identified in the previous work [34]. The second set of results show that the indicators

extracted from our proposed method lead to more accurate habitat predictions, when used in

models such as Support Vector Machine or traditional Artificial Neural Network models.

Future plans to improve this work include rigorous sensitivity testing of the proposed fea-

ture extractor, as well as expanding its scope and applicability. For instance, the current formu-

lation has only been tested on a relatively small dataset with N = 70 samples. It would be

interesting to observe whether the same success holds for bigger datasets with thousands of

Fig 19. Taxonomic comparison of indicator species at the class level. Blue bars represent the indicators identified by

Garris et al [34]. Purple bars represent the indicators identified by our proposed feature extractor. The horizontal axis

represents the percentage of indicators belonging to each species.

https://doi.org/10.1371/journal.pone.0256782.g019
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samples, as Deep Learning typically trains better on larger sets [25]. Moreover, a sensitivity

study which investigates performance change with respect to hyperparameters topn and topw
(i.e. the number of top components selected in each feature extraction step) would strengthen

the reliability of the algorithm. With respect to the general state of research in the feature

extraction field, the main next step is to implement our method on datasets from similar disci-

plines such as disease (ex. COVID) diagnosis and prevention. These future case studies will

produce additional results that compare and contrast the efficacy of our algorithm to well-

established such as PCA-Firefly [16], and further clarify whether Deep Learning can indeed

provide more intuitive and actionable feature extraction results.
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