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Abstract

Model Predictive Controllers (MPCs) are widely used in the process industries and are typically implemented with an integrated
Linear Program (LP) optimizer in the form of two-stage LP-MPC systems. Despite significant control-theoretic advances in MPC
design and performance evaluation in academia, there is still a gap in addressing operational issues in real-world MPC controllers.
In particular, engineers and operators responsible for sustaining MPCs often need to interpret the LP solution to understand the
controller’s actions. Without easy interpretability, it is difficult to troubleshoot MPCs especially for large-dimensional controllers.
To alleviate this difficulty, a systematic approach that facilitates LP solution diagnostics using tools from data visualization and
process control is developed. The ‘partial pivoting’ operation - an industrial practice that has seen limited exposure in academic
literature - is discussed in detail with regards to its role in LP solution diagnosis. Typical workflows for diagnosing problematic
controllers are used in conjunction with data visualization principles to guide the design of new tools focused on visualizing
variable constraint data that facilitate the diagnosis process. These proposed tools are designed using Munzner’s “Nested Model” as
a guiding framework for visualization design and evaluation. The use of these tools is demonstrated in multiple industrial examples,
with comparison to current industrial methodologies.
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1. Introduction This two-stage MPC structure is illustrated in Figure 1, where
constraints and economics are used as inputs for the steady-
state optimization layer, and process models along with tuning
parameters are used in the MPC layer below. For the purposes

of clarity and consistency in this paper, we will refer to these

Model Predictive Control (MPC) is an advanced process
control strategy that is widely used throughout the refining and
petrochemical industries [1]. Commercial MPC packages that

are typically implemented in the refining and petrochemicals
industries separate the MPC algorithm into two stages, com-
prising of a (1) steady-state target optimization stage, which
uses a linear program (LP) to calculate setpoint targets, and a
(2) dynamic optimization stage that receives those targets and
computes control actions [2, 3]. It is important to note that
the structure of this industrial two-stage MPC controller dif-
fers significantly from the typical theoretic MPC formulation
found in academic literature [4, 5]. This two-stage structure has
been referred to by various names, including double-layer MPC
(DLMPC) [5], DMC-type or LP-DMC controllers [4], originat-
ing from the Dynamic Matrix Control formulation devised in
the early 1980s [6, 7], DMC-LP controllers [8], two-stage MPC
systems [9] and LP-MPC cascade control systems [10].
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two-stage LP-MPC systems as simply MPC, and explicitly re-
fer to the steady-state optimization layer or dynamic optimiza-
tion layer when additional context is required. An excellent,
broad review of industrial MPC packages can be found else-
where in the literature, covering the history of industrial MPC,
implementation details and a comparison of different technolo-
gies [1, 11], as well as a comprehensive overview of current
practices, challenges and opportunities in the industrial MPC
landscape [12, 13].

Despite significant control-theoretic and algorithmic devel-
opments in MPC, there has been a lack of development in the
tools used to visualize MPC in action [13]. Popular commer-
cial MPC packages such as AspenTech’s DMCPlus or Honey-
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Figure 1: Essential components in the design of visualization tools for MPC systems. Engineers and operators often need to interact with the control system
through a user interface to diagnose faults and abnormal controller behaviour. MPC systems store and generate large amounts of data in various forms, including
process models and gain matrices, time series process data, and optimizer solutions. MPC users must successfully navigate through these complex datasets to obtain
situational knowledge of the controller. To effectively determine the root causes of any undesirable controller behaviour, users must contextualize and augment
situational knowledge about the controller’s state with prior engineering knowledge and process understanding. The ability to rationalize complex controller actions
is important to determine the solution required to restore the controller to its normal behaviour. Visual representations of the control system can facilitate this process

if they are designed in a way to optimize the display of controller information.

well’s RMPCT [14], often use static, tabular views and mes-
sage logs to convey controller information to engineers and op-
erators, which are often counter-intuitive and cumbersome to
navigate, even for experienced users.

Industrial MPC applications often involve more than 50 pro-
cess variables [15]; for instance, the MPC used to control the
Fluid Catalytic Cracking (FCC) unit at the Burnaby Refinery in
British Columbia, Canada has 44 manipulated and feedforward
variables (MVs and FFs) and 64 controlled variables (CVs)
configured in its model. For an FCC process and other com-
plex industrial chemical processes, the counter-intuitive phe-
nomena of a large number of CVs required for control relative
to available MVs handles is well-documented in the literature
[16, 17, 18, 19]. Interested readers are invited to consult a series
of excellent papers by Arbel and colleagues on FCC design and
control for further details [20, 21].

These large MPC datasets make navigation through tabu-
lar views extremely tedious for plant engineers and operators.
Traditional MPC visualization techniques like static tables and
univariate time series trends are ineffective for visualizing large
MPC systems, as the large number of variables involved can be
overwhelming for users, and the plots can be extremely tedious
to create and use.

In LP-MPC systems, the steady-state LP optimizer is re-
sponsible for calculating a set of feasible targets using the steady-
state gain matrix, while respecting constraints imposed on MVs
and CVs. The LP also determines the degrees of freedom that
are available for control, based on the number of unconstrained
MYVs, and it uses these available MVs to push CVs to their eco-

nomically optimum limits. Thus, a strong understanding of the
underlying steady-state gain matrix and resulting LP solution is
essential to diagnose MPC issues effectively.

Despite the importance of the LP optimizer and gain matrix,
effective visualization tools for the steady-state LP optimizer in
the context of process control have not received much academic
attention. A literature search for the term “model predictive
control” revealed over 20,000 journal articles published over
the past four decades. The majority of these articles describe
successful applications of MPC on various processes or dis-
cuss control-theoretic notions such as controllability, stability,
robustness or performance [4]. However, MPC papers specifi-
cally targeting industry practitioners and discussing day-to-day
MPC operational issues faced by plant engineers and operators
are rare.

Troubleshooting an MPC system — also known as ‘con-
troller diagnosis/diagnostics’ and ‘fault detection and diagno-
sis’, refers to the analysis of process or equipment faults that
can cause further issues to product quality or throughput, and
the monitoring of process variables for the identification of their
causes [22]. Establishing an effective mental model of the MPC
troubleshooting process is a non-trivial task, even for expe-
rienced engineers and operators. Successful controller trou-
bleshooting efforts involves a series of complex, iterative tasks,
including observing undesirable controller behaviour in time
series data, understanding the state of the controller, constraints
and process conditions, and identifying clamped or problematic
variables using a combination of controller data, process mod-
els and process knowledge. Exploratory data analysis (EDA)



and data visualization is often the first step in data analytics,
but can be challenging for practitioners to set up due to the
aforementioned complexities of the underlying MPC data. The
complexity of the LP-MPC system necessitates the develop-
ment novel visualization tools, as these large-dimensional LP
solutions that cannot be effectively visualized using traditional
tabular methods.

The challenges outlined by Guerlain and colleagues [15] on
human factors are still prevalent in many industrial MPC sys-
tems, even though two decades have passed since its publica-
tion. An anonymous comment left on an Emerson blog article
[23] provides a succinct description of real-world MPC issues:

“MPC math is simple and elegant; MPC
engineering is not.”

The goal of this paper is therefore to explore common hu-
man factors issues with industrial MPCs and to use them to
guide the design of new visualization tools, with emphasis on
interactivity and usability in the process of controller diagnosis.

This paper is structured as follows: Section 2 provides an
overview of MPCs with integrated LP optimization, discussing
the structure and mechanics of the LP-MPC system as well as
MPC conditioning. Section 3 provides a review of previous
work in this area, outlining the major existing implementations
of MPC visualization tools as well as the relevant MPC anal-
ysis tools. The analysis techniques covered in this section are
essential to operations presented later in this paper, especially
the walkthrough of the ‘partial pivoting’ operation and its con-
nection to the LP solution process. Section 4 provides the fun-
damentals of data visualization in how it relates to visual per-
ception, so as to provide guidelines by which we justify our
design of visual tools. Section 5 outlines each of the visual-
ization plots used for visualizing MPC and their LP optimizers,
with discussions of how these plots are used in practice. Visual
tools that have seen limited implementation in industry are in-
troduced and their associated workflows are discussed with re-
gards to how they facilitate controller diagnosis. Section 6 pro-
vides case studies used to test the concepts designed in section
5 with real industrial examples, showing the typical workflow
of engineers in the field. Finally, Section 7 discusses the limi-
tations associated with this research from both conceptual and
practical standpoints, and suggests future research directions.

2. Overview of MPCs with integrated LP optimizers

At the base level of industrial control systems, regulatory
PID loops maintain setpoint tracking of flow rates, tempera-
tures, pressures, and other variables. Advanced Process Con-
trol (APC) systems operate above the regulatory control layer
in a multivariable manner, acting as a “supervisory” layer over
the base control system. The APC layer can either provide set-
points for PID control loops, or it can directly manipulate actu-
ator action [24].

MPCs in the refining and petrochemical industries are typ-
ically implemented as a two-stage system with an integrated
LP optimizer [4, 9, 10]. In the first stage, the LP optimizer

uses economic LP costs and variable operating limits to gen-
erate a set of economically optimal targets for the MVs, while
respecting constraints imposed on each variable. In the second
stage, the dynamic optimizer takes the LP targets and computes
a move plan for all manipulated variables. The move plan is
a balancing act between minimizing control error and avoiding
aggressive MV moves, and implementing the change dictated
by the LP, in order to maintain process stability while reach-
ing the economic optimum. The dynamic optimizer comprises
the actual MPC algorithm, where the optimizer uses the process
model and current state to predict dynamics over the prediction
horizon and implement its calculated move plan.

To appreciate the complexity of the LP solution space for
large-dimensional systems, we provide a high-level overview
of a general LP-MPC system. Given a set of MVs and CVs,
at each controller execution cycle, the LP optimizer finds a set
of MV moves that minimizes costs using its objective function,
subject to limits imposed on each variable. LP costs are as-
signed to MVs based on the economics for each control han-
dle. CV changes are calculated as linear combinations of MV
changes using its steady state gains, where k;; refers to the
gain for the i-th MV and j-th CV as described in Equation 1,
which has a simplified notation that is commonly adopted by
other industrial practitioners [4, 7], instead of typical conven-
tions in academic literature. Detailed mathematical formula-
tions of these LP-MPC systems can be found elsewhere in the
literature [9, 10].

min  f(AMV) = Z LPCost; - AMV;

S.t. ACVj = Z ki,j - AMYV;, (1

ACVT™ < ACV; < ACVT™,
AMV™™ < AMV; < AMV™

The LP solution space can be represented using a 2D plot
for a system with 2 MVs. A sample representation of a 2x2
MIMO system is illustrated in Figure 2. Isoprofit lines show
the objective function value across MV changes, and the vertex
of the feasible region with the largest profit value is chosen as
the solution. Note that this is the case when the objective func-
tion calculates profit; if the objective function calculates cost,
the LP solution will have the lowest objective function value in
the feasible region. Often the LP optimizer will attempt to max-
imize variables with a negative LP cost whenever possible, and
those with a positive cost tend to be minimized. However, each
variable’s direction is mathematically determined by the gra-
dient of the objective function hyperplane and the constraints
imposed by the operating limits. As MV LP costs change, the
gradient of the isoprofit line changes accordingly, so variables
with negative LP costs may end up being minimized depending
on how those constraints fit into the larger LP solution.

Moving operator limits may change the degrees of freedom
available to the controller, which will affect the solution chosen
by the LP. Changing limits in this way corresponds to moving
the bounds of the feasible region in Figure 2. Additionally, LP
costs need to be set carefully to ensure that variables will be
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Figure 2: The feasible region, #, of this toy LP consisting of 2 MVs and 2 CVs
is highlighted in dark yellow. The red dots (A*, B, C and D) at the vertices
of ¥ represent feasible solutions. The lighter yellow regions indicate operating
areas within the corresponding CV limits. The pink ‘isoprofit’ dash-dotted lines
represent a constant value of the objective function for profit maximization,
where I} > I > I3. The LP solution at any given time will be at the vertex that
yields the largest isoprofit value. For 7, this would be A* at /;. Hypothetically,
we can introduce a third CV constraint represented by the blue dashed line.
Clamping the new CV limit changes the feasible region from # to the shaded
¥ with a new set of feasible solutions at A” and D’. The new optimal solution
is now at A’ with an isoprofit line at /5. Note that in ¥, the optimum move for
AMYV has flipped signs and is moving in the other direction as indicated by the
dark blue arrows extending from the origin. This new move is denoted as ],
which may be physically undesirable, i.e. feed rate reductions or higher steam
usage.

driven in the right direction. Sorensen et al. (1998) outline that
the LP cost is calculated as a partial derivative of plant profit
to a unit MV move, and that LP costs need to be up-to-date
with any material balance changes in order to reflect accurate
process economics [7]. As described in the figure, ‘clamping’
operating limits incorrectly may result in undesirable LP solu-
tion behaviour.

Generally speaking, a control system may contain any num-
ber of MVs and CVs. However, the LP formulates a solution
for an equal number of MVs and CVs, as it is solving a sys-
tem of simultaneous linear equations. In other words, the LP
solves a ‘square’ problem with an equal number of MVs and
CVs. Consider the example system in Figure 2: there are two
MYVs represented by the x- and y-axis, and two CVs represented
by the two sets of constraint boundaries. Adding one more CV
will add another set of constraint boundaries; if these constraint
lines are within the current bounds of #, there will be a new fea-
sible region bounded by all three CVs, and the new operating
point will be at the intersection of two CV constraint lines. This
change of operating point is illustrated by the solid blue line in
figure 2, which changes the feasible region to ¥’. Each of the
new solution points will leave one out of the three CVs uncon-
strained; A’ will leave CV1 unconstrained, B’ and C leave CV3
unconstrained, and D’ leaves CV1 unconstrained. Conversely,
if the new CV’s constraints are outside the bounds of # as in the
dashed blue line in Figure 2, then the LP solution will remain
at one of the current vertices of . The set of variables par-
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Figure 3: Stable operating region for a plant subjected to constraints, repre-
sented by a 2-dimensional polygon for illustrative purposes. The size of each
operating region for human operators (yellow) and MPC systems (green) is
indicative of the process variability during operation. The vertices represent
possible feasible solutions in the LP formulation. The ideal operating condi-
tioning would be persistent operation at the true economic optimum point (red)
with minimum variability. Figure adapted from Brooks (2017) [26].

ticipating in the LP solution is denoted as the ‘active constraint
set’ and will affect other variable relationships - this concept is
discussed later in this section.

As discussed in Section 1, MPC models in the refining in-
dustry typically have more CVs than MVs, which frees the LP
to move between various operating points, subject to physical
limitations of the plant. MV limits are “hard constraints” that
will not be violated by the LP, while CV limits are “soft con-
straints”, because the CV setpoints cannot be set directly, and
they are controlled as a result of the MVs moving. This form
of control, where CVs are maintained between minimum and
maximum desired values, is sometimes referred to as ‘zone con-
trol’ [5, 25]. If the MV movements are not be able to keep the
CVs within limits, the LP solution becomes infeasible. In in-
dustrial MPC packages, CV limits can typically be violated in
the event of an infeasible solution, and the specific CVs that the
LP ‘gives up’ are determined by each CV’s importance ranking
[11]. In the event of an infeasibility, the LP gives up control
of lower-ranked variables in favour of controlling more impor-
tant ones by iteratively removing them from the solution and
re-solving until the solution becomes feasible. Figure 3 illus-
trates the mobility of the LP solution within its feasible region
using a more complicated system than that of Figure 2.

Figure 3 shows a single solution that the LP is trying to
reach. Generally these constraints are at physical operating lim-
its, and it is very difficult for a human operator to run the plant
simultaneously at 5 or 10 or more limits. The LP solution al-
ways lies at variable constraints, since the hyperplane defining
its objective function is linear [7]. Because of process condition
changes and disturbances (feed composition changes, ambient
temperature changes, rate changes etc.), the economic optimum
may change rapidly, and a well-designed MPC controller can
use many MVs to continuously drive the plant against the most



profitable constraints mathematically and keeping it running
stably at the limits. Human operators, with the help of a good,
well-tuned regulatory control layer of PID loops, will typically
operate the plant conservatively with a bigger safety margin to
maintain stable operations, but may have challenges running at
all economic limits simultaneously, as illustrated by the circles
in Figure 3. APC systems can help reduce this variability and
simultaneously push the system towards the true economic op-
timum. As described by Maciejowski (2002), the culture of
control practice in the process industries is one where human
operators are entrusted with significant autonomy over the op-
erations and control of the plant [2]. In consideration of this
culture, industrial MPCs are typically implemented in a super-
visory capacity over a PID control layer, giving plant operators
the freedom to turn the APC layer off if it were to function er-
ratically to maintain safe operations [2]. Therefore, a culture
of trust between operators and automation systems is crucial.
Tools and systems must demonstrate reliability improvements
over manual operations, or risk operator distrust of automa-
tion systems [27], compromising the operational integrity of the
plant.

During controller commissioning, engineers use prior pro-
cess knowledge to define how each critical CV is controlled,
and this is accomplished by pairing critical CVs to the primary
MVs that control them in a one-to-one fashion [28]. The result-
ing set of MV-CV pairings is known as a set of ‘pivot points’ or
as the ‘active constraint set’, and can be used to assist the diag-
nosis of problematic controllers, as it provides a benchmark that
defines the ‘normal’ operation of a plant. For example, steam
flow rate in the hot side of a heat exchanger (MV) would be used
to control the temperature of the cold process fluid (CV). Since
the LP optimizer is constraining the MPC, the active constraint
set at any given time is indicative of how the LP is prioritiz-
ing variable limits, which provides important context to those
troubleshooting problematic controllers.

Understanding the interplay between all of these factors is
crucial to diagnosing a problematic controller. While some is-
sues can be resolved by simply trending the necessary variables,
some more complex issues may require examining the prob-
lematic variables in the larger context of LP optimization. The
necessary functionality to solve such issues may be available
in commercial MPC tools, but without an effective interface,
users may still experience difficulty navigating through differ-
ent screens to find the desired solution.

3. Literature review

This section outlines previous implementations of LP opti-
mizer visualization in the context of APC, in order to help cre-
ate guidelines that can be applied to creating new visual tools.
Aside from the availability of built-in tools found in commer-
cial MPC packages, there have been a lack of academic tools
and research focusing specifically on the LP optimizer solution.

Guerlain et al. (2002) [15] proposed the MPC Elucidator: a
MPC visualization tool that aimed to address issues with MPC
interfaces through the use of ‘Representation Aiding Strate-
gies’, a set of well-designed visual properties meant to help

reduce the cognitive effort required by engineers and opera-
tors for situational awareness in the context of an APC system.
Their design is guided by results of cognitive task and work
analyses. However, discussions with industry partners and con-
tacts revealed that the product was not implemented as widely
as expected. Many issues raised by the Elucidator paper are
still present today in many commercial packages, and there has
been a lack of attention on the human factors aspect of MPC
interfaces in the last two decades.

Notably, Guerlain and colleagues highlighted that some MPC
variables may have their limits tightened (or ‘clamped’) due
to instrumentation issues or local operating conditions. For
large-scale MPC systems, operating conditions may take days
or weeks to return to normal, in which time engineers or oper-
ators may inadvertently fail to unclamp those variables. If the
typical limits are not reinstated when operating conditions re-
turn to normal, the clamped variables can limit the ability of
the controller to control the process. Each incorrectly clamped
variable can take up one degree of freedom from the controller,
forcing it to drive the process towards the desired operating
point using potentially undesirable moves - e.g., by changing
feed rate or other economic handles in the process. It is often
difficult to understand such undesirable MV moves as a con-
sequence of the LP solution, without detailed understanding
of the process and an investigation of process data, especially
for large-dimensional controllers. This clamping effect is illus-
trated in Figure 2.

Peterson et al. (2011) [29] concur in their MPC solution
analysis process patent that there is a demand for flexible, real-
time tools that can analyze LP solutions to provide operators
meaningful instructions on unclamping variables, which they’ve
referred to as ‘constraint set relief’. They developed a technique
to address variable clamping, providing a quantitative method
to inform operators on the variables and limits to adjust to shift
the LP solution to the correct targets.

In their patent, they also highlight the importance of the
‘partial pivoting’ operation: a common industrial practice used
to combine real-time constraint states with steady-state gain
data to reveal how the LP will behave under constrained condi-
tions. The key insight is that the size of the active constraint set
is determined by the number of unconstrained MVs. The active
constraint set is comprised of the unconstrained MVs (MV,)
that are available for control, and the constrained CVs (CV,)
that are being actively driven to a setpoint. Some other authors
refer to these constrained variables as ‘active’ or ‘binding’, and
the unconstrained variables as ‘inactive’, ‘non-binding’ [4, 30].
The constrained M Vs that are at their limits are not available for
control, while the unconstrained CVs are just floating between
their limits due to MV movements, and the LP optimizer is not
actively driving them to any setpoint. This partial pivoting oper-
ation is accomplished by rearranging the gain matrix to form a
square submatrix of constrained MVs and CVs in the upper-left
corner, then inverting only the square submatrix. The raw gain
matrix describes the relationship between independents and de-
pendents; the pivoted gain matrix describes that between con-
strained and unconstrained variables. Steady-state gains are
calculated in open-loop, meaning that they do not show any in-



formation related to active constraints; the gain matrix therefore
needs to be combined with constraint data in order to provide
any explanation for LP behaviour.

The LP is highly dependent on the process gain matrix,
since it is only concerned with steady-state variable changes.
As described in Hoffman et al. (2010) [28], “the number of
manipulated variables floating between their limits will be ex-
actly equal to the number of controlled variables at their limits”,
since the LP optimizer will be limited by the number of avail-
able control handles in the system. This set of constrained CVs
and unconstrained MVs is the basis with which we perform the
partial pivoting operation, by moving this set to create a square
submatrix at the top-left. This operation creates four submatri-
ces, split by variables’ constraint statuses. Each submatrix is
then transformed to create its closed-loop counterpart; a sum-
mary of the operation is shown in Figure 4.

MV, MV,
K]l Kl?
(mxm) (mxn) MV,
Prvor
K= K CVu
Ky = -Kn K

Ki,= K'Kiz
K = —Ka» — Kn K 'Ky»

Open-Loop Gains, K Closed-Loop Gains, K’

Figure 4: Pivoting operation based on a constraint set of (MV,,, CV,). The open-
loop gain matrix, K can be split into 4 submatrices K1, K2, K»; and K»;. The
constraint set in Ky will always form a square matrix of dimensions m X m.
Note that K17, K>, and K> can be empty matrices with dimensions p = 0 or
n = 0 if all MVs or all CVs are in the typical constraint set. Pivoting swaps
the MVs and CVs to generate a closed-loop matrix, K’ where the constrained
CVs are the independent variables and the constrained MVs are the dependent
variables.

By pivoting the open-loop gain matrix using the active con-
straint set, we obtain an ‘effective’ gain matrix that accounts for
both steady-state changes and active constraints. Essentially,
the closed-loop matrix shows the relationships between MVs
and CVs in the inverse, swapping the dependents and indepen-
dents, and describes the LP optimizer actions. Users can there-
fore employ the closed-loop gain matrix in combination with
variable trends to get a holistic understanding of LP behaviour.

The open-loop matrix describes the relationship between
the MV-CV pairings, but caution must be taken when using it
for troubleshooting the LP solution. Depending on the gain val-
ues, active constraints and pivot points, the pivoted gains in the
closed-loop matrix may experience a sign flip, indicating the
MYV would now move opposite of the expected direction for
that particular CV or have their pivoted gains transformed to
zero, indicating that the MV will no longer be used as a handle
for that particular CV. APC practitioners typically spend sig-
nificant time during the controller design and commissioning
phase to review and adjust gains in the closed-loop matrix to
enforce ‘structure’ in the controller (based on material balance
and other physical constraints) and avoid undesirable and er-
ratic MV movements [28].

Performance assessment and monitoring of two-stage LP-
MPC systems have been considered by several authors. These
insights may aid in designing visualization strategies. Kozub

(2002) discusses several methods of monitoring MPCs, specifi-
cally with regards to their performance and connecting the steady-
state and dynamic optimization components. Relevant issues
that we can be wary of include the high volume and complex-
ity of MPC data, and overlooking the LP aspect of the solution
[31]. Novel Key Performance Indicators (KPIs) have been pro-
posed by Sun et al. (2011) [30] by considering CV priorities.
A more recent paper by Godoy et al. (2017) present an excel-
lent overview and critique of typical KPIs used in industry, and
suggest utilizing a novel economic performance indicator [4].

Contrary to LP-MPC system visualization, there have been
more significant academic advances in implementing user-focused
visualization tools in the field of alarm management and ana-
lytics. Hu et al. (2018) provide a taxonomy of existing alarm
visualizations and propose new innovative plots based on de-
sign requirements for visual techniques, which include bubble
charts, treemaps, ranking charts, and spiral graphs [32]. Fur-
ther, the concise structure and layout shown by Hu et al. (2018)
served as a strong basis adapted in this paper, due to the simi-
larity of presented ideas.

Applying lessons learned from novel visualization work such
as that by Hu et al. (2018) requires that data visualization fun-
damentals be understood clearly, such that any created tools can
be optimized for operator workflow. Our literature review re-
vealed a noticeable gap of academic work addressing the us-
ability and operational issues of industrial MPC systems faced
by practitioners. In the following sections, we discuss the chal-
lenges around LP interpretability and MPC diagnostics and pro-
pose novel solutions using data visualization principles.

4. Data and Information Visualization

The purpose of data visualization is to communicate infor-
mation through visual media, allowing users accessible insight
into their data. The properties of a given dataset generally dic-
tate which kinds of visual encodings are more effective, and
Perin et al. (2019) describe three types of data: quantitative,
ordinal, and nominal. Quantitative data have exact numbers
without an inherent order (e.g. mass, distance); ordinal data
can be numerical or categorical but have an associated order
(e.g. low-medium-high classifications); nominal data comprise
everything else (e.g. categorical, non-numerical data). In visu-
alization literature are also several ‘retinal’ variables: methods
of visually encoding data that utilize different visual channels in
order to convey information [33]. Mackinlay (1986) provides
a summary of different visual encodings and their associated
effectiveness, as shown in Figure 5.

Using the information in Figure 5 requires a systematic method
that involves consistent iteration and evaluation against the vi-
sualization targets. We apply Munzner’s ‘Nested Model’ in our
work, which breaks the problem of visualization development
into four layers: domain characterization, data and task abstrac-
tion, encoding and interaction design, and algorithm design.
Progressing through the layers takes us to less abstract levels
of visualization design [35].

The design process begins with domain characterization,
where we identify target users and their needs. Potential errors
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Figure 5: Mackinlay’s ranking of retinal variables. The grey boxes indicate en-
codings that do not apply to the given data type. Figure adapted from Mackinlay
(1986) [34].

here are primarily due to mischaracterizing the problem, so we
must ensure that the problems discussed are actually faced by
the target users - possibly through user studies and discussions.
Next is data and task abstraction, where we identify the rele-
vant data and tasks that are to be improved using visualization.
We also employ a ‘multi-level typology’ described by Brehmer
et al. (2013) in order to abstract the tasks a user typically goes
through into a more generic format that is used for visualization
design [36]. Care must be taken to ensure that we are involving
the correct data and that we are accurately portraying user tasks
in their abstraction. Then, encoding and interaction design are
the steps concerned with the actual visualization design, incor-
porating retinal variables for encoding data as well as interac-
tive parameters to assist the users. This layer requires making
suitable choices for visual encodings, as choosing less fitting
visual methods will create more work for the users. Finally, al-
gorithm design involved the creation of suitable algorithms to
run the visualizations. This layer is also concerned with the
choice of software used to create the visualizations, as well as
performance parameters such as speed and memory capacity.

Essential to this process is the validation of design deci-
sions as they are made. As this is an iterative process, there is
no single validation step taken after design milestones; rather,
validation is woven into each step to create a more continual
process of improvement. Each layer has associated threats to
its validity and we must take these into account throughout the
design.

5. Design of visualization plots

In this section, we discuss the typical visualization plots
used for MPC controllers and LP optimizers in action. We
review traditional methods that are common in industry and
identify their limitations. We then introduce novel visualiza-
tion techniques that address these limitations.

5.1. Time series
Time series data, in the context of MPC controller diag-

nostics, represents key LP optimizer parameters monitored at
every controller execution cycle in the time domain. Each MV

and CV configured in the controller will have four key param-
eters that are representative of the LP optimizer solution: pro-
cess value (PV, or measurement), steady-state target (SS), upper
limit (UL), and lower limit (LL). These 4 variables are impor-
tant because LP must identify the system’s current condition
through its process value to output a set of SS targets that re-
spects the limits of each variable.

The 4 parameters for each controller variable are essentially
a series of snapshots of the LP optimizer solution over time. A
typical setup of time series plots used in practice is shown in
Figure 6, along with the colour scheme used in this paper.
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Figure 6: Sample time series plot showing two FCC variables: Tray 14-24 DP
and Tray 1 Temperature in the fractionation column. The process values or
measurements are plotted in black. The steady-state targets calculated by the
LP optimizer are shown in magenta. The red and blue lines denote the upper
and lower operating limits, respectively. All plot values are normalized to lie
between 0 and 1.

Monitoring a small number of controller variables, for in-
stance, two variables, as illustrated in Figure 6 is relatively sim-
ple. There is little difficulty for the user in keeping track of
what the LP optimizer is doing at any given time. Each plot
has enough space to clearly show the time series trends for both
variables. In fact, for a system with just 2 MVs, the entire LP
solution space can be visualized and interrogated on paper, as
discussed earlier in Figure 2.

In practice, these time series plots are typically monitored
regularly by APC engineers using data historians and constantly
by plant operators using the DCS. Certain anomalies are rela-
tively easy to spot visually, such as SS targets bouncing be-
tween limits, which is indicative of design issues such as plant-
model mismatches, poor numerical conditioning in the gain ma-
trix, as well as operational issues, such as clamped variables or
instrumentation malfunctions.

However, many controller anomalies are not visually obvi-
ous in the absence of broader contextual information and under-
standing of the APC design intent and controller objectives. For
example, which controlled variables should typically be pushed
to their limits? Which manipulated variables are typically used
to move those controlled variables? The column tray DP in
Figure 6 appears to be both constrained and unconstrained in
the plot, but are both conditions normal behaviour for the con-
troller? If the aforementioned CVs are not at the correct con-



straint status, how do we determine which other MV or CV to
unclamp to shift the LP solution and provide constraint set re-
lief?

Evidently, to understand the behavior of the MPC controller
and LP optimizer, relying solely on the time series trends vi-
sually is insufficient. Users must also possess a strong under-
standing of the MPC design intent, controller objectives and
gain matrix.

Remark 1.  Real world industrial MPC systems are much
larger, which exacerbates the problem of information overload.
For example, the FCC controller at the Burnaby refinery has a
total of 104 variables, meaning that there are over 400 individ-
ual trends of interest that will potentially require investigation
during abnormal situations. As more variables are trended, it
becomes more difficult to understand how the trends are chang-
ing, and how variables are related to each other. The user’s
screen size also imposes a physical limitation on the number
of trends that can be included. Consequently, users may need
to spread trends over multiple pages, which can make the in-
vestigative work more tedious and time-consuming to navigate,
and users quickly lose the ability to systematically compare
variables that are now spread across different pages. How do
we decide which variables to plot on the same page? Further-
more, as shown in Figure 6, the spread of PV and SS for Tray
14-24 DP is low compared to the full variable span. Variables
that stay relatively stable may be harder to explore, since the
LL-UL range will ‘compress’ the PV and SS trends, requiring
the LL or UL lines to be turned off to improve the visualiza-
tion plot. Techniques that can help systematically cut down the
number of time series trends to investigate will be of immense
value to plant engineers and operators.

5.2. Steady-state gain matrix in tabular form

Relationships between MVs and CVs are described by the
steady-state gain matrix. The steady-state gain matrix encodes
the open loop behavior of CVs in the system, in response to an
increase in the MV by one engineering unit. These values can
be represented in a table, as shown in Figure 7.

Visualizing the gain matrix in this way is noteworthy be-
cause in practice, APC engineers typically use traditional spread-
sheet software like Excel as the default, in-house, general-purpose
data analytics tool [37]. Based on discussions with industry
partners and contacts, APC engineers in industry have devel-
oped many sophisticated, custom-built Excel spreadsheets for
various process control tasks, such as gain matrix visualization,
LP simulations, matrix pivoting and APC controller monitor-
ing. These spreadsheets are typically proprietary tools that are
owned by their respective companies, and not available in the
public domain or open sourced.

Consider a hypothetical problem where a user is monitoring
the time series trends and noticed that CV7 breaches its upper
limit. Using the open-loop gain matrix, we see that MV1 and
MV?2 are the only variables with nonzero gain, making them the
only directly related variables. Looking at those relationships,
there are four unique CVs with nonzero gains that could poten-
tially be causing the issue. This process can be iterated until a

MV1l | MV2 | MV3 | MV4 | MV5 | MV6
CV1 0 0 0 0 0 2.68
CV2 347 | -4.17 0| -091 ] -1.61 0
CV3 0 0 3.16 4.24 3.8 0
CV4 4.66 0 0 0 4.16 0
CVs5 4.44 0 -4.0 0 0 0
CVeé 0 0 3.72 0 0 4.65
CVT7 | -0.96 0.81 0 0 0 0
Cvs8 | -0.67 0.71 0.9 0 0 0

Figure 7: Sample 8x6 gain matrix with CVs as rows and MVs as columns,
displayed as a numerical table. For each MV-CV pair, the sign of the gain in-
dicates the directionality, and the gain magnitude determines the strength. The
matrix is sparse, and a gain of zero indicates that there is no direct relationship
between an MV-CV pair in the process model.

solution is found or all variables are checked. Iteratively check-
ing variables in this way can be thought of as a ‘naive’ search
process, as we are not incorporating process knowledge at all.
In reality, the variables most commonly affecting CV7 from a
practical standpoint will be checked first. Furthermore, not all
variables will participate in the LP optimizer solution, and the
MYV and CV constraints should be used to eliminate irrelevant
variables to reduce the search space.

In the context of the LP optimizer solution, the magnitude
of each gain is relatively less important - more important is the
sign of the gain value, which determines its optimization and
control direction. Systematically filtering or reordering of the
rows and columns can help users easily identify problematic
variables with a smaller margin of error. By sectioning off those
variables that do not need further investigation, users can spend
less time sifting through rows/columns and rapidly obtain the
information that they need.

Remark 2. The prominence of Excel and other spreadsheet
tools in the engineering profession makes it a natural baseline
for evaluating visualization techniques in the process industry.
For alternative techniques and tools to be successful, they must
also provide the user-friendliness, widespread availability and
ease of access that Excel offers. However, Excel is a poor tool
for visualization of the gain matrix. The numerical values for
the gains can be hard to read and imposes a lot of cognitive load
on the user to process this information. Furthermore, the static,
tabular display in Excel makes it difficult to identify the vari-
ables of interest. For a large, sparse gain matrix, there may be a
lot of zeros that the user has to ignore and sift through to obtain
the information that they need. These issues regarding the gain
matrix table in Figure 7 become aggressively more prevalent
as the system grows, making it very difficult to trace through
sparse rows/columns to find related variables. Moreover, it may
be difficult for users to keep track of the variables and gain val-
ues they are dealing with at any given point, when they have an



overwhelming numbers of variables to keep in mind.

Notably, since the gain matrix only shows steady-state gains,
process dynamics are not available in this visualization. How-
ever, this is not a concern in the context of visualizing the LP
optimizer solution, since the LP only uses the steady-state gains.
More accurately, there is only a subset of variables that partic-
ipate in the LP solution. Thus, not every element in the open-
loop matrix is useful in understanding the LP optimizer’s ac-
tions. By identifying the constraint set consisting of the uncon-
strained MVs and the constrained CVs, the open-loop matrix
can be pivoted to the closed-loop gain matrix, which provides
more relevant information in the context of LP solution diag-
nosis, since it considers the CVs that are actively driven to a
setpoint under the influence of the unconstrained CVs. Partially
pivoting the gain matrix requires isolating the pivot points: a set
of pairings between unconstrained MVs and constrained CVs,
where each unconstrained MV is expected to control its paired
CV under typical operating conditions. The ability to reorder,
filter and sort the gain matrix to eliminate irrelevant variables
will be very useful for engineers or operators during a trou-
bleshooting exercise.

5.3. Interactive gain matrix heat map

A heatmap is a data visualization technique that encodes
the values in a 2D matrix, typically as colors. The rows and
columns in a heatmap represents the dimension of the data. In
the context of a gain matrix heatmap, the rows would be the
CVs and the columns the MVs, and the color encodes the gain
value. However, data pre-processing is an important step in the
construction of the heatmap and its resulting utility and practi-
cality.

In a broader data visualization context, there are many op-
tions for how we can encode data, and we are not limited to
colors. The effectiveness of each method of encoding depends
on the data being encoded. Since gain values are continuous
and numeric (i.e. gain is not a categorical or ordered form of
data), visual encodings that are inherently quantitative like ob-
ject length, size, or position are better suited to encode them
[34]. For example, we can add an opaque bar to each cell and
use each bar’s length to represent the gain value. This way,
users can visually compare different gains more easily than if
they had to retain their exact numerical values.

The gain matrix itself can be sparse due to many MV-CV
pairs without direct relationships, and have a high variance in
values due to the usage of different engineering units. For in-
stance, the full range of Burnaby’s raw FCC gain matrix is over
1,000, while the majority of gain values are relatively close to
zero. Naively encoding these raw gain values as colors makes
the vast majority of the gains indistinguishable from each other.
For this reason, we need to be able to transform the data to
‘squeeze’ the distribution to a smaller range, in order for the
encoded colours to be distinct.

In the context of understanding the LP optimizer solution,
we are primarily concerned with the gain directions and the ex-
act magnitudes are relatively less important. Therefore, it is
natural to apply a sign function to the raw gain matrix, to pre-
serve just the gain directions, and visualize the transformed gain

matrix as a heatmap. This transformation addresses the issue of
indistinguishable colors, and we can encode positive values in
green, and negative gains in red, and white for zero gains, as
illustrated in Figure 8.
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Figure 8: The FCC gain matrix at the Burnaby refinery visualized as a heatmap
with CVs as rows and MVs as columns. Negative gains are shown in red, zero
gains in white/transparent, and positive gains in green. The ability to visually
sort, reorder and filter variables interactively in the matrix will provide a usabil-
ity improvement over static, numerical tables. For example, by sorting an MV
column, users can quickly determine a list of CVs the MV handle is controlling,
and divide the CVs into 2 separate groups based on the gain directions.

To gain further insights on the variable relationships and
address the restrictive nature of static, tabular displays, we can
construct an interactive and reorderable heatmap. Perin et al.
(2019) discuss the general benefits of reorderable matrices us-
ing Jacques Bertin’s physical reorderable heat map [38], reveal-
ing underlying structure in the matrix data that are otherwise
hidden [33]. By sorting the gain matrix using the gains of a sin-
gle row/column, one can visually filter variables that are worth
investigating in the event of a process upset.

Visualizing the gain matrix as an interactive heat map presents
numerous benefits over the raw values. A numerical display of
data requires a higher cognitive load to process compared to
colors in a heatmap. Comparing two numbers in a table re-
quires a small amount of cognitive work, which is trivial for
small datasets but quickly grows as the gain matrix gets larger.



Remark 3. The most useful functionality provided to mod-
ify the gain matrix heatmap is filtering, reordering, and trans-
forming the gain data. Filtering the gain matrix is necessary
to reduce the number of variables the user needs to manage at
any given time. Taking the Burnaby refinery FCC as an ex-
ample, this gain matrix has 44 columns and 64 rows. Despite
the matrix being relatively sparse, having to trace through this
many variables can be tedious and can potentially give room
for more human error. By selecting the necessary variables,
such as those specifically causing problems in the controller,
helps users greatly reduce the data they must trace through at
any given point. Visualizing the gain matrix as an interactive
heatmap also addresses the limitations of static, tabular views
inherent in spreadsheets, as discussed in the previous subsec-
tion. Clustergrammer [39] is an example of an open-source in-
teractive heat map implementation developed to support bioin-
formatics research, and includes the ability to cluster and sort
the displayed matrix by rows and columns. The code is open-
sourced and can be adapted for process control visualization
tasks. Aside from filtering and reordering, transforming the
gain matrix is important as it allows the user to focus the vi-
sualization on a specific feature of the data; an example of this
is how we took the sign function in order to show only the gain
directions. If, in further iterations, it is necessary to see the
gain direction and magnitude, there are numerous transforma-
tions available that can accentuate various data features while
still keeping the colors distinguishable, such as hyperbolic tan-
gents and log transformations. Selecting or creating a suitable
transformation is a separate design decision that requires inves-
tigation to understand what information the user should try to
emphasize and try to hide [40].

5.4. Controller performance monitoring plots

The active constraint set is the set of variables (MVs and
CVs) that are at their LP limits during a particular controller ex-
ecution cycle. A typical task in MPC monitoring and diagnos-
tics is to identify anomalies in the constraint set, which could
serve as indicators for clamped variables or process upsets, and
help isolate the problematic variables for further action. Kozub
(2002) developed a set of visualization tools that can help with
controller diagnostics.

The first plot is the Percent Constraint Activity Plot (PCAP),
a bar chart that visualizes the fraction of time that a CV is con-
strained and the fraction of time that an MV is freely available
to move. As explained by Kozub (2002), this plot can help
identify CVs that are often floating between LP limits, which
essentially leaves them in an open-loop state, compared to con-
strained CVs, which indicates that the feedback controller is
actively driving them to a setpoint. This plot can also help iden-
tify MVs that are often unconstrained, and can be utilized for
feedback control.

Godoy et al. (2017) identify typical KPIs used for mon-
itoring MPC performance that are similar to the PCAP: the
pCVac and pMVac, which define the percentage of CV ac-
tive constraints to total MVs, and the percentage of MV active
constraints to the total MVs, respectively. Contrary to Kozub,
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Figure 9: Percent Constraint Activity Plot (PCAP) developed in Kozub (2002)
plotted using sample data from the Burnaby refinery FCC controller. For a par-
ticular time window, the top subplot is a bar chart sorted in descending order
by the % of time an MV is unconstrained, and the bottom subplot shows the %
of time a CV is constrained. An MV that is frequently constrained and unavail-
able for control (MV,) is not particularly useful in a process control context.
These MVs do not directly participate in the LP optimizer solution since they
offer no degrees of freedom to control the system. Similarly, a CV that is typ-
ically unconstrained (CV,,) is not being actively driven to any setpoints by the
LP directly, but they are moving as a consequence of other MV movements and
their relationship in the gain matrix.

Godoy et al. (2017) argue that these KPIs are too simplistic to
capture important details for LP operation, such as proximity of
inactive limits [4].

The second plot from Kozub (2002) is a bar chart called
a Dynamic Constraint Activity Trend (DCAT), which plots the
number of CVs that are at their LP limit over time, and the num-
ber of MVs that are free for control (not at their LP limits) over
time. Chattering in these plots indicate possible LP stability
issues.

Remark 4.  The constrained CVs and unconstrained MVs
form the ‘pivot points’. These are MV-CV pairings, where the
CVs are actively driven to their limits by the LP solution us-
ing the unconstrained M Vs for control. This set of pivot points
is also sometimes referred to as the ‘state’ of the multivariable
controller in industry (which is different from the mathematical
definition of a ‘state’ in control theory), and these are the vari-
ables of interest from a monitoring perspective. As discussed
earlier, pivoting can help derive further insights on controller
directionality and isolate the variables that are actively partici-
pating in the LP solution. A combination of information from
the first and second plot can lead to insights on problematic
variables that requires further investigation. Variables in the
PCAP with percentages not at 0 or 100% during the investiga-
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Figure 10: Dynamic Constraint Activity Trends (DCAT) developed in Kozub
(2002) plotted using sample data from the Burnaby refinery FCC controller.
The 2 subplots provides an overview of variable constraint statuses in the time
domain. At any particular time index, the subplot shows the number of MVs
that are unconstrained and available for control, and the bottom subplot shows
the number of CVs that are constrained and actively being driven to a setpoint.
A sudden drop in the number of MVs that are unconstrained, and consequently,
a reduction in the number of CVs being controlled, is indicative of potential
controller faults and anomalies that may require further investigation.

tion window are likely to be the variables of concern. For in-
stance, if a given CV is at its limit 80% of the time, that means it
dropped from its constraint and therefore can be a problematic
variable. Time series trends of the variables and their associated
limits and steady state targets can be used to obtain univariate
performance indicators for that particular variable, such as their
setpoint tracking ability and settling time.

For a large-dimensional controller, the analysis and inter-
pretation of these plots is a nontrivial task due to the volume of
time series data and number of variables involved. The two
plots presented by Kozub provides an excellent overview of
APC performance for monitoring purposes, but is limited by
the lack of a direct, visual connection between the PCAP plot
and DCAT plot that will facilitate controller troubleshooting
and help us drill down to the variables of interest.

5.5. Dynamic Constraint Map (DCM)

To address the limitations discussed in the previous sub-
sections, we now present a novel technique that facilitates LP
optimizer solution diagnosis. We propose a new visualization
tool called the Dynamic Constraint Map (DCM) that provides
an overview of the LP solution by tracking the changes in con-
straint sets in the time domain, combining information in the
PCAP and DCAT plots, but providing more clarity on the indi-
vidual variables while taking up less screen space compared to
the full time series trends.

This dynamic heatmap visualization plot consists of these
features:

e Variables are plotted as rows and the timestamp as columns.
For clarity, the rows can be sorted with the CVs at the top,
followed by the MVs, or can be reordered to group vari-
ables with similar patterns together.

e The color in the heatmap encodes the constraint status
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of that variable in a particular point in time, with time
moving in the left to right direction.

e One or more time series trends with the same investiga-
tion window can be added to the top of the heatmap to
provide additional details for selected variables, and fa-
cilitate visual tasks to correlate time series trends with
variable constraint statuses.
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Figure 11: Dynamic Constraint Map (DCM) plotted using sample data from
the Burnaby refinery FCC controller. The color encoded for each constraint
status is provided in Table 1. Abrupt changes in colors for a variable or a set of
variables could be indicative of a potential controller fault.

Remark 5. The DCM plot is designed to condense large
volumes of information into a single plot, providing practition-
ers with a dynamic overview of active constraint sets over time.
The plot can be interpreted in multiple ways. By studying a par-
ticular variable across time, univariate chattering activity and
LP instability issues can be identified. Similarly, by studying
the heatmap at a particular time point, the active constraint set
and associated MVs and CVs can be identified. Users need not
sift through numerous individual trends for a specific variable
- the DCM provides data relevant to the LP solution without
cluttering the display with numerous trends and intersecting
lines. Additionally, for important process variables like FCC
feed rate, the DCM clearly shows when they may exhibit abnor-
mal behaviour. For example, FCC feed rate is typically driven
towards its upper limit - going through its row in the DCM, if
the user encounters cells with different colours, they quickly
find where the problem begins. They can then isolate a vertical
window and look for changes in other related cells to quickly
and easily dig through the related data.

Comparing the heatmap across time will help the user iden-
tify anomalies and undesirable changes in the active constraint
set. For example, for a typical distillation column, it is typ-
ically desirable to maximize throughput and operate at maxi-
mum reflux and minimum column pressure to increase profits
and reduce energy usage. The user can identify regions in time
where this ideal active constraint set were not met, and utilize
time series trends for each variable to further investigate the
root causes.



Furthermore, the concepts of heatmap sorting, filtering and
re-ordering introduced in the previous section can be applied
here to derive further insights on controller performance. From
a univariate analysis perspective, abrupt changes in the heatmap
color for a variable, typically held constant at a certain con-
straint, could indicate a possible controller fault or abnormal
situation that may need to be addressed. The root causes and
variables that contribute to this fault can be determined through
a multivariate analysis perspective. In the context of controller
diagnostics, we can reasonably assume that if the plant is run-
ning at steady-state without any operational upsets and posture
changes, there will be a particular active constraint set that is
most common and active for the majority of the time. Variables
deviating from this common constraint set are candidates for
further investigation.

In the next section, we explain a general troubleshooting
framework using the Dynamic Constraint Map as a visualiza-
tion tool for controller diagnostics to eliminate variables that
are most likely to be irrelevant, and rapidly drill down to vari-
ables that matter.

5.5.1. General Troubleshooting Steps Using DCM

Using time series data, determine the investigation time
window and identify the timestamp when the controller
was misbehaving and the problematic variable that re-
quires further investigation (i.e. feed rate dropping)

Plot the DCM for all variables vertically below the time
series. Use the time window determined in the previous
step. Note that the start and end time should encompass
the period where the controller was misbehaving, as well
as periods where the controller was functioning normally.

Eliminate variables from the DCM that do not have con-
straint changes in the time window. These variables most
likely did not contribute directly to the fault, but they can
be checked later to identify the root cause

Apply a hierarchical clustering algorithm to the truncated
DCM to reorder the variables. Select an appropriate clus-
tering algorithm and distance metric that will group sim-
ilar variables together and provide further insights on the
constraint trends.

Observe the patterns in the DCM and identify variables
with constraints that correlate with constraints on the prob-
lematic variable

Filter the open loop gain matrix by retaining only vari-
ables present in the truncated DCM. Observe the relation-
ships between the variables, and identify variables that
have a direct relationship with the faulty variable. Plot
these variables as a time series

Use a combination of the time series plots and process
knowledge as a heuristic to eliminate the selected vari-
ables and identify the root cause and understand the con-
troller actions. Verify the controller actions using the
closed-loop gain matrix if necessary
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6. Industrial Case Studies

To illustrate the effectiveness of techniques developed in
this work, we present two industrial case studies to describe the
procedures and mechanics of these techniques and highlight im-
provements over conventional troubleshooting methods. Both
case studies are applications on a real APC system at the Burn-
aby refinery. The colors used in the DCM plots are provided in
Table 1 below.

Table 1: Color legend for DCP plots in all industrial case studies presented
here.

Color Constraint Type

White Unconstrained

Dark Blue  Constrained - Upper Limit
Light Blue Constrained - Lower Limit
Yellow Constrained - Ramp or others
Red Gave Up (Infeasibility)
Black Out of Service (Unused)

6.1. Case Study 1: FCC Feed Rate

Consider a fluidized catalytic cracking (FCC) unit at the
Burnaby Refinery in British Columbia. The FCC APC con-
troller has been designed with 44 independent variables (MVs
and FFs) and 64 dependent variables. The data set includes
about 32 hours of APC data with a sampling rate of 1 minute.
The data set contains an anomaly - a drop in FCC feed rate tar-
get (CV), as shown in the combined time series and constraint
heatmap in Figure 12. We can observe that the feed rate tar-
get switched from an upper limit constraint to unconstrained in
the region highlighted in red, accompanied by changes in the
constraint status of other variables as indicated in the heatmap.

The goal of this case study is two-fold. First, we want to
rapidly identify a smaller, more manageable subset of the 108
variables that are the most likely contributors to this anomaly.
Second, through this smaller subset, we want to use a combi-
nation of the gain matrix and process knowledge to identify the
most likely root cause.

We apply data pre-processing techniques to improve the ap-
pearance and utility of this constraint heatmap. First, we iden-
tify and remove variables that had no changes in its constraint in
the time window of interest. If those variables did not undergo
any constraint changes during the period of anomaly, we can
reason that they most likely did not directly contribute to the
drop in feed rate target. The remaining variables are those that
experienced constraint changes in the dataset. Second, we ap-
ply a clustering algorithm to group similar rows together. The
clustering algorithm reorders the APC variables, such that sim-
ilar variables are closer to each other, based on a pre-defined
distance metric. Reordering the variables will help us identify
patterns visually. The exact distance metric (e.g. Euclidean,
Hamming or Jaccard) and clustering algorithm (e.g. single-
linkage, complete-linkage or Ward’s) can be a tuning handle
and selected based on the nature of the APC dataset under in-
vestigation. By using an interactive zoom slider, we can rapidly
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Figure 12: Combined DCM and time series trends for Case Study 1, investigat-
ing a process upset in the FCC feed rate. The time window under investigation
is highlighted in light red. We can observe that the majority of variables did
not experience any constraint changes. These variables are unlikely to be direct
contributors to the feed rate drop, and can be removed to narrow down the list
of variables for further investigation.

drill down to the sections of interest, and select only the relevant
variables within the highlighted period with constraint changes
for further investigation.

This technique allows us to rapidly hide all the irrelevant
variables without constraint change that had no contributions
to the feed rate drop. We have reduced the original 108 vari-
ables by 3 fold to a subset of about 30 suspicious MVs and CVs
that require further investigation. Once these suspicious vari-
ables have been identified, we construct a gain submatrix of the
original open-loop gain matrix by retaining only the suspicious
variables to interrogate their relationships, and eliminating all
other rows and columns as shown in Figure 13.

We then plot the time series for those suspicious variables
and perform a visual inspection. The time series trends reveals
abnormal situations for the De-Eth DP, De-Eth C2 Bottoms
and De-Eth Reb Stm variables immediately before the feed rate
drop, as shown in Figure 14. The most salient observation in the
time series is that the feed rate drop correlates with a sharp in-
crease in De-Eth DP. To verify a relationship between the Feed
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Figure 13: Submatrix from the FCC gain matrix showing the MVs and CVs
that need investigation as outlined in figure 12. Negative gains are shown in
red, zero gains in white and positives in green. Since feed rate is the issue, we
can find that it is related to 11 CVs by looking at the leftmost column. The next
step would be to examine the behaviour of these related variables.

Rate and the De-Eth DP, we use the gain submatrix and observe
that the De-Eth DP is controlled by the Feed Rate, De-Eth Reb
Stm and the Riser Outlet Temp.
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Figure 14: Case study 1 combined DCM with relevant time series plots after
clustering based on variable constraint changes before and during the investiga-
tive window. Note the abnormal behaviour in each of the time series above the
DCM. For novice users, it may be difficult to distinguish effects of the upset
from their causes, which is where expert interpretation comes in. Variables that
are known by SME:s to cause feed rate issues will be the first ones they examine,
while novice users may consider all options likely.

To probe for the root cause, we then ask, what could have
caused the sharp increase in the De-Eth DP? Based on the gain
submatrix and process knowledge, the pressure in the de-ethanizer
column would be directly correlated with the De-Eth Reb Stm.
Using the time series, we observe that the De-Eth Reb Stm dis-
plays abnormal behaviour, increasing for several hours prior to
the feed rate drop. Based on the gain submatrix and process
knowledge, by firing the reboiler steam harder, the C2 Bottoms



will decrease, and the Tray 5 temperature will increase. They
are inversely correlated because a higher Tray 5 temperature
near the bottom of the de-eth column will boil off the light ends,
and decrease the C2 composition of the bottom stream.

Evidently, the controller was trying to control the C2 Bot-
toms and Tray 5 temperature within limits by increasing De-Eth
Reb Stm. The drastic increase in steam rate over several hours
resulted in a surge in column dP, which then forced the APC
controller to cut feed. These variable relationships can be con-
firmed by using closed-loop gain matrix using the pivot points
defined by the active constraint set when the feed rate started
dropping. Based on discussions with plant engineers, a lighter
crude slate and an accumulation of excess C2s in the column
was the most likely physical cause of this incident.

In this case study, we have demonstrated how to apply the
techniques described in this paper to rapidly isolate the key vari-
ables out of 108 variables in a few minutes based on its con-
straint changes. The conventional APC troubleshooting method-
ology requires strong process knowledge and domain expertise
on how the specific APC controller was designed. Without ex-
pert knowledge, a novice APC engineer will have to perform a
tedious naive search to investigate almost all 108 variables and
understand their intricate relationships through the open loop
gain matrix. Supposed that the investigation was performed us-
ing conventional tools like Excel and simple time series trends
spread across multiple pages, a novice user may not realize that
a limitation in the de-ethanizer plant in the downstream sec-
tion of the FCC is directly contributing to a feed rate cut at the
front end, and may inadvertently fail to notice the De-Eth DP
anomaly while screening through over 100 variables.

By using a combination of well-designed visualization tools
and systematic techniques such as clustering, filtering and vari-
able elimination, the APC engineer can focus on just the key
variables for further investigation and rapidly arrive at the solu-
tion compared to conventional methods.

6.2. Case Study 2: FCC Riser Outlet Temperature

In this section, we apply the same techniques to a second
case study. We investigate the reasons for a sudden drop in the
riser outlet temperature (ROT) of a FCC unit. In the FCC sys-
tem, the ‘riser’ is a reaction chamber in which fluidized catalyst
and raw crude oil are mixed and ‘cracked’ to form shorter chain
hydrocarbon products. The severity of cracking is determined
by the riser temperature, which can be adjusted to shift the FCC
products and yields.

The data set includes 24 hours of APC data, also with a
sampling rate of 1 minute. The data set contains an anomaly -
repeated drops in the riser outlet temperature, as shown in the
combined time series and constraint heatmap in Figure 15. We
can observe that the ROT target erratically switched from an up-
per limit constraint to both unconstrained and lower limit con-
straint in the region highlighted in red, accompanied by changes
in the constraint status of other variables as indicated in the
heatmap.

We apply the same data pre-processing techniques as de-
scribed in Case Study 1, by removing the variables without con-
straint changes to identify only the relevant variables, and apply
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Figure 15: Combined DCM and time series trends for case study 2, investigat-
ing a process upset in FCC ROT. The investigative time window is highlighted
in light red. Compared to case study 1, there is a much wider time window to
investigate, corresponding to about 14 hours. In this window, there are many
variables whose constraint status stays the same, meaning that they can be elim-
inated from our analysis.

hierarchical clustering to reorder the rows such that variables
with similar constraint behavior are grouped together. The re-
sults of clustering are shown in Figure 17 and a gain submatrix
of the remaining variables plotted in Figure 16.

Based on visual inspection of the constraint set heatmap, it
appears that the ROT variable constraints are correlated with
the RXRG dP variable. The clustered heatmap displays the
ROT and RXRG dP in adjacent rows, and shows that the riser
temp fails to reach its typical upper limit constraint whenever
the RXRG dP is constrained, as highlighted in Figure 17.

An FCC unit is a delicate pressure balance operation. Dif-
ferential pressure between different vessels drives the fluidized
catalysts in one direction. The RXRG dP variable is the differ-
ential pressure between the reactor section and the upper regen-
erator section. Physically, the RXRG dP is controlled by a slide
valve that regulates the flue gas existing the regenerator. Since
the reactor pressure is set by the main fractionator column top
pressure, a higher dP would indicate a higher regenerator pres-
sure [41].

Discussions with plant engineers revealed that in that time
frame, the FCC plant experienced an upset condition, requir-
ing higher regenerated catalyst slide valve (RCSV) dP, the dif-
ferential pressure measured across the upper regenerator and
riser, to maintain catalyst circulation. From a process safety
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Figure 16: Submatrix from the FCC gain matrix showing the relevant variables
requiring investigation based on figure 15. Since ROT is exhibiting the upset,
we can see that there are 9 variables directly related to ROT that may need
investigation.

perspective, the RCSV dP must always be kept above a safe
limit to prevent flow reversal, in which the hydrocarbons will
flow backwards from the riser into the regenerator, leading to
possible explosions or other safety hazards [41].

By using the gain submatrix, we can rationalize using pro-
cess knowledge that since the reactor-regen DP handle was con-
strained, and because the RCSV dP was at the lower limit, the
LP had to pick the next best available handle to attempt to keep
the RCSV dP above the safety limit. There are only 3 handles,
the RXRG dP, the ROT or the feed rate. Based on the LP costs
set during the design of the APC controller, the next available
handle was the ROT. This reasoning can be confirmed by using
closed-loop gain matrix using the pivot points defined by the
active constraint set when the ROT started dropping.

The feed rate case study involves a single sharp drop in feed
rate, whereas the ROT case study exhibits multiple gradual rises
and falls. Consequently, there is a wider time span within which
other variables must be investigated. We have shown that the
techniques used for the first case study can also be successfully
adapted for this slightly more complex situation.

A novice user troubleshooting this issue using Excel and
other conventional methods may struggle with the cognitive
load of performing a naive search of over 100 variables. Fur-
thermore, the larger time window of oscillating targets, com-
pared to the first case study, which was a single, sharp drop,
makes the troubleshooting process more difficult. By combin-
ing effective visualization tools with process knowledge, we
demonstrate how the techniques described in this paper can help
plant engineers efficiently troubleshoot real world APC issues.

7. Limitations and future work

The tools presented here are meant to highlight typical op-
erational issues faced by engineers and operators in the process
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Figure 17: Case study 2 combined DCM with relevant time series plots after
clustering based on variable constraint changes before and during the investiga-
tive window. Note that the time series other than ROT here exhibit more subtle
constraint changes. The Spent Slide valve DP for example, corresponding to
the time series at the bottom, only touches its LL for a brief period and then
floats between its limits. In contrast, RXRG DP (the second time series) clearly
ramps up and stabilizes at its UL.

industry and suggest visualizations for solving these problems.
We also introduce the idea of human-centered design to the field
of APC, to encourage the development of MPC visualization
tools with improved usability and utility.

One major limitation is that the presented tools only guide
the process of controller diagnosis, aiming to point the users
in the right direction to investigate further. With these tools
there are still numerous manual steps that the user needs to go
through, which have not yet been automated. Further work
on the computational aspects of the analyses presented here
can significantly reduce the amount of work required by users.
One option is to develop analytical methods or machine learn-
ing tools to analyze constraint data, where these tools would
provide suggestions for variables to unclamp with associated
probabilities that each suggestion is ‘right’. It is important to
note that this tool is not a replacement for a full LP simulation
typically used by practitioners during the controller design and
commissioning process, but a visualization tool using existing,
historical data that augments the user’s troubleshooting capa-
bilities.

Another limitation is that the case studies provided in this
paper are all faults or disturbances occurring within a single
MPC controller. Typically there can be numerous MPC con-
trollers for different process sections that have interconnected
feed streams, meaning that faults from upstream controllers could
propagate to downstream controllers as unmeasured disturbances
or feedforward variables. Process upsets occurring in the FCC,
for example, may cause subsequent upsets in downstream units
such as the Gasoline Hydrotreater or Alkylation plants, and a
troubleshooting exercise conducted from the Alkylation con-
troller’s perspective may not yield a root cause. Engineers may



need to communicate with the wider plant personnel in order
to have the full picture, meaning that diagnosing this kind of
upset would require a larger scope of process knowledge. A
higher supervisory control layer, such as an RTO (Real-Time
Optimization) system, that describes the interaction between
various plants and MPC systems, can be useful in augmenting
the required process knowledge.

Finally, the tools presented here lack usage of the full, dy-
namic process models, and only the steady-state gains. Conse-
quently, these tools do not take into account the dynamics of the
process. The gain matrix provides steady-state data, and so the
tool cannot provide information regarding how quickly or ag-
gressively one MV would affect a particular CV. Incorporating
process dynamics may provide some additional benefits in un-
derstanding moves made by the dynamic optimizer, as opposed
to just the LP solution emphasized by this paper. However, if
required, engineers can conduct dynamic simulations that are
typically included in commercial MPC packages to diagnose
these issues.

In terms of future work, there are three major areas that we
wish to emphasize in order to effectively improve this research.
First, users can greatly benefit through the automation of the
controller diagnosis process. The idea here is for a tool that can
read the controller state and all of its changes during a provided
time window - the tool would analyze constraint set changes
and process trends to provide suggestions as to which variables
may be causing the upset, with each suggestion having an as-
sociated probability of being the right one. Such a tool could
use a database of case studies as in this research to build a ma-
chine learning algorithm, where the algorithm learns what data
to look at and what patterns to look for.

Secondly, since the tools presented here aim to mitigate the
human factors issues with common commercial MPC packages,
a formal usability study can help to give more structured and
detailed pinch points that we can focus on to improve. We’ve
solicited informal user feedback from plant engineers in the de-
sign and evaluation of visualization tools presented in this pa-
per, but not a formal usability study. Conducting such a study
would involve what Munzner (2009) refers to as a formative
evaluation, which identifies areas where the visualization can
be improved to achieve its intended purpose [35]. This process
requires regular consultation with target users and re-evaluation
of the design with respect to the original objectives. Addition-
ally, testing the designed visual tools using a wider variety of
datasets can help to ensure that the tools are flexible enough to
be used in different contexts.

Finally, there is a need to delve deeper into concepts of
Human-Computer Interaction (HCI). Understanding the basis
of how humans interact with computers from a psychological
and logistical viewpoint may help to provide better-designed
components that are optimized to meet performance require-
ments. For example, formulating the problem using Norman’s
Execution and Evaluation cycle can help to pinpoint where the
users experience difficulty in navigating or understanding the
system, and can help to minimize the presence of redundant af-
fordances [42][43]. Incorporating these concepts will help im-
prove the visualization design, and streamline the tool’s work-
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flow to eliminate potential sources of confusion or error.

8. Conclusions

This paper outlines the usability issues common to commer-
cial MPC packages in industry, which have been overlooked in
favour of developing increasingly complex and robust MPC al-
gorithms. Based on literature and discussions with researchers
and industry practitioners, the past two decades have seen lim-
ited academic research on usability and operational issues of
MPC systems. MPCs generally have large amounts of data that
may be relevant, so this paper summarizes the process of diag-
nosing problematic controllers and presents visual tools that can
help users to easily identify where there may be control issues.
The mechanics of controller diagnosis are discussed in detail,
including essential industrial practices like the partial pivoting
operation, which have been difficult to come by in academic lit-
erature. By isolating relevant data and transforming it into vi-
sual patterns the user can identify, users can obtain insights into
their data more easily and perform less work to get to the same
solution. This paper provides an overview of existing tools for
MPC visualization and their pitfalls in order to guide the design
of new visual tools, and tests these designs on two industrial
case studies. Visual tools here like the DCM, interactive gain
matrix heat map, and PCAP/DCAT are not especially prevalent
in industrial practices, even though they summarize MPC data
essential to the controller diagnosis process. The efficacy of
these new tools is discussed in comparison to the current pro-
cess in which engineer diagnose problematic controllers.

Our aim is to develop visualization tools for assisting con-
trol engineers with their daily MPC monitoring and troubleshoot-
ing tasks. However, there are many different facets of the LP-
MPC system that we have yet to explore. These aspects include,
but are not limited to: LP costs, the objective function, dynamic
MPC optimization, as well as integration with real-time process
historian data and evaluating other multivariate data visualiza-
tion techniques such as parallel coordinate plots. The tools we
present here scratch the surface of how we can improve day-
to-day MPC operation using data visualization, and ultimately,
the goal of this paper is to highlight this research gap and en-
courage further exploration of this topic by the wider controls
research community.
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