
Deep Reinforcement Learning with Shallow
Controllers: An Experimental Application to PID

Tuning✩

Nathan P. Lawrencea, Michael G. Forbesc, Philip D. Loewena, Daniel G.
McClementb, Johan U. Backströmd, R. Bhushan Gopalunib

aDepartment of Mathematics, University of British Columbia, Vancouver BC, Canada
bDepartment of Chemical and Biological Engineering, University of British Columbia,

Vancouver, BC Canada
cHoneywell Process Solutions, North Vancouver, BC Canada

dBackstrom Systems Engineering Ltd.

Abstract

Deep reinforcement learning (RL) is an optimization-driven framework
for producing control strategies for general dynamical systems without ex-
plicit reliance on process models. Good results have been reported in simu-
lation. Here we demonstrate the challenges in implementing a state of the
art deep RL algorithm on a real physical system. Aspects include the inter-
play between software and existing hardware; experiment design and sample
efficiency; training subject to input constraints; and interpretability of the
algorithm and control law. At the core of our approach is the use of a PID
controller as the trainable RL policy. In addition to its simplicity, this ap-
proach has several appealing features: No additional hardware needs to be
added to the control system, since a PID controller can easily be imple-
mented through a standard programmable logic controller; the control law
can easily be initialized in a “safe” region of the parameter space; and the
final product—a well-tuned PID controller—has a form that practitioners
can reason about and deploy with confidence.

Keywords: reinforcement learning, deep learning, PID control, process
control, process systems engineering

✩Accepted for publication at Control Engineering Practice
Email addresses: input@nplawrence.com (Nathan P. Lawrence),

bhushan.gopaluni@ubc.ca (R. Bhushan Gopaluni)

Preprint submitted to Control Engineering Practice December 16, 2021

1. Introduction

Reinforcement learning (RL) is a branch of machine learning that adap-
tively formulates a “policy” through interactions with an environment [1].
Such a general framework has led to the burgeoning interest in RL for process
control applications [2, 3]. However, real-world applications in the field re-
main sparse. Systems integration and software development, alongside more
fundamental algorithmic issues concerning closed-loop stability and sample
efficiency are all formidable challenges one faces.

We take a pragmatic approach to implementing RL. Proportional-integral-
derivative (PID) controllers are well-understood and ubiquitous in practice.
This makes the problem of tuning a PID a reasonable starting point for
real-world applications of RL. Moreover, their simple structure and stabiliz-
ing properties are neatly compatible with policy design in RL. Further, the
prevalence of PID controllers in current industrial plants makes it natural
to seek RL applications that operate effectively with them and thus take
full advantage of existing hardware and expertise. Therefore, this framework
provides a fruitful testbed for evaluating RL algorithms through the lens of
industrially-accepted auto-tuning methods.

This paper extends the previous work of Lawrence et al. [4] to a physical
system; the key idea is to interpret a PID controller as the RL policy. We
embrace the fact that performance is not the only metric of interest when
evaluating a new approach to controller design [5, 6]. Other important con-
siderations include ease of use, maintainability, and robustness. We convey
the technical challenges involved in implementing a RL algorithm in our
lab: this includes special consideration of the interplay between software de-
velopment and existing hardware. Moreover, we propose various metrics for
evaluating RL algorithms with existing auto-tuners serving as a baseline. We
aim to show that RL can be deployed on a physical system in an interpretable
and modular fashion, and to weigh the merits of RL against standard tuning
techniques. Ultimately, the purpose of this work is to develop a guide for
real-world applications of RL in process control.

1.1. Related work
We review some related work at the intersection of RL and process control.

For a more thorough overview the reader is referred to the survey papers by

2

Shin et al. [2], Lee et al. [7], or the tutorial-style papers by Nian et al.
[3], Spielberg et al. [8]. Moreover, since PID control is such a large field,
we limit our survey of PID control to RL-related methods; some data-driven
and optimization-based approaches can be found in the works of Berner et al.
[9], Wakitani et al. [10], and others they cite.

One of the first studies of reinforcement learning for process control ap-
plications is due to Hoskins and Himmelblau [11]. Later, in the early 2000s,
several successful implementations of RL methods in process control were
developed. For example, Lee and Lee [12], Kaisare et al. [13] utilize approx-
imate dynamic programming methods for optimal control of discrete-time
nonlinear systems. These early works demonstrate the applicability of RL in
process control through applications such as scheduling problems or control
of a microbial cell reactor when a simulation model is available.

More recently, there has been significant interest in deep RL methods for
process control [14, 15, 16, 17, 18, 19, 20]. Spielberg et al. [8] adapted the
popular model-free deep deterministic policy gradient (DDPG) algorithm
for setpoint tracking problems. Meanwhile, Wang et al. [21] developed a
deep RL algorithm based on proximal policy optimization algorithm [22].
Petsagkourakis et al. [23] use transfer learning to adapt a policy developed
in simulation to novel systems. Variations of DDPG, such as twin-delayed
DDPG (TD3) [24] or a Monte-Carlo based strategy have also shown promis-
ing results in complex control tasks [25, 26]. Other approaches utilize meta-
learning and apprenticeship learning to quickly adapt trained RL models to
new processes [27, 28]. In the model-based setting, Kim et al. [29] incorpo-
rate deep neural networks (DNNs) as value function approximators into the
globalized dual heuristic programming algorithm. Predictive models have
also been augmented with popular DRL algorithms, such as DDPG or TD3,
to improve the policy gradient estimation [30]

Other approaches to RL-based control postulate a fixed control structure
such as PID [31, 32, 33]. Brujeni et al. [34] develop a model-free algorithm
to dynamically select the PID gains from a pre-defined collection derived
from Internal Model Control (IMC). Their approach is adapted to a physi-
cal continuously stirred tank heater after pre-training in simulation. Berger
and da Fonseca Neto [35] dynamically tune a PID controller in continuous
parameter space using the actor-critic method; their approach is based on
dual heuristic dynamic programming, where an identified model is assumed
to be available. The actor-critic method is also employed by Sedighizadeh
and Rezazadeh [31], where the action at each time-step is to revise the PID

3

gains.
Only a handful of these studies on RL for process control contain real-

world validation [20, 34, 19, 15, 3]. This work is focused on evaluating the
merits of deep RL as a model-free auto-tuning strategy. This entails a cou-
ple significant differences from previous work: We do not use a simulation
model or offline datasets for pre-training the RL agent; We outline criteria
for any auto-tuning strategy and evaluate our deep RL algorithm through
this lens. Crucially, we provide a detailed account of the hardware, software,
and algorithmic details involved in implementing the RL agent.

2. Methodology

Actor

ki

kp

kd

+

-1

+
yy

Δe

e
Δ2e

Environment

[kp ki kd]T ← [kp ki kd]T + α# [∇Qϕ]
CriticPC/HMI

u

z−1

Figure 1: A conceptual diagram of the proposed method. The actor network is a PID
controller, which interacts with a physical two-tank system. The PC/HMI collect process
data, which is used by the RL algorithm to train a critic network. The critic network then
updates the PID parameters, which are read by the HMI and sent back to the system.
Dashed lines indicate a separation of time scales between the RL algorithm and the physical
system.

4

2.1. Reinforcement learning
A brief overview of deep RL will serve to fix our notation, which is largely

standard. For more background, see Sutton and Barto [1]; tutorial-style
treatments are given by Nian et al. [3], Spielberg et al. [8].

The system of interest has states s that evolve in some set S. At each
instant t (an integer), the agent observes the state st and responds by apply-
ing some action at, chosen from a given set A. The system dynamics then
produce a new state st+1,and the agent receives a scalar reward, rt. As time
marches on, a history h = (s0, a0, s1, a1, . . .) is produced. The present value
of the agent’s total accumulated rewards is

∞!

t=1

γt−1rt,

where γ ∈ (0, 1] is a fixed discount factor.
Randomness complicates the situation. Given the current state st and

action at, the new state st+1 is a random variable distributed according to
some density p (·|st, at). (Typically p, which encodes the system’s nonlinear
stochastic dynamics, is taken as completely unknown.) More formally, the
system is assumed to be a Markov Decision Process (MDP). The agent’s
reward emerges from a fixed function r, according to rt = r(st, at). The
agent’s actions are determined by selecting a “policy” π, which is a state-
dependent conditional probability density on A, so that the agent’s actions
obey at ∼ π (·|st).

By fixing a policy π, the agent completes the specification of a Markov
process and establishes a probability density pπ(·) on the set of trajectories
h = (s0, a0, s1, a1, . . .). The agent’s goal is to maximize expected long-term
reward1 by choosing the best possible policy π, i.e.,

maximize J(π) = Eh∼pπ(·)

" ∞!

t=1

γt−1r(st, π(st))

#####s0

$

over all policies π : S → P(A),

(1)

1Standard RL terminology calls for maximizing a reward. The problem can be recast
as minimizing a loss by changing the sign of the objective. Thus −rt has a role analogous
to the stage cost in MPC; when we discuss a reward function with reference to a cost
function, this change of sign is understood implicitly.

5

where P(A) denotes the set of probability measures on A.
The broad subject of reinforcement learning concerns iterative methods

for choosing a desirable policy π (this is the “learning”), guided in some
fundamental way by the agent’s observations of the rewards from past state-
action pairs (this provides the “reinforcement”).

We next outline the class of algorithms aimed at solving Problem (1). Not
knowing p (or, consequently, pπ) is a key limitation. We focus exclusively on
methods that produce deterministic policies µ, which can be considered as
simple A-valued mappings defined on the state space. Henceforth we use the
notation µ for a policy; in the context of the above formulation one may set
π = µ.

Common approaches to solving Problem (1) involve Q-learning (value-
based methods) and the policy gradient theorem (policy-based methods) [1].
These methods form the basis for deep RL algorithms, that is, algorithms for
solving RL tasks with the aid of deep neural networks. Deep neural networks
act as flexible function approximators, well-suited for expressing complex
control laws. Moreover, function approximation methods make RL problems
tractable in continuous state and action spaces [36, 37, 38]. Without them,
discretization of the state and action spaces is necessary, accentuating the
“curse of dimensionality”.

In the space of all possible policies, the optimization is performed over a
subset parametrized by some vector θ. For example, in some applications, θ
denotes the set of all weights in a deep neural network. In this work, we take
θ to be the gains in a PID controller. The policies considered are denoted µθ,
and we simplify Problem (1) by writing J(θ) instead of J(µθ) and pθ instead
of pµθ .

A standard approach to solving Problem (1) uses gradient ascent:

θ ← θ + α∇J(θ), (2)

where α > 0 is a step-size parameter. Analytic expressions for ∇J(θ) exist for
both stochastic and deterministic policies [1, 37]. Crucially, these formulas
rely on the state-action value function,

Q(st, at) = Eh∼pθ(·)

" ∞!

k=t

γk−1r(sk, µθ(sk))

#####st, at

$
. (3)

Although Q is not known precisely, as it depends on both the dynamics and

6

the policy, it can be estimated with a deep neural network [39]. Writing φ for
the vector of parameters in this network, and Qφ for the approximation to Q
that it defines, φ is chosen to minimize the temporal difference error across
N observations indexed by i (or variations of this, as given in the references
cited below):

Lcritic(φ) =
1

N

N!

i=1

%
Q

(i)
target −Qφ(s

(i), a(i))
&2

. (4)

For example, Q(i)
target = r(s(i), a(i)) + γQφ(s

′(i), µθ(s
′(i))), and s′ represents the

next state in the trajectory following policy µθ. With an up-to-date critic
network, we then define the loss for the actor network as follows:

Lactor(θ) =
1

N

N!

i=1

Qφ(s
(i), µθ(s

(i))). (5)

∇Lactor serves as a tractable approximation of ∇J , and is therefore used in
the nominal policy update shown in Equation (2) [37]. These ideas are the
basis of popular deep RL algorithms such as DDPG, TD3, SAC [36, 24, 40].
More generally, they fall into the class of actor-critic methods [41], as they
learn both a policy µ (≈ µθ) and a state-action value function Q (≈ Qφ).
We use a modified version of TD3, the twin-delayed DDPG algorithm [24], a
refinement of DDPG [36]. For completeness, we present the basic algorithm
in Algorithm 1 and give an overview of its main differences from DDPG in
Appendix A.

2.2. PID in the RL framework
We now apply the general formulation given in the previous section to the

problem of PID tuning. The proposed framework is illustrated in Figure 1.
We use the variable ȳ to denote a reference signal; we generally omit the
time index with the understanding that the initial time t = 0 indicates a
step change in the reference signal, which is then constant. We then write
the output error signal as e

(y)
t = ȳ − yt. We use the operator ∆ to denote

a first-order difference between time steps of a signal; for example, ∆e
(y)
t =

e
(y)
t − e

(y)
t−1. We use ∆t to denote the sampling time. When implementing a

PID controller in the incremental form, the derivative term requires second-
order output information. We use a superscript f to denote a signal resulting

7

from a low-pass filter; since the only instances in which we use this convention
are to approximate derivatives, we include the sampling time in the definition.
The filtered first-order difference of the output ∆y

(f)
t is used to compute a

second-order difference, based on the following recursion:

∆y
(f)
t = Tf∆y

(f)
t−1 + (1− Tf)

yt − yt−1

∆t
(6)

∆2y
(f)
t =

∆y
(f)
t −∆y

(f)
t−1

∆t
, (7)

where Tf ∈ [0, 1] is a fixed parameter. An anti-windup component2 is in-
corporated through the variable e

(u)
t−1 = ût−1 − ut−1, where û is the signal

proposed by a PID controller before being saturated and u = sat(û) denotes
the actual input signal after saturation.

With the variables ∆e
(y)
t , e

(y)
t , ∆2y

(f)
t , e

(u)
t−1, ut−1, a PID controller can

then be written as follows:

ût =
'
kp ki kd kτ

(

)

***+

∆e
(y)
t

∆te
(y)
t

−∆2y
(f)
t

∆te
(u)
t−1

,

---.
+ ut−1. (8)

The scalar ût given by Equation (8) is clipped to produce the physically
admissible input signal ut = sat

/
ût

0
, which is sent to the plant. Since Equa-

tion (8) contains first and second-order output information, and the system
usually contains time delay, the RL state is taken to be a history of the
observations ot =

1
∆e

(y)
t ,∆te

(y)
t ,−∆2y

(f)
t ,∆te

(u)
t−1, ut−1

2
:

st = [ot−d, . . . , ot] (9)

where d is a non-negative integer. In the context of the RL formulation in
Section 2.1, the “actions” at are interchangeable with the control inputs ut.

Equation (9) contains the necessary information for implementing a PID
controller in discrete time steps. Equation (8) parameterizes the PID con-

2Although we are working with the incremental form of PID controller, which automati-
cally resets the controller at its saturation limits, we still use the terminology “anti-windup”
to refer to this component of the controller.

8

troller. We therefore take Equation (8) to be a shallow neural network, where
[kp ki kd kτ] is a vector of trainable weights. In light of Equations (2), (5)
and (8), the PID update equation takes the following explicit form:

θ ← θ + α∇J(θ) (10)

≈ θ + α∇
3

1

N

N!

i=1

Qφ(s
(i), µθ(s

(i)))

4
(11)

= [kp ki kd kτ]
T + . . .

α
1

N

N!

i=1

%'
∆e(y),∆te(y),−∆2y(f),∆te(u)

(T&(i)

∇aQφ(s
(i), a)

####
a=µθ(s(i))

.
(12)

Equation (12) follows by the chain rule and can be computed automatically
in deep learning frameworks, such as PyTorch, based on the computation of
Lactor and Lcritic. Later in Section 5.3 we explain strategies for training the
weights subject to the saturation nonlinearity.

3. Scorecard for RL algorithms in process control

We propose the following criteria for evaluating RL based tuning methods.

1. Nominal performance: How much does the RL agent improve the perfor-
mance of the closed-loop system compared to its initialization?

2. Stability : Is the trained closed-loop system stable? Did it become unstable
during training?

3. Perturbation to the system: How much perturbation to the process is
required to achieve satisfactory performance?

4. Initialization: To what extent does the performance of the RL agent de-
pend on the initial PID parameters?

5. Hyperparameters : Do the algorithm hyperparameters need to be adjusted
between experiments? Which hyperparameters influence the learning pro-
cess most strongly?

6. Training duration: How many episodes are required to achieve satisfactory
performance?

9

7. Practicality and specialization: What hardware is required in order to
deploy the RL algorithm on the physical process? What level of user
expertise is required in order to implement the algorithm?

Many of these criteria have natural counterparts in current tuning meth-
ods, which provide useful points of reference in our evaluation. These are
discussed further in Section 6.4. To quantify our assessment, we consider the
integral absolute error (IAE), integral squared error (ISE), total variation
(TV), overshoot (OS), and settling time (ST):

IAE:
5 ∞

0

|e(t)|dt ISE:
5 ∞

0

e(t)2dt

TV:
∞!

t=0

|y(t+ 1)− y(t)| OS: max
0≤t<∞

6
|e(t)| {t : e(0)·e(t)<0}(t)

7

ST: min
0≤t<∞

t {t : |e(τ)|≤ε ∀τ≥t}(t) where Ω(t) =

8
1 if t ∈ Ω

0 otherwise.

(13)

Of course, these are approximated as summations using discrete-time samples
from the system. To compute percent overshoot (% OS), the OS is multiplied
by 100/|∆ysp(0)|. We will also be interested in the total variation of the input
signal, which is denoted by TVu.

These criteria address much more than simply the performance of the
trained RL agent. We are interested in the “path” the RL agent takes to
reach its final form, the perturbations it makes to the system, its usability,
and the overall software/hardware requirements.

4. Lab setup and software structure

In this section, we describe the dynamics and instrumentation of our two-
tank system. We also give an overview of the software used to implement a
RL agent on the physical system with standard hardware.

4.1. Description of the two-tank system
We consider the problem of controlling the liquid level in a tank, using

the physical apparatus shown in Figure 2. The tank of interest is positioned
vertically above a second tank that serves as a reservoir. Water drains from
the tank into the reservoir through an outflow pipe, and is replenished by

10

Figure 2: Our two-tank system in a lab at Honeywell for testing PID tuning algorithms.

water from the reservoir delivered by a pump whose flow rate is our ma-
nipulated variable. More precisely, two PID controllers are in action: For a
desired level, one PID controller outputs the desired flow rate based on level
tracking error. This flow rate is then used as a reference signal for the second
PID controller, whose output is the pump speed. The first is referred to as
the “level controller” and the second as the “flow controller”.

Significant physical dimensions (with units of length) include rtank, the
radius of the top tank; rpipe, the radius of the pipe for the outflow of the
top tank; and ℓ, the distance from the base of the top tank up to the water
surface. (We later refer to m, a filtered counterpart of ℓ.)

Key flow parameters, with units of volume/time, are the outflow fout; the
inflow fin; an empirical coefficient fc; and fmax, the maximum flow the pump
can deliver.

The pump delivers water to the top tank at the rate (p/100)fmax, where
p is a dimensionless percentage in [0, 100].

We write p̄ for the commanded pump speed, typically a piecewise-constant

11

setpoint function.
The system dynamics are based on Bernoulli’s equation, fout ≈ fc

√
2gℓ,

and the conservation of fluid volume in the upper tank:

d

dt

/
πr2tankℓ

0
= πr2tankℓ̇ = fin − fout. (14)

(We use a dot for the time derivative; g is the gravitational constant.)
Our system model combines the principles above with some simple filters

to make our mathematical description physically realizable. A first-order
filter with time constant τ ≥ 0 transforms an input signal ŷ into the output
signal y defined by

τ ẏ + y = ŷ, y(0) = 0. (15)

Note that setting τ = 0 gives y(t) = ŷ(t), while if ŷ is constant, one has
y(t) = (1− e−t/τ)ŷ. Our application involves four filtered signals, with time
constants τp for the pump, τin for changes in the inflow, τout for the outflow,
and τm for the measured level dynamics.

We therefore have the following system of differential equations describing
the pump, flows, level, and measured level:

τpṗ+ p = p̄ (16)

τinḟin + fin = fmax

% p

100

&
(17)

τoutḟout + fout = πr2pipefc

9
2gℓ (18)

πr2tankℓ̇ = fin − fout (19)
τmṁ+m = ℓ. (20)

To track a desired level ℓ̄, we can employ level and flow controllers by includ-
ing the following equations:

p̄ = PIDflow(f̄in − fin) (21)
f̄in = PIDlevel(ℓ̄−m). (22)

Equation (21)–(22) use shorthand for PID controllers taking the error signals
f̄in − fin and ℓ̄ − m, respectively. For our purposes, PIDflow is fixed and a
part of the environment, while PIDlevel is the tunable controller.

This mathematical description is given to provide intuition for our control
system. Moreover, it was used for the offline development of our interface for

12

interacting with the physical system.

4.2. Human-machine interface
We developed a human-machine interface (HMI) in Matlab App Designer

to interact with the tank system. The interface is shown in Figure 3a. From
the HMI, we can adjust the PID parameters for controlling the pump speed,
flow rate, and level of the top tank. More precisely, the PID controllers for
the pump and flow produce setpoints which the physical pump must attain.
This is illustrated in Figure 3b. As a Matlab application, it is easy to build in
a lot of additional functionality into the HMI. Although we refer to it as the
HMI, it also includes implementations of PID controllers, automated and on-
demand saving of data to csv files, and logic and algorithms to supervise and
run process experiments. The HMI also includes an embedded simulation of
the system based on the dynamics given in Section 4.1. This setup allows
easy switching between simulation and reality, providing a unified interface
for conceptual development and laboratory experiments. We note that the
simulator was not used to pre-train the RL agent.

4.3. Software and hardware for training RL agents
(Software) Our starting point for developing a RL agent was the open

source repository Spinning Up [42]. In principle, deep RL libraries like
Spinning Up can help streamline the process of testing new algorithms on
novel simulated environments through the Open AI Gym [43]. However, our
project called for a number of fundamental changes. Most importantly, the
RL agent does not directly actuate the system (as in Gym environments).
Rather, it is one element of a modular design comprisingthe RL code, the
HMI, and the instrumentation of the two-tank system.

In light of this, it is worth noting that there are two PID representations
of Equation (22) at play: The actor network in the RL code, and the PID
controller acting on the system through a hardware programmable logic con-
troller (PLC). The actor network representation is implemented in PyTorch
and used for the purposes of training. This setup requires inter-module com-
munication to transmit the results of training to the PLC for implementation.

In order to accommodate this distinction, we made the following changes
to the Spinning Up implementation of the TD3 algorithm:

• The standard actor network in Spinning Up is a feedforward neural net-
work. A PID is a linear function followed by the identity activation

13

(a)

(b)

Figure 3: (a) The HMI control screen for the two-tank system. (b) Real-time plots show
tracking performance and PID parameters; dashed lines are setpoints and solid lines are
measured process variables.

14

function, given by Equation (8). We provided a custom initialization of
the PID parameters (rather than the typical random initialization) and
constrained the parameters to be positive through the use of a smooth
and invertible approximation of ReLU (x *→ max{0, x}) called Softplus
(x *→ ln(1 + exp(x))). For example, if one wishes to initialize the pro-
portional gain as kp = 4.0, then the corresponding weight in the RL
code would be initialized as θkp = ln(exp(4.0) − 1). A similar strategy
constrains the anti-windup term to the interval (0, 1), by using Sigmoid
(x *→ 1/(1 + exp(−x))) instead of Softplus. Therefore, instead of taking
θ = [kp ki kd kτ] as in Section 2.2, the vector of inverted PID parameters
is used as the trainable weights θ = [θkp θki θkd θkτ].

• We removed all linkages to a Gym-style environment. Instead, new data
from the tank is processed in batches. Our HMI records process data and
periodically saves it to a directory accessible to the RL agent. The RL
code processes the new data then updates its internal representation of
the PID controller according to Algorithm 1. More specifically, the RL
code is responsible for reading these data files and constructing its replay
buffer consisting of state transition tuples (s, a, s′, r). Once the weights θ
are updated, they are translated back to “PID form” through the Softplus
or Sigmoid functions as described above, then saved and read by the HMI.

• As a consequence of the above changes, we also removed all parameters
in the code that would characterize an episode in the Gym environment.
These include the number of time steps per episode, the number of samples
to collect before training begins, and how many time steps pass between
parameter (both actor and critic) updates. The effect of these parameters
is still present, as the HMI includes these specifications; the main difference
is that the RL code is only used to process new data. We can easily change
design parameters in the HMI online, while the RL code is running in the
background.

(Instrumentation and System Integration) The key field measurement
devices and actuators included in the lab apparatus are a guided wave radar
level measurement device to measure the level in the upper tank; a differential
pressure flow measurement device to measure the flow of water into the upper
tank; and a variable speed pump to pump water from the lower tank, through
the flow measurement device, and into the upper tank. These are wired
into an HC900 process and logic controller which allows communication with

15

Matlab, via Modbus/TCP, to support a HMI and controls. Two UDC2500
loop controllers are also connected to the HC900 so that these elements
may be used optionally for flow and/or level control. Logic programmed
in the HC900 is used to switch between flow and level control by Matlab
PID implementions, by the UDC2500 controllers, or by manual pump speed
adjustments.

(Computing) For our purposes, it was sufficient to run the HMI and
train the RL agent on a desktop computer in the lab. The PC used in the
lab has an Intel Xeon CPU which runs at 3.5 GHz, and 8 GB of RAM. (This
is a good but unremarkable PC.) Due to our modular setup, it would also be
possible to train the RL agent through cloud services.

5. Experiment design and case studies

5.1. Experiments for learning
An episode is characterized by a step change in the process; a timer

specifies how much time will elapse between step changes. To ensure safe
operation even when unsupervised, the HMI has access to a set of PID pa-
rameters that are known to stabilize the system. These may be poorly tuned
parameters, such as ones used before the tuning procedure. The HMI is
able to switch to these parameters if the tracking provided by the RL-tuned
parameters is too poor, guaranteeing that the next step change starts from
steady state. Therefore, the timer parameter may be set online based on
closed-loop experiments, serving as an upper bound for when to trigger the
“safe” PID parameters unless the system is brought to steady-state before-
hand. For simplicity and consistency in our experiments, we keep the timer
fixed during experiments.

Measured data are stored, processed, then used to train the RL agent
during operations. The RL agent generates new PID parameters, which are
then loaded into the HMI to update the Matlab PID control implementations.
The outputs from these PID controllers are sent to the HC900 process and
logic controller which passes them to the appropriate field devices. This pro-
cess of sending new data to the RL agent and updating the PID parameters
can be done during an experiment or set to occur at the end.

We train using a pre-defined set of setpoints; an “episode cycle” refers to
one pass over all of these setpoints. In the context of training, an “experi-
ment” refers to all the episodes leading to the final tuning parameters. Later
on we refer to an “evaluation experiment” or “robustness experiment” in the

16

context of some final set of tuning parameters that we wish to evaluate in
various conditions.

5.2. Reward function selection
A crucial component of any RL agent is the reward function. This func-

tion must accurately capture the goals of the system designer. Therefore, we
consider costs (negative rewards) that depend only on the tracking error et
and the change in control variable ∆ut = ut − ut−1, in the form

l(st, ut) = |et|p + λ|∆ut|q, (23)

where p, q are fixed integers (namely, 1 or 2) and λ ≥ 0 is a fixed penalty
term. For a system with multiple inputs and outputs, one can generalize
Equation (23) by using the ℓ1 or squared ℓ2 norms. Although the cost given
by Equation (23) is commonly used in the case of p = q = 2, such as in
applications of model predictive control, the user is left with the tuning
parameter λ. A reasonable initial choice is λ = 1/|∆u|max, where |∆u|max is
an approximation of the maximum absolute value of ∆u observed within the
operating region. This is simply a normalization step: one can rewrite the
penalty term as λ |∆ut|q

|∆u|max
and adjust λ based on relative weight given to the

tracking error term of Equation (23). For our purposes, we use the penalty
term 0.1(∆ut)

2.
The above reward function structure is flexible in terms of the range of

behaviors it can incentivize. For example, setting λ = 0 selects the absolute
or squared error reward function. The squared error places a significant
amount of weight on states with large errors; in comparison, the absolute
error puts more emphasis on small errors. Therefore, it is reasonable to
prefer the absolute error for a slower response but with better attenuation of
overshoot and oscillations. Conversely, a fast response may be desirable. One
of the appeals of RL is the flexibility in the choice of the reward function.
Therefore, we also test a cost function that has the desirable components of
both the absolute and squared errors:

l(st, ut) =

8
|et| if |et| < 1
1
2
(e2t + 1) otherwise.

(24)

Equation (24) is the absolute value function around the origin and smoothly
transitions to a parabola. From now on, we use l exclusively for Equa-

17

tion (24), and refer to it as the “hybrid cost” (or reward). One may set
r = −l or use a reward based on Equation (24) with an input penalty.

5.3. Tuning subject to input constraints
One difficulty in applying RL algorithms to tune a PID controller is the

inherent presence of input constraints in a physical system. We follow the
methods proposed by Hausknecht and Stone [44]: The actor update scheme
in Equation (11) is modified to steer its actions to within a pre-defined range
[umin, umax]. Formally, since

∇θQφi
(s, u)|u=µθ(s) = ∇θµθ(s)∇uQφi

(s, u)|u=µθ(s) (25)

by the chain rule, the components of ∇uQφi
(s, u)|u=µθ(s) are scaled as follows:

∂Qφi

∂u
(s, u) ← ∂Qφi

∂u
(s, u) ·

:
;<

;=

umax − u

umax − umin
if ∂Qφi

∂u
(s, u) > 0

u− umin

umax − umin
otherwise.

(26)

Without making the RL agent “aware” of the input constraints it may con-
tinue to propose infeasible actions. Intuitively, Equation (26) reverses the
direction of the parameter update if the critic “reinforces” an infeasible ac-
tion toward the optimum. This update scheme also puts less weight on a
parameter update when an action is close to the constraints.

Another option for updating the actor parameters subject to constraints
is to use an output activation on the actor such that the actions are auto-
matically forced inside the range [umin, umax] [44]. Options include using the
saturation function or a smooth approximation such as tanh. However, this
approach diminishes the gradient in Equation (25) at the constraints, essen-
tially ignoring the value of such state-action pairs. We emphasize that the
PID controller on a physical system will still obey the constraints [umin, umax],
whether by physical limitations or by modeling them directly with the satu-
ration function; the update scheme in Equation (26) is solely for the purpose
of updating the actor and any constraint violations performed in the update
scheme are not reflected on the physical system.

5.4. Standard tuning methods
To provide an overall evaluation of our RL algorithm, we compare our

results to baseline tuning methods in the context of the criteria put forth

18

in Section 3. In particular, we compare the RL results to various tuning
parameters given by the Skogestad IMC (SIMC) tuning method [45] and
Honeywell’s Accutune III algorithm [46, 9]. SIMC provides PI parameters
based on a first-order plus dead time (FOPDT) model of the plant; the
closed loop time constant Tc is the only tuning parameter for this method.
Accutune III is a relay autotuning algorithm; its user inputs are the input
range for the relay signal and a switch to select either “fast” or “slow” tuning.
Note that these methods do not share the same underlying objective of RL, so
the purpose of including them is simply for baseline data of what reasonable
performance or robustness look like in our setting. Moreover, we can evaluate
the three methods (RL, SIMC, Accutune) through the lens of our “scorecard”
items in Section 3.

6. Lab results

We report our experimental results in two sections. This section reports
some key results and high-level conclusions. Appendix B provides all the
data supporting our findings. Table A.3 lists the hyperparameters used in
this work. We emphasize that all the experiments presented here are per-
formed directly on the physical two-tank system without prior pre-training,
for example, in simulation or with offline datasets.

6.1. Experimental setup
We run three different RL experiments, all using this reward function:

−r(st, ut) = |et|+ 0.1∆u2
t . (27)

They differ based on the initial PID tuning parameters for training as well
as the operating conditions. The first two experiments are “unconstrained
experiments”; more precisely, we run Algorithm 1 in an operating region
where the agent is unlikely to hit the physical constraints of the pump. Our
algorithm is designed to improve the initial tuning parameters; therefore,
we test the algorithm from different starting parameters. The initial tuning
parameters are given according to the following dependence on kp:

ki = kp/60, kd = 0.01kp, (28)

where the first experiment sets kp = 4.0 and for the second kp = 2.0. Since
the RL agent operates in closed loop, the input constraints may not always be

19

avoidable, which is why they must be accounted for during training. We next
run a “constrained experiment" with kp = 4.0. That is, we run Algorithm 1
with a strategy for dealing with input constraints, as described in Section 5.3.
This experiment switches between the setpoints 60 cm and 65 cm as well
60 cm and 63 cm; this configuration gives the agent training data for setpoint
tracking both with and without input constraints.

6.2. Evaluation procedure
For each set of tuning parameters (five in total), we cycle through each

setpoint for four minutes each. The setpoint sequence is 60 cm, 65 cm,
60 cm, 63 cm. Input constraints are inactive for the evaluation. The reason
for this, even for the results from the constrained experiment, is to evaluate
the quality of the PID parameters across all methods.

For each of these evaluation experiments, we calculate the average nor-
malized integral absolute error (IAE), integral squared error (ISE), total vari-
ation (TV), total variation in the input variable (TVu), percent overshoot (%
OS), and settling time (ST). Normalized performance means the IAE, ISE,
TV use the error signal divided by the change in the setpoint for that step
change in the calculation; TVu is calculated by dividing by the initial ∆u
value instead.

To perform the SIMC tuning method we first derive a FOPDT model
of the flow setpoint to level dynamics of our system. Based on data from
stepping the flow setpoint up and down to steady state, we obtain the model
G(s) = 3.44

301.19s+1
e−9.21s. We consider the values Tc = 9.21, 15, 20, 25, 30. The

first value of Tc comes from the “default” configuration of setting Tc equal to
the process time delay; however, since G is nearly an integrating processes,
this setting may not be desirable. In this section, we only use Tc = 20; for
completeness, the other values are evaluated in Appendix B. Finally, we use
a UDC2500 to run the Accutune III procedure and the control the flow for
the ensuing evaluation steps.

6.3. Summary of results
Table 1 shows the nominal performance of the final tuning parameters

across the RL, SIMC, and Accutune evaluation experiments. We also include
the maximum sensitivity Ms = max0≤ω<∞ (1 + C(iω)G(iω))−1 based on the
model G used for SIMC tuning. The RL row summarizes the performance
the three aforementioned experiments. We report the average of each of these
statistics across the three experiments, plus or minus the standard deviation.

20

IAE ISE TV TVu % OS ST Ms

RL 39.34± 3.44 27.56± 2.25 1.49± 0.08 9.37± 0.42 6.39± 1.21 127.00± 38.80 1.32± 0.06
SIMC 47.74 32.31 1.50 9.14 7.81 215.25 1.25

Accutune 54.06 34.06 1.75 583.78 9.14 159.75 1.41

Table 1: The nominal performance of RL experiments and baseline tuning methods. Each
cell shows the average normalized performance over the sequence of step changes.

All three experiments perform better than Accutune III across all metrics,
with the one exception of ST for the constrained RL experiment. RL and
SIMC achieved similar TV, TVu and OS, with RL performing better in terms
of IAE, ISE, and ST. Ultimately, the result of the RL tuning across these
different operating conditions is smooth and efficient tracking. Moreover,
as we will see next, each RL result was obtained in around 40 minutes of
operation.

(a) (b)

(c) (d)

Figure 4: Performance evolution under two different reward functions: (a) Tracking in
experiment for RL-2; (b) Tracking heatmap for RL-2: x-axis is progression of episode cycles
(2 step changes each) for training and the y-axis is the level; (c) Tracking in experiment
for RL-3; (d) Tracking heatmap for RL-3.

21

Figure 4 shows the evolution of the training process for the two un-
constrained experiments. We show two visualizations for each experiment
(kp = 4.0 and kp = 2.0, respectively). Time-series plots are given in Fig-
ure 4a and Figure 4c. The initial step performances are characterized by
a fast rise with significant overshoot (roughly 40%) or a slow settling time
(roughly 3.5 minutes). We see that in all the experiments the performance
uniformly plateaus at around 10 episodes. Each episode is roughly four min-
utes. Even though the experiments run for varying lengths of time, all of
them reach their peak performance in less than 40 minutes of operation.

Figure 4b and Figure 4d are respective heatmaps of the same output data.
The time-series and heatmaps are shown side-by-side to convey the intuition
for the heatmap, which is more heavily used in Appendix B because it is a
compact way of showing many different experiments together. The darker
shades mean the process variable spent more time in that region of the y-
axis than lighter regions. For example, the heatmap captures overshoot with
the presence of shaded regions above the setpoint, and conveys settling time
based on the distribution of shading around the setpoint. We see as training
progresses (that is, as the number of episodes increases) the darker shading
is more concentrated around the setpoints and the overshoot decreases. We
also see a slightly longer rise time based on how dark the region is between
setpoints.

The two RL experiments corresponding to kp = 4.0, one unconstrained
and one constrained, achieved similar evaluation performance with the excep-
tion of ST, where the unconstrained experiment achieved roughly 40% better
settling time. However, the latter was trained subject to more realistic con-
ditions. Further, the qualitative end result of the constrained experiment,
as shown in Figure 5, is still excellent. Note that this time-series is with
the input constraints in place and is also temporally-aligned with the tuning
parameters during training.

Despite the differences among RL experiments, all but two of them, which
we show in Appendix B, performed better than SIMC in terms of IAE and
ISE. Two instances of SIMC showed an advantage over RL in terms of TV,
TVu, and %OS, but at a significant cost in IAE and ISE. Accutune-1 per-
forms reasonably well in terms of TV, %OS, and ST, but achieves, by far, the
highest values of IAE, ISE, and TVu across the RL and SIMC experiments.
Finally, the absolute value based reward is good for “smooth” tracking and
overall performs well across the metrics in Table 1. In Appendix B, rewards
based on the squared error or hybrid function may be better for “fast" track-

22

(a)

(b)

Figure 5: The progression from initial to final performance of RL-8. (a) A time-series
of the entire training procedure; (b) A temporally-aligned plot of the tuning parameters
during training.

ing but suffer in terms of TV, TVu, and %OS as well as in experimental ro-
bustness. We consider the experiments based on the reward in Equation (27)
to be the overall best option.

23

Nom
ina

l p
erf

orm
an

ce

Rob
us

tn
ess

Tim
e req

uir
ed

for
tu

nin
g

Dist
ur

ba
nc

e to
pr

oc
ess

Hard
wa

re
req

uir
em

en
ts

Ea
se

of
us

e

In
pu

t co
ns

tra
int

s

SIMC – – – ✕ ✓ – ✕

Accutune III ✕ ✕ ✓ ✓ ✓ ✓ ✕

Deep RL ✓ ✓ ✕ ✓ – ✓ ✓

Table 2: A qualitative evaluation of deep RL, SIMC, and Accutune III. We use ✓ to
indicate “excellent”; ✕ to indicate “poor”; and – to indicate “neutral”

6.4. Overall evaluation
As mentioned in Section 3, performance and robustness are not the only

factors to consider when evaluating a tuning method. Table 2 provides a sum-
mary of our qualitative assessment of deep RL with SIMC and Accutune III
included as points of reference. Unsurprisingly, deep RL achieved excellent
nominal performance across different initializations, reward functions, and
subject to input constraints. Moreover, the tuning of these results is robust
to changes in the two-tank system (see Appendix B) . Although these result
were achieved in a reasonable amount of time (30− 50 minutes), commercial
auto-tuners such as Accutune III provide tuning parameters in roughly 10
minutes (excluding additional time to evaluate the performance). SIMC rec-
ommends setting Tc = θ, but manipulating Tc from there requires additional
experiments. The next thing to note is that SIMC and Accutune III are open
loop tuning methods, whereas deep RL operates in closed loop; therefore, de-
spite longer training time, we consider the disturbance to the process to be
more practical than SIMC or Accutune III, if one can provide an acceptable
range of setpoints. Accutune III is also desirable in this regard because it
switches the relay signal based on deviations of the process variable from the
current setpoint. An advantage of SIMC and Accutune III is that they are
simple enough such that no specialized hardware is required. For a single
control loop, we were able to use a standard desktop for training the RL
agent. Finally, taken in their final form, both deep RL and Accutune III
can be simple to use: in the case of RL, a user may input some rudimentary

24

information, such as acceptable setpoints, while Accutune III relies on an
interval of admissible inputs.

7. Discussion and conclusion

To conclude this study, we contrast our findings with some common
themes that circulate in the deep RL literature and highlight promising areas
for future work.

The primary concerns at the prospect of applying deep RL in the process
industries pertain to stability, interpretability, sample efficiency, and practi-
cality [3, 2]. In some ways these are complementary concepts: In the broad
landscape of RL, the policy is often represented by a DNN, which makes it
difficult to rigorously explain its behavior. This contributes to the difficulty
surrounding sample efficiency, interpretability, and stability due to the non-
linear structure of a DNN operating in a closed-loop system. From a practical
implementation perspective, it is of course possible to deploy these policies
in an industrial control system. However, there already exists extensive in-
vestment and research into deploying control architectures such as MPC and
PID. Given their prevalence and track record, the most promising starting
point for RL applications in the process industries is through some hybrid
approach.

In this work, we have directly parameterized the policy as a PID con-
troller and configured it by solving the RL objective using a model-free deep
RL algorithm. Other approaches, mentioned in Section 1.1, train the RL
policy to output PID parameters as “actions”, but the policy itself is a DNN
or derived from value-based approaches. Consequently, we have orders of
magnitude fewer parameters to tune. Crucially, we also exploit the fact that
a PID controller is standard in universal digital controllers, and therefore
only need to send new parameters to the controller, rather than install new
hardware in order to run the RL policy.

In our experimental results we are encouraged by the monotonic improve-
ment in IAE and ISE, ultimately leading to a well-tuned PID controller within
30 − 50 minutes. We attribute this to the small number of parameters in a
PID controller and the fact that setpoint tracking is a “primitive” of its de-
sign; in other words, it does not need to “learn” how to track setpoints, rather
improve upon its existing performance. Note that these results are obtained
by training the critic network from scratch, that is, without any pre-training
either from a simulation or historical process data. The fact that we could

25

deploy the algorithm without adding any specialized hardware to the system,
while operating in closed-loop, and performing the computation on a local
desktop computer is encouraging. Ultimately, these are promising results on
which to build.

7.1. Opportunities in deep RL
Despite some promising results presented here, a looming question per-

sists: How can one systematically configure the RL agent to a novel envi-
ronment when it has failed to learn? The central problem at play is that of
training RL agents on a case-by-case basis. Despite being dubbed “model-
free”, actor-critic aims to capture the system dynamics by directly modeling
the value function, which is used to update the controller. More general-
ized, offline approaches are a promising avenue forward aim to achieve this
over a range of similar systems or with historical datasets alone. Several
frameworks have been proposed: offline RL [47] aims to train the RL agent
using only historical data from the system of interest. These methods are
concerned with training a predictive model or value function that accounts
for the uncertainty between the data samples and environment. On the other
hand, meta-RL [27] trains an agent to learn from a distribution of similar
dynamics and objectives; that is, the RL agent is not only trained to achieve
optimal control, but also to learn an encoding of its environments, enabling
it to generalize its policy to new systems. Latent representations of the sys-
tem dynamics have been shown to be critical elements achieving real-world
generalization from training in simulation in robotics applications [48].

The ability to train a generalized RL agent and utilize historical data from
individual systems is a significant opportunity for the process industries. We
believe the primary benefits of these approaches are twofold: Increased scal-
ability of RL algorithms and safety of the training procedure. As mentioned
earlier, an outstanding issue with RL algorithms is the ability to reliably
choose hyperparameters in the event of poor training performance. There-
fore, training offline is a safety precaution. Moreover, algorithms that can
effectively distill information from a range of different systems into a single
agent will increase the scalability of RL by decreasing the cost of calibrating
the agent to novel environments.

26

Declaration of competing interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work
reported in this paper.

Acknowledgements

We gratefully acknowledge the financial support of the Natural Sciences
and Engineering Research Council of Canada (NSERC) and Honeywell Con-
nected Plant. We would like to thank Jude Abu Namous for helping us
obtain lab results by running countless experiments at Honeywell in North
Vancouver. We would also like to thank, from Honeywell, Shadi Radwan for
designing and assembling the two-tank system, and Stephen Chu for his help
with instrumentation and system integration.

References

[1] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, Adaptive Com-
putation and Machine Learning Series, second edition ed., The MIT Press, Cam-
bridge, Massachusetts, 2018.

[2] J. Shin, T. A. Badgwell, K.-H. Liu, J. H. Lee, Reinforcement Learning – Overview
of recent progress and implications for process control, Computers & Chemical En-
gineering 127 (2019) 282–294. doi:10.1016/j.compchemeng.2019.05.029.

[3] R. Nian, J. Liu, B. Huang, A review On reinforcement learning: Introduction and
applications in industrial process control, Computers & Chemical Engineering 139
(2020) 106886. doi:10.1016/j.compchemeng.2020.106886.

[4] N. P. Lawrence, G. E. Stewart, P. D. Loewen, M. G. Forbes, J. U. Backstrom, R. B.
Gopaluni, Optimal PID and Antiwindup Control Design as a Reinforcement Learning
Problem, in: IFAC-PapersOnLine, volume 53, 2020, pp. 236–241. doi:10.1016/j.
ifacol.2020.12.129.

[5] K. Åström, T. Hägglund, Automatic tuning of simple regulators with specifica-
tions on phase and amplitude margins, Automatica 20 (1984) 645–651. doi:10.1016/
0005-1098(84)90014-1.

[6] M. G. Forbes, R. S. Patwardhan, H. Hamadah, R. B. Gopaluni, Model Predictive
Control in Industry: Challenges and Opportunities, IFAC-PapersOnLine 48 (2015)
531–538. doi:10.1016/j.ifacol.2015.09.022.

27

http://dx.doi.org/10.1016/j.compchemeng.2019.05.029
http://dx.doi.org/10.1016/j.compchemeng.2020.106886
http://dx.doi.org/10.1016/j.ifacol.2020.12.129
http://dx.doi.org/10.1016/0005-1098(84)90014-1
http://dx.doi.org/10.1016/j.ifacol.2015.09.022

[7] J. H. Lee, J. Shin, M. J. Realff, Machine learning: Overview of the recent progresses
and implications for the process systems engineering field, Computers & Chemical
Engineering 114 (2018) 111–121. doi:10.1016/j.compchemeng.2017.10.008.

[8] S. Spielberg, A. Tulsyan, N. P. Lawrence, P. D. Loewen, R. Bhushan Gopaluni,
Toward self-driving processes: A deep reinforcement learning approach to control,
AIChE Journal 65 (2019). doi:10.1002/aic.16689.

[9] J. Berner, K. Soltesz, T. Hägglund, K. J. Åström, An experimental comparison of
PID autotuners, Control Engineering Practice 73 (2018) 124–133. doi:10.1016/j.
conengprac.2018.01.006.

[10] S. Wakitani, T. Yamamoto, B. Gopaluni, Design and Application of a Database-
Driven PID Controller with Data-Driven Updating Algorithm, Industrial & Engineer-
ing Chemistry Research 58 (2019) 11419–11429. doi:10.1021/acs.iecr.9b00704.

[11] J. Hoskins, D. Himmelblau, Process control via artificial neural networks and
reinforcement learning, Computers & Chemical Engineering 16 (1992) 241–251.
doi:10.1016/0098-1354(92)80045-B.

[12] J. M. Lee, J. H. Lee, Value function-based approach to the scheduling of multiple
controllers, Journal of Process Control 18 (2008) 533–542. doi:10.1016/j.jprocont.
2007.10.016.

[13] N. S. Kaisare, J. M. Lee, J. H. Lee, Simulation based strategy for nonlinear optimal
control: Application to a microbial cell reactor, International Journal of Robust and
Nonlinear Control 13 (2003) 347–363. doi:10.1002/rnc.822.

[14] M. M. Noel, B. J. Pandian, Control of a nonlinear liquid level system using a new arti-
ficial neural network based reinforcement learning approach, Applied Soft Computing
23 (2014) 444–451. doi:10.1016/j.asoc.2014.06.037.

[15] S. Syafiie, F. Tadeo, E. Martinez, T. Alvarez, Model-free control based on rein-
forcement learning for a wastewater treatment problem, Applied Soft Computing 11
(2011) 73–82. doi:10.1016/j.asoc.2009.10.018.

[16] Y. Ma, W. Zhu, M. G. Benton, J. Romagnoli, Continuous control of a polymerization
system with deep reinforcement learning, Journal of Process Control 75 (2019) 40–47.
doi:10.1016/j.jprocont.2018.11.004.

[17] Y. Cui, L. Zhu, M. Fujisaki, H. Kanokogi, T. Matsubara, Factorial Kernel Dynamic
Policy Programming for Vinyl Acetate Monomer Plant Model Control, in: 2018
IEEE 14th International Conference on Automation Science and Engineering (CASE),
IEEE, Munich, 2018, pp. 304–309. doi:10.1109/COASE.2018.8560593.

[18] Y. Ge, S. Li, P. Chang, An approximate dynamic programming method for the
optimal control of Alkai-Surfactant-Polymer flooding, Journal of Process Control 64
(2018) 15–26. doi:10.1016/j.jprocont.2018.01.010.

28

http://dx.doi.org/10.1016/j.compchemeng.2017.10.008
http://dx.doi.org/10.1002/aic.16689
http://dx.doi.org/10.1016/j.conengprac.2018.01.006
http://dx.doi.org/10.1021/acs.iecr.9b00704
http://dx.doi.org/10.1016/0098-1354(92)80045-B
http://dx.doi.org/10.1016/j.jprocont.2007.10.016
http://dx.doi.org/10.1002/rnc.822
http://dx.doi.org/10.1016/j.asoc.2014.06.037
http://dx.doi.org/10.1016/j.asoc.2009.10.018
http://dx.doi.org/10.1016/j.jprocont.2018.11.004
http://dx.doi.org/10.1109/COASE.2018.8560593
http://dx.doi.org/10.1016/j.jprocont.2018.01.010

[19] B. J. Pandian, M. M. Noel, Control of a bioreactor using a new partially supervised
reinforcement learning algorithm, Journal of Process Control 69 (2018) 16–29. doi:10.
1016/j.jprocont.2018.07.013.

[20] O. Dogru, N. Wieczorek, K. Velswamy, F. Ibrahim, B. Huang, Online reinforcement
learning for a continuous space system with experimental validation, Journal of
Process Control 104 (2021) 86–100. doi:10.1016/j.jprocont.2021.06.004.

[21] Y. Wang, K. Velswamy, B. Huang, A Novel Approach to Feedback Control with
Deep Reinforcement Learning, IFAC-PapersOnLine 51 (2018) 31–36. doi:10.1016/
j.ifacol.2018.09.241.

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal Policy Op-
timization Algorithms, arXiv:1707.06347 [cs] (2017). URL: http://arxiv.org/abs/
1707.06347. arXiv:1707.06347.

[23] P. Petsagkourakis, I. Sandoval, E. Bradford, D. Zhang, E. del Rio-Chanona, Re-
inforcement learning for batch bioprocess optimization, Computers & Chem-
ical Engineering 133 (2020) 106649. doi:10.1016/j.compchemeng.2019.106649.
arXiv:1904.07292.

[24] S. Fujimoto, H. Hoof, D. Meger, Addressing function approximation error in actor-
critic methods, in: International Conference on Machine Learning, PMLR, 2018, pp.
1587–1596.

[25] T. Joshi, S. Makker, H. Kodamana, H. Kandath, Application of twin delayed
deep deterministic policy gradient learning for the control of transesterification pro-
cess, arXiv:2102.13012 [cs, eess] (2021). URL: http://arxiv.org/abs/2102.13012.
arXiv:2102.13012.

[26] H. Yoo, B. Kim, J. W. Kim, J. H. Lee, Reinforcement learning based optimal control
of batch processes using Monte-Carlo deep deterministic policy gradient with phase
segmentation, Computers & Chemical Engineering 144 (2021) 107133. doi:10.1016/
j.compchemeng.2020.107133.

[27] D. G. McClement, N. P. Lawrence, P. D. Loewen, M. G. Forbes, J. U. Backström,
R. B. Gopaluni, A Meta-Reinforcement Learning Approach to Process Control, in:
IFAC-PapersOnLine, volume 54, 2021, pp. 685–692. doi:10.1016/j.ifacol.2021.
08.321.

[28] M. Mowbray, R. Smith, E. A. Del Rio-Chanona, D. Zhang, Using process data to
generate an optimal control policy via apprenticeship and reinforcement learning,
AIChE Journal (2021) e17306.

[29] J. W. Kim, B. J. Park, H. Yoo, T. H. Oh, J. H. Lee, J. M. Lee, A model-based deep
reinforcement learning method applied to finite-horizon optimal control of nonlinear
control-affine system, Journal of Process Control 87 (2020) 166–178. doi:10.1016/j.
jprocont.2020.02.003.

29

http://dx.doi.org/10.1016/j.jprocont.2018.07.013
http://dx.doi.org/10.1016/j.jprocont.2021.06.004
http://dx.doi.org/10.1016/j.ifacol.2018.09.241
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://dx.doi.org/10.1016/j.compchemeng.2019.106649
http://arxiv.org/abs/1904.07292
http://arxiv.org/abs/2102.13012
http://arxiv.org/abs/2102.13012
http://dx.doi.org/10.1016/j.compchemeng.2020.107133
http://dx.doi.org/10.1016/j.ifacol.2021.08.321
http://dx.doi.org/10.1016/j.jprocont.2020.02.003

[30] Y. Bao, Y. Zhu, F. Qian, A Deep Reinforcement Learning Approach to Improve
the Learning Performance in Process Control, Industrial & Engineering Chemistry
Research (2021) acs.iecr.0c05678. doi:10.1021/acs.iecr.0c05678.

[31] M. Sedighizadeh, A. Rezazadeh, Adaptive PID controller based on reinforcement
learning for wind turbine control, in: Proceedings of World Academy of Science,
Engineering and Technology, volume 27, Citeseer, 2008, pp. 257–262.

[32] W. J. Shipman, L. C. Coetzee, Reinforcement Learning and Deep Neural Networks
for PI Controller Tuning, IFAC-PapersOnLine 52 (2019) 111–116. doi:10.1016/j.
ifacol.2019.09.173.

[33] I. Carlucho, M. De Paula, S. A. Villar, G. G. Acosta, Incremental Q -learning strategy
for adaptive PID control of mobile robots, Expert Systems with Applications 80
(2017) 183–199. doi:10.1016/j.eswa.2017.03.002.

[34] L. A. Brujeni, J. M. Lee, S. L. Shah, Dynamic tuning of PI-controllers based on
model-free Reinforcement Learning methods, in: ICCAS 2010, IEEE, Gyeonggi-do,
2010, pp. 453–458. doi:10.1109/ICCAS.2010.5669655.

[35] M. A. Berger, J. V. da Fonseca Neto, Neurodynamic Programming Approach for the
PID Controller Adaptation, IFAC Proceedings Volumes 46 (2013) 534–539. doi:10.
3182/20130703-3-FR-4038.00129.

[36] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
D. Wierstra, Continuous control with deep reinforcement learning, arXiv preprint
arXiv:1509.02971 (2015). arXiv:1509.02971.

[37] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller, Determinis-
tic policy gradient algorithms, in: International Conference on Machine Learning,
PMLR, 2014, pp. 387–395.

[38] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, Policy gradient methods for
reinforcement learning with function approximation., in: NIPs, volume 99, Citeseer,
1999, pp. 1057–1063.

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis,
Human-level control through deep reinforcement learning, Nature 518 (2015) 529–
533. doi:10.1038/nature14236.

[40] T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor, arXiv:1801.01290 [cs,
stat] (2018). URL: http://arxiv.org/abs/1801.01290. arXiv:1801.01290.

[41] V. R. Konda, J. N. Tsitsiklis, Actor-critic algorithms, in: Advances in Neural Infor-
mation Processing Systems, Citeseer, 2000, pp. 1008–1014.

30

http://dx.doi.org/10.1021/acs.iecr.0c05678
http://dx.doi.org/10.1016/j.ifacol.2019.09.173
http://dx.doi.org/10.1016/j.eswa.2017.03.002
http://dx.doi.org/10.1109/ICCAS.2010.5669655
http://dx.doi.org/10.3182/20130703-3-FR-4038.00129
http://arxiv.org/abs/1509.02971
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290

[42] J. Achiam, Spinning up in deep reinforcement learning, 2018. URL: https://github.
com/openai/spinningup.

[43] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
W. Zaremba, OpenAI Gym, 2016. URL: https://github.com/openai/gym.

[44] M. Hausknecht, P. Stone, Deep Reinforcement Learning in Parameterized Action
Space, arXiv:1511.04143 [cs] (2016). URL: http://arxiv.org/abs/1511.04143.
arXiv:1511.04143.

[45] S. Skogestad, Simple analytic rules for model reduction and PID controller tun-
ing, Journal of Process Control 13 (2003) 291–309. doi:10.1016/S0959-1524(02)
00062-8.

[46] Honeywell, UDC2500 Universal Digital Controller Product Manual, 2007.

[47] S. Levine, A. Kumar, G. Tucker, J. Fu, Offline Reinforcement Learning: Tutorial,
Review, and Perspectives on Open Problems, arXiv:2005.01643 [cs, stat] (2020).
URL: http://arxiv.org/abs/2005.01643. arXiv:2005.01643.

[48] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, M. Hutter, Learning quadrupedal
locomotion over challenging terrain, Science Robotics 5 (2020) eabc5986. doi:10.
1126/scirobotics.abc5986.

[49] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
Y. Bengio, Learning Phrase Representations using RNN Encoder-Decoder for Statis-
tical Machine Translation, arXiv:1406.1078 [cs, stat] (2014). URL: http://arxiv.
org/abs/1406.1078. arXiv:1406.1078.

[50] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980 (2014). arXiv:1412.6980.

31

https://github.com/openai/spinningup
https://github.com/openai/gym
http://arxiv.org/abs/1511.04143
http://arxiv.org/abs/1511.04143
http://dx.doi.org/10.1016/S0959-1524(02)00062-8
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/2005.01643
http://dx.doi.org/10.1126/scirobotics.abc5986
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1412.6980

Appendix

A. Further algorithmic and implementation details

Algorithm 1: Deep Reinforcement Learning PID Controller
Output: Optimal PID controller µθ(·)
Initialize: Actor tuning parameters θ, critic weights φ1, φ2, measurement

dataset Dprocess, replay memory DRM, step sizes αa,αc

1 Set target parameters equal to actor/critic parameters θ̃ ← θ and φ̃1 ← φ1,
φ̃2 ← φ2

2 for each episode do
⊲ In HMI:

3 Set ȳ ← setpoint
4 repeat

⊲ In HMI:
5 Load current PID parameters θ
6 Observe state s from environment
7 Execute control action u ← µPLC(s) ⊲ µPLC is a PLC implementation

of the actor “network” µθ.
8 Observe next state s′ from environment
9 Store process data in Dprocess

⊲ Execute in Python:
10 if it is time to update then
11 Store transition tuples (s, u, r, s′) in DRM ⊲ These structured

tuples are derived from Dprocess.
12 for each update step j do
13 Randomly sample a batch of transitions B from D
14 Compute target actions a′ = sat(µθ̃(s

′) + sat(ε)), ε ∼ N (0,σ2)
15 Compute targets q = r + γmini=1,2 Qφ̃i

(s′, a′)

16 Update critic weights as follows for i = 1, 2:

17 φi ← φi − αc∇φi

!
1
|B|

"
(s,u,r,s′)∈B(q −Qφi

(s, a))2
#

18 if j mod policy_delay = 0 then
19 Update policy weights ⊲ Optional: Use Equation (26).

20 θ ← θ + α∇θ

!
1
|B|

"
s∈B Qφ1

(s, µθ(s))
#

21 Update target weights
φ̃i ← ρφ̃i + (1− ρ)φi for i = 1, 2

θ̃ ← ρθ̃ + (1− ρ)θ

22

23 Save current PID parameters θ

24 until next step change or system reaches steady state

32

The optimization of J in line (2) relies on knowledge of the Q-function
(3). The critic network Qφi

is iteratively approximated using a deep neural
network with training data from replay memory (RM). RM is a fixed-size col-
lection of tuples of the form (s, u, s′, r). The PID controller (actor “network”)
is given by (8) and denoted as µ, and the critic is Qφi

. More concretely, we
utilize a combination of a feedforward neural network and a recurrent neural
network (RNN) for the critic. As discussed in Section 2.2, the state may
contain past output information. The state vector passes through a special-
ized RNN called a “gated recurrent unit” (GRU) [49]; the hidden state of the
GRU is then passed as an input with the action through a DNN.

Hyperparameter Symbol Nominal value

Actor learning rate αc 0.002
Critic learning rate αc 0.002
Discount factor γ 0.99
Target network update rate ρ 0.995
Policy update delay policy_delay 2
Batch size |B| 256
Replay buffer size |DRM| 10, 000
Target noise σ 0.2

Table A.3: The recommended hyperparameter settings from this work.

Algorithm 1 summarizes the training procedure and Table A.3 gives the
hyperparameter names, symbols, and settings. The reader is referred to Fu-
jimoto et al. [24] and the references therein for more details and background
on the TD3 algorithm. The primary hyperparameters we modified were the
learning rates (for the actor and critic), the critic network, and the policy
update delay. The other hyperparameters were set to the default values sug-
gested by Achiam [42]. The learning rates and policy update delay did not
deviate much from their original values either. The main design choice was
with the critic network.

In Algorithm 1, note the distinctions between the measurement dataset
Dprocess and replay memory DRM, and µθ and µPLC. Dprocess is a dataset stor-
ing measurements from the process, such as, setpoints, process variables, con-

33

trol variables. When it is time to update the PID parameters, new measure-
ments in Dprocess are converted to the structured transition tuples (s, u, s′, r)
the RL algorithm expects, and store them in DRM for training. µθ is defined
as the actor “network” in our RL code, whereas µPLC uses the same param-
eters as µθ, but actually interacts with the system through a PLC. For the
optimization of the actor and critic parameters, we use the Adam optimizer
[50] to implement the nominal update steps shown in Line 17 and Line 20.

B. Further experiments and discussion

RL (Unconstrained) RL (Constrained) SIMC Accutune

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1

Reward Eq. (B.1) (27) (27) (B.1) (B.2) (24) (24) (27) (24) (24) - - - - - -
Initialization kp = 4.0 4.0 2.0 2.0 4.0 4.0 2.0 4.0 4.0 4.0 - - - - - -
Setting - - - - - - - - - - Tc = 9.21 15 20 25 30 Mode=“slow"

Table B.4: Labels and specifications for RL, SIMC, and Accutune III experiments. In this
paper we refer to them, for example, as “RL-1” for the first experiment in the RL category.
The initialization refers to Equation (28).

We provide additional experiments and analysis. All the lab results are
visualized in Figure B.6 and performance statistics are reported in Table B.5.
The experimental specifications corresponding to the labels given in these fig-
ures and tables are listed in Table B.4. RL-2, RL-3, RL-8, SIMC-3, Accutune-
1, shown in boldface, refer to the five experiments shown in Section 6. The
difference between RL-9 and RL-10 is the transient training data: RL-9 only
switches between the setpoints 60 cm and 65 cm, where it hits the constraints
at each step change.

We evaluate the performance on a variety of different reward functions
based on the discussion in Section 5.2. In addition to Equation (27) and the
hybrid cost function l given in Equation (24), we choose the reward functions:

−r(st, ut) = e2t + 0.1∆u2
t (B.1)

−r(st, ut) = l(st, ut) + 0.1(∆ut)
2. (B.2)

The rationale for comparing the end training results of four different reward
functions is to demonstrate their relative performance according to the met-
rics in Equation (13).

34

Figure B.6: Heatmap of final performances across many different experiments. Darker
colors indicate more time spent by the process variable at that location on the y-axis.
Dashed lines at 60 cm and 65 cm indicate setpoints.

Figure B.6 shows a heatmap of the output performance of all the final
tuning parameters from our experiments. Darker shades correspond to more
time spent by the process variable at a value on the y-axis. This is a compact
way of visualizing many experiments side-by-side while qualitatively captur-
ing useful information such as overshoot or rise/settling time. Compared
to the RL experiments involving the squared error based reward function
(RL-1,RL-4), the absolute value based reward performs better and is more
consistent between training experiments. The hybrid reward function (RL-5,
RL-6, RL-7, yields similar, and sometimes superior, nominal performance to

35

the absolute value based reward.

B.1. Experimental robustness

IAE ISE TV TVu % OS ST Ms

RL-1 44.41± 9.57 28.33± 4.89 1.88± 0.23 11.14± 1.08 22.94± 10.77 134.67± 25.51 1.55
RL-2 43.76± 7.59 30.18± 3.85 1.56± 0.12 9.63± 0.50 10.95± 8.26 129.08± 34.22 1.35
RL-3 48.75± 4.55 34.00± 3.40 1.42± 0.05 8.90± 0.20 7.46± 2.03 153.17± 26.34 1.25
RL-4 67.96± 15.42 40.09± 10.96 2.32± 0.40 12.81± 1.92 48.20± 14.38 186.58± 28.46 1.42
RL-5 42.72± 8.03 27.87± 4.16 1.78± 0.21 10.67± 0.91 20.43± 9.74 128.75± 15.36 1.48
RL-6 40.85± 7.63 27.00± 3.81 1.69± 0.23 10.32± 1.14 17.33± 9.84 145.42± 41.48 1.50
RL-7 54.92± 6.65 34.65± 2.94 1.50± 0.09 9.06± 0.47 14.87± 4.67 190.58± 34.84 1.27
RL-8 42.75± 5.87 28.89± 3.75 1.56± 0.09 9.62± 0.41 11.38± 6.48 166.42± 20.03 1.36
RL-9 56.47± 13.25 33.90± 7.48 2.06± 0.25 11.45± 1.25 37.84± 9.84 163.08± 21.80 1.51

RL-10 40.18± 6.59 27.84± 3.61 1.58± 0.13 9.81± 0.52 11.08± 7.57 133.17± 5.63 1.41
SIMC-1 61.64± 17.36 36.73± 10.19 2.68± 0.72 14.29± 3.40 53.55± 14.48 162.08± 52.19 1.72
SIMC-2 56.16± 10.89 34.36± 6.05 1.73± 0.11 10.07± 0.49 24.11± 7.83 168.17± 29.17 1.36

SIMC-3 54.74± 6.49 35.47± 3.20 1.52± 0.02 9.17± 0.05 13.26± 4.97 193.75± 19.16 1.25
SIMC-4 57.61± 5.08 39.12± 3.50 1.38± 0.02 8.49± 0.11 8.38± 2.57 167.17± 47.65 1.19
SIMC-5 57.33± 12.18 38.77± 9.85 1.33± 0.06 8.31± 0.34 4.86± 1.79 141.67± 13.73 1.16

Accutune-1 70.09± 24.46 46.33± 16.94 1.59± 0.24 351.62± 201.09 8.98± 0.46 139.33± 65.07 1.41

Table B.5: The overall performance of each experiment. Each cell shows the average
statistic for its column plus or minus the standard deviation; the average is computed over
the nominal performance and that of two robustness experiments where we independently
adjusted the outflow of the tank and the flow tuning parameters.

So far we have reported on the promising nominal performance of the
RL based tuning. We also evaluate the empirical robustness of these results.
With each set of final tuning parameters from our experiments, we perform
the same sequence of step changes reported in Section 6 (65 cm, 60 cm, 63 cm,
60 cm), but with the following independent changes to the two-tank system:
First, we tighten the outflow from the top tank to 50% on its valve (whereas
before it was at maximum outflow); then, with the outflow back at its original
state, we detune the flow controller. The flow controller parameters were
originally set to kp = 0.2, ki = kp/3, kd = 0.67kp, Tf = 0.1; we cut kp in half
for the second experiment.

Results for these experiments are reported in Table B.5. It encompasses
the nominal performance and the performance of the two aforementioned ro-
bustness experiments. For each statistic, performance is measured based on
the average across the four step changes. Each cell shows the average perfor-
mance across these three experiments plus or minus the standard deviation.

Out of RL-1 – RL-4, RL-2 and RL-3 remain the most promising results.
With the exception of ISE between RL-1 and RL-2, these two experiments

36

based on the the reward function from Equation (27) are superior to RL-1
and RL-4, respectively, across all categories, both in terms of their average
and standard deviation.

For the hybrid reward function, given in Equation (24), it is apparent
that RL-6 gives the best IAE and ISE, but with worse overshoot than RL-
2. Moreover, RL-7 indicates a wider detrimental change in IAE and ISE
based on the initial tuning than that of RL-2 and RL-3. For the constrained
experiments, RL-8 and RL-10 achieved similar scores for TV, TVu, and %OS,
with RL-10 slightly superior in terms of IAE, ISE, and ST. Despite this, we
consider the experiments based on the reward in Equation (27) to be the
overall best option; this is in terms of performance, generalization between
training experiments, and robustness.

37

