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Abstract— A digital twin is a computer-based digital rep-
resentation that simulates the behavior of a physical system.
Digital twins help users to interact with real-world processes
digitally. Time-variant modeling is critical to preserving the
accuracy of digital twin models as the process dynamics
change with time. Kalman filter is a well-known recursive
algorithm that adjusts the process state estimates using real-
time measurements. Sparse identification of nonlinear dynamics
(SINDy) is an algorithm that automatically identifies system
models from large data sets using sparse regression so as to
prevent overfitting and find an ideal trade-off between model
complexity and accuracy. In this paper, the SINDy approach
is first extended to the generalized SINDy (GSINDy). Then,
the GSINDy is integrated with Kalman filter to automatically
identify time-variant digital twin models for online applications.
The effectiveness of the algorithm is revealed through a simu-
lation example based on Lorenz system and an industrial diesel
hydrotreating unit example.

I. INTRODUCTION

Modern industrial processes are equipped with hundreds of
sensors that generate large volumes of data [1], [2]. The data
from these sensors enable us to significantly improve pro-
ductivity as well as economic and environmental efficiency.
Digital twins are models that are developed using large
volumes of real-time data to simulate industrial processes,
which are central to the concept of Industry 4.0 in smart
manufacturing [3]. A digital twin captures information, such
as data records, asset tags, sensor conditions, etc., from the
physical assets [4]. Accordingly, a digital twin will provide
predictions and insights, which can be used to make deci-
sions on the operational conditions of the physical system
[5]. A graphical illustration of typical interactions between
physical assets and digital twins is shown in Fig. 1.

The accuracy and robustness of digital twin models are
critical to bridging the gap between virtual design and real-
life manufacturing [6]. Since a large-scale digital twin may
contain various types of information and need to provide
predictions for different operational objectives, a multi-input,
multi-output (MIMO) modeling approach is desired [7].
In [6], a comprehensive reference digital twin modeling
approach was proposed to address the scalability, interop-
erability, and fidelity of a digital twin. Automation machine
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Fig. 1. Relationship between the physical assets and digital twins.

learning was applied for digital twin attributes modeling in
[8] to improve the effectiveness of data exchange among
various systems in a digital twin. In [9], the idea of five-
dimension architecture of digital twin is proposed, including
physical entity, virtual model, connection, digital twin data,
and services. However, the automatic, time-variant digital
twin modeling approach has not been well studied.

Traditionally, it takes years for scientists to develop first-
principle models describing process dynamics. In recent
years, with rapid development of artificial intelligence tools,
data-driven modeling methods are playing a critical role in
modeling problems [10], [11]. The sparse identification of
nonlinear dynamics (SINDy) proposed by Steven et al. is
able to automatically discover the governing equations of
dynamic systems from abundant data by solving a sparse
regression problem [12]. There exist three main steps in the
SINDy1 - data collection, identification of model term library,
and solving a sparse regression problem. By solving the
sparse regression problem, the SINDy provides parsimonious
models that balance accuracy with model complexity [13].

However, the SINDy requires adequate data samples, and
the identified model accuracy is sensitive to noise in data.
In [14], a deep learning-based, signal-noise decomposition
approach is proposed to separate the noise from noisy
measurements using time-stepping constraints. The idea from
[14] was employed in [15] to develop the modified SINDy,
which has higher robustness to noisy measurements than the
SINDy. The modified SINDy requires adequate time-series
data, and it also needs to perform an additional estimation
of a vector field. In addition, both the SINDy and modified
SINDy are limited to time-invariant model constructions. In

1For simplicity, we will refer to SINDy algorithm simply as SINDy



[16], a time-varying SINDy framework was developed to
apply the SINDy in a moving time window at each time
instant. However, the SINDy algorithm itself is still time-
invariant.

The Kalman filter and its variants have wide-ranging
applications in state estimation, which modify the predictions
according to real-time output measurements [17], [18]. In this
paper, the SINDy algorithm is first extended to the general-
ized SINDy (GSINDy), which extends the applicable range
of SINDy to general MIMO modelings. Then, the GSINDy
is integrated with the Kalman filter to form the Kalman-
GSINDy algorithm, which recursively identifies the active
digital twin model terms from the SINDy model library.
The parameters corresponding to the active model terms are
then estimated through an iterative correction procedure to
promote sparsity. Consequently, a time-variant digital twin
modeling approach is proposed, resulting in time-varying
sparse digital twin models that describe the system dynamics.

The remainder of this paper is organized as follows. Sec-
tion II extends the SINDy to generalized SINDy (GSINDy)
to solve general MIMO modeling problems. Section III
introduces the Kalman-GSINDy algorithm in detail. One
Lorenz system numerical example and one industrial diesel
hydrotreating (DHT) unit case study are analyzed in Section
IV to demonstrate the advantages of the proposed Kalman-
GSINDy time-variant digital twin modeling approach. Fi-
nally, section V concludes this paper.

II. THE SINDY ADAPTATION TO GENERAL MODELING
PROBLEMS

As mentioned in Section I, the SINDy algorithm is able
to automatically discover the sparse governing equations of
dynamic systems from large data sets. It includes three main
steps, data collection, identification of model term library,
and solving a sparse regression problem [12]. However,
current SINDy is limited to modeling of time-series rela-
tionships, such as ordinary differential equations (ODE) and
partial differential equations (PDE) problems, in which the
number of input variables and output variables is the same.
In this section, the main steps of SINDy are introduced with
modifications to extend it to the GSINDy, which is able to
solve general MIMO modeling problems.

The first main step in the SINDy is data collection, in
which the sensor measurements are collected along time,

X =
[
xt1 xt2 . . . xtm

]T
, (1)

where x ∈ Rn, and m represents the number of measurement
samples along time. When identifying the ODE and PDE
relationships, the derivative of sensor measurement, Ẋ, is
required to be measured or calculated through numerical
methods, such as the central difference,

Ẋ =
[
ẋt1 ẋt2 . . . ẋtm

]T
. (2)

The GSINDy is no longer limited to time-series dynamics
modeling. When identifying the relationship between sensor

measurement, X, and system output, Y, the output measure-
ments are collected as a function of time,

Y =
[
yt1 yt2 . . . ytm

]T
, (3)

where y ∈ Rj .
The second main step is to construct a library that contains

all potential model terms. This library can be highly flexible.
It can be a combination of potential first-principle terms
and data-driven terms. In applications of the SINDy algo-
rithm, various types of SINDy libraries have been developed,
including polynomial, Fourier, trigonometric libraries, etc.
In addition, these libraries can be combined together to
form a new library. A sample combined polynomial and
trigonometric library is

Θ(X) =
[
1 X XP2 . . . sin(X) cos(X) . . .

]
,
(4)

where XPi represents all possible combinations in an ith-
order polynomial. For example,

XP2 =


x21,t1 x1,t1x2,t1 . . . x22,t1 . . . x2nx,t1

x21,t2 x1,t2x2,t2 . . . x22,t2 . . . x2nx,t2
...

...
. . .

...
. . .

...
x21,tm x1,tmx2,tm . . . x22,tm . . . x2nx,tm

 .
(5)

After constructing the candidate model term library, the
sparse regression problem between the output, Y, and can-
didate model terms, Θ(X), can be solved using the following
equation,

Y = Θ(X)Ξ, (6)

where each column inside Ξ, is ξk, the determining parame-
ters of active terms in kth column of Θ(X). By solving the
sparse regression problem, we force most entries in Ξ to zero
and thus promote the sparsity of identified models. In this
case, the identified process model for one of the objective
outputs can be written as:

yk = Θ(x)ξk, (7)

where ξk is the model parameter vector for the kth objective
output, yk, and Θ(x) is a row vector containing symbolic
functions of x, which is different from Θ(X), referring to a
data matrix [12].

Fig. 2 illustrates a sample GSINDy result for a MIMO
modeling problem. In this example, two output functions are
aimed to be identified, and then a third-order polynomial
library about the input, x, is constructed, where x =[
x1 x2 x3

]
. After solving the sparse regression problem,

the identified active model terms in Ξ are marked using
the blue and yellow dots for y1 and y2, respectively. The
result shows that two active model terms are selected from
the library, Θ(x), for y1, and three active model terms are
selected for y2, respectively.

Several approaches can be used to solve the sparse re-
gression problem. One of the famous methods is the least
absolute shrinkage and selection operator (LASSO), which
adds penalization terms to the optimization equation of least



square regression to promote sparsity. However, LASSO will
produce parameters with small magnitudes, but not exactly
zero magnitude, and hence it does not guarantee to result in
sparse models. The sequential least squares (SLS) algorithm
promotes model sparsity through an iterative procedure. In
the SLS, a parameter magnitude threshold, λ, is set, and then
the resulting parameters whose absolute values are smaller
than λ are forced to be equal to zero. Afterward, another
regression and thresholding procedure is performed on the
nonzero terms. The procedure is repeated until convergence
[19].

Fig. 2. Graphical illustration of the GSINDy result for a MIMO
modeling problem.

III. THE KALMAN-GSINDY ALGORITHM

In Section II, we developed the GSINDy algorithm that is
applicable to general MIMO modeling problems. In this sec-
tion, the Kalman filter algorithm is first introduced, and then
it is integrated with the GSINDy algorithm to recursively
select the active model terms and estimate the corresponding
model parameters. The Kalman filter and GSINDy integrated
algorithm is referred as the Kalman-GSINDy.

A. The Kalman Filter Algorithm

Consider a linear system:

xt = Ftxt−1 + wt−1, (8)

yt = Htxt + vt, (9)

where Ft and Ht represent the linear state and output models,
respectively; xt is the state, and yt denotes the output
measurement. Process and measurement noises are denoted
as wt and vt, which are assumed to be zero-mean, uncorre-
lated, Gaussian white noise. Their corresponding covariance
matrices are Q and R, respectively.

Accordingly, the Kalman filter algorithm can be
summarized as follows [20].

Prediction:

x̂−t = Ftx̂t−1, (10)

P−
t = Ft−1Pt−1F

T
t−1 +Q, (11)

where x̂t−1 and x̂−t are the posterior and prior estimates
of the state, and Pt−1 and P−

t represent the posterior and
prior estimation error covariance matrices.

Correction:

In the correction step, the Kalman gain is computed
as:

Kt = P−
t H

T
t (HtP

−
t H

T
t +R)−1. (12)

Then, the posterior state estimate, x̂t, is obtained as:

x̂t = x̂−t +Kt(yt − ŷt), (13)

where yt represents the actual measurement, and ŷt denotes
the model predicted output value, which can be calculated
through:

ŷt = Htx̂
−
t , (14)

Then, the posterior estimation error covariance is

Pt = (I −KtHt)P
−
t . (15)

B. The Kalman-GSINDy Algorithm

When integrating the Kalman filter and the GSINDy
algorithm, the model parameters, Ξ, are considered as states
to estimate using the Kalman filter. Inspired by library
construction step in the SINDy, in the Kalman-GSINDy, the
inputs to the Kalman filter are the values of library terms in
Θ(X) at each time instant.

Similar to the Kalman filter, the Kalman-GSINDy can be
divided into prediction and correction steps. The prediction
in the Kalman-GSINDy is

Ξ̂−
t = FtΞ̂t−1, (16)

where Ξ̂t−1 and Ξ̂−
t are the posterior and prior estimates

of the parameters corresponding to library model terms,
respectively. In the Kalman-GSINDy, the states, which rep-
resent digital twin model parameters, are not updated in the
prediction step, and hence Ft = I . Then, the estimation error
covariance is predicted as:

P−
t = Ft−1Pt−1F

T
t−1 +Q, (17)

Even though the state model, Ft, is time-invariant in
the Kalman-GSINDy, the output model, Ht, is time-variant,
and it equals the library term values at each time instant.
Therefore, at time instant t, Ht equals tth row of Θ(X) and
can be denoted as Θ(xt). Consequently, according to (14),
at each time instant, the output prediction is

ŷt = Θ(xt)Ξ̂
−
t . (18)

In the correction steps of the Kalman-GSINDy, the
Kalman gain matrix is calculated as:

Kt = P−
t Θ(xt)

T (Θ(xt)P
−
t Θ(xt)

T +R)−1. (19)

Different from the SLS algorithm, which iteratively resolves
the regression problem, during each iteration, the Kalman-
GSINDy keeps modifying the model parameters using the



innovation sequence. In the Kalman filter, the innovation
sequence represents the difference between the real output
measurements and the model predictions. After each mod-
ification, the states (digital twin model parameters) whose
absolute values are smaller than λ are forced to be equal to
zero, and the nonzero terms are used to provide predictions
so as to promote sparsity. As a consequence, the model pa-
rameter estimates are modified q times during the correction,

for k = 1 : q,∣∣∣Ξ̂−
t

∣∣∣ < λ = 0,

ŷt = Θ(xt)Ξ̂
−
t ,

Ξ̂t = Ξ̂−
t +Kt(yt − ŷt),

Ξ̂−
t = Ξ̂t,

(20)

where q is the number of iterations that will enable the
estimated model parameters to converge. Usually, the model
parameters will converge after 10 iterations. Consequently, q
value between 10 and 15 are generally appropriate choices.
The λ is magnitude threshold of the model parameters.
Selection of λ value will affect performance of the Kalman-
GSINDy algorithm. When λ is too large, Kalman-SINDy
might miss the necessary model terms and deteriorate pre-
diction accuracy. Small λ values will generally not decrease
the prediction accuracy in the Kalman-GSINDy, as it is a
recursive algorithm, but will increase the computational cost.
Consequently, the value of λ can be increased gradually
during tuning process to promote sparsity while preserving
prediction accuracy. After each iteration, the new output
prediction, ŷt, is calculated through (18). Afterward, the
Ξ̂−

t is corrected using the Kalman gain and the innovation
sequence, resulting in posterior model parameter estimates
of each iteration, Ξ̂t. Then, the prior state estimate, Ξ̂−

t , is
replaced with the posterior state estimate, Ξ̂t, to provide the
new output prediction. The output prediction from the last
run of iteration is used as the prediction at the current time
instant.

After the iterative state corrections, the estimation error
covariance is corrected,

Pt = (I −KtXt)P
−
t . (21)

Fig. 3 shows an overall illustration of the Kalman-GSINDy
procedure. The first step in the Kalman-GSINDy is to
identify the objective system of the digital twin construction.
Then, necessary input, output variables are identified. After
identifying the input variables, a model term library can be
constructed based on prior knowledge about the process. If
no prior knowledge about the objective system is available,
usually, a polynomial library is constructed. Since no training
data set is required for the Kalman-GSINDy, the initial
estimates for model parameters can be set to close to zero
for all the parameters. When a new sample is received, the
Kalman-GSINDy will start modifying the model parameters
and active term selection through an iterative procedure. The
final identified active model terms after iterative correction
might be different from the initially identified ones. Then, the

Kalman-GSINDy prediction is given using the final identified
active model terms and the corresponding parameters.

IV. CASE STUDY

In this section, one numerical Lorenz system example as
well as one industrial DHT unit case study are analyzed to
demonstrate the advantages of applying the Kalman-GSINDy
to construct digital twin models.

A. The Lorenz System
The Lorenz system is a three-dimensional ODE describing

chaotic dynamics that oscillate alternately around the two
weakly unstable fixed points [21], [22]. The Lorenz system
is formulated as [12]:

ẋ = σ(y − x),
ẏ = x(ρ− z)− y,
ż = xy − βz,

(22)

where σ = 10, β = 8/3, and ρ = 28. The initial condition
of the Lorenz system can be randomly selected. In this
example, the ODE system is solved through the Matlab
function, ode45, which utilizes the Runge-Kutta method,
with time step, t = 0.01, and time span, T = 100. After
generating time-series data of the states, x, y, z, as well as
their corresponding derivatives, using the true Lorenz system
equations, random noises, whose magnitudes are scaled to
10% standard deviation of the states are added to both the
states and their derivatives.

Afterward, the SINDy is applied to identify the system
equations from the whole noisy data set. A second-order
polynomial library is constructed. The parameter magnitude
threshold, λ, is set to 0.03. The SINDy identified active
model terms and their corresponding parameters, with the
initial condition of x0 =

[
−8 8 27

]
, are given in Table

I. The zero parameter values represent inactive model terms,
and the bolded values are the reference parameter values. It
can be concluded from Table I that even though the whole
data set is available to SINDy with a noise level of 10%, the
SINDy-identified model deviated significantly from the true
one.

TABLE I
SAMPLE SINDY ESTIMATED ACTIVE MODEL TERMS AND THE

CORRESPONDING PARAMETERS WITH REFERENCES.

Objective Outputs
Library Terms ẋ ẏ ż

1 0.46 0 -0.48 0 -2.57 0
x -2.51 −10 21.88 28 -0.06 0
y 5.33 10 2.50 −1 0.06 0
z 0 0 0 0 -2.51 −8

3
x2 0 0 0 0 0 0
xy 0 0 0 0 0.91 1
xz -0.20 0 -0.83 −1 0 0
y2 0 0 0 0 0.05 0
yz 0.11 0 -0.09 0 0 0
z2 0 0 0 0 0 0

In this example, since the Lorenz system is an ODE
system, Kalman-GSINDy is equivalent to Kalman-SINDy.



Fig. 3. Graphical illustration about the Kalman-GSINDy steps.

The Kalman-SINDy is applied using the same λ value and
the initial parameter estimates are set close to zero with
Q and R properly chosen. It is notable that the Kalman-
SINDy does not require a data set in advance. It recursively
adjusts the selection of active digital twin model terms and
the parameter estimates according to the process dynamics.

Monte Carlo performance evaluation is performed using
10,000 simulation runs with data over 10,000 sampling
intervals to compare performance between the SINDy and
the Kalman-SINDy. For each Monte Carlo simulation run,
the added white noise is randomly generated and then scaled.
In addition, the initial conditions of the Lorenz system are
three randomly generated integers between

[
−10, 10

]
for

each simulation run. The average squared estimation error
at each time step over the 10,000 simulation runs from both
approaches are plotted in Fig. 4. During the transient time
period, randomly initialized model parameters lead to larger
estimation errors for the Kalman-SINDy. As the active term
selection and the estimated parameters get adjusted over
time, the Kalman-SINDy effectively provides objective out-
put predictions with lower estimation error than the SINDy
for both ẋ and ẏ proving high estimation accuracy and
robustness to data noise. Both the SINDy and the Kalman-
SINDy have low estimation error for ż, however, the SINDy
requires significantly more data than the Kalman-SINDy.

B. MIMO Digital Twin Model Construction for a DHT Unit

In the petroleum industry, the DHT unit is used to remove
impurities, such as sulfur and nitrogen, from diesel feed so as
to satisfy the increasing market and environmental demand
for clean fuels. After going through the DHT unit, the heavy
oil feed streams are cracked in the presence of catalysts and
hydrogen, yielding distillate output and the corresponding
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Fig. 4. Average squared estimation error at each time instant
over 10,000 Monte Carlo simulation runs from the SINDy and the
Kalman-SINDy for the Lorenz system.

by-products. Our objective is to construct a MIMO digital
twin model to predict the distillate and by-product yields
from related process variables. Overall, 21 process variables
are identified as inputs, such as input stream concentration,
input flowrates, etc., and 6 output variables are desired to be
predicted. Consequently, the GSINDy instead of SINDy is
required to construct the MIMO digital twin model.

In this case study, a combined first-order polynomial and
trigonometric model library is constructed for model term
selection,

Θ(X) =
[
1 X cos(X)

]
, (23)



where X =
[
xt1 xt2 . . . xtm

]T
, and x =[

x1 x2 . . . x21
]
. Daily data over a nine-year period

are used for analysis, and all the data are normalized for
proprietary reasons. Since no noise will be manually added
in this example, the prediction performance of the GSINDy
is tested on the test data set, which is made up of 30% of the
total samples, and the rest of the data are used for training.
The Kalman-GSINDy does not require a training data set,
and hence it is directly applied to the same test data set,
with Q and R appropriately chosen, λ = 0.08, and the initial
parameters set close to zero.

Table II summarizes the test performance for the GSINDy
and Kalman-GSINDy using the same λ value in terms of the
mean squared error (MSE). It can be concluded from Table
II that the Kalman-GSINDy is able to provide more accurate
output predictions than the GSINDy identified, time-invariant
MIMO model. In addition, the Kalman-GSINDy does not
require a training data set as the GSINDy does. As a result,
even under small data sets, the Kalman-GSINDy will provide
better performance.

TABLE II
MSE FROM THE GSINDY AND KALMAN-GSINDY FOR DHT UNIT

OBJECTIVE OUTPUTS PREDICTION.

Objective Outputs (Vin/Vout,%) GSINDy Kalman-GSINDy
Diesel Yield 0.1190 0.0191

Gasoline Yield 0.2110 0.0200
Butane Yield 0.1565 0.0244
Propane Yield 0.0822 0.0276
Ethane Yield 0.1385 0.0287

Methane Yield 0.1725 0.0195

V. CONCLUSIONS

In this paper, a time-variant Kalman-GSINDy digital twin
modeling approach is proposed to automatically construct
time-variant digital twin models from process data. The
GSINDy is a generalization of SINDy, making it applicable
to general MIMO problems. The Kalman-GSINDy takes
advantage of both the GSINDy and the Kalman filter for
online adaptation of the model terms and the respective
parameters so as to improve the prediction accuracy. In
addition to the prediction accuracy improvement, compared
to the GSINDy, the Kalman-GSINDy does not require a
large amount of process data, as it adjusts its estimates over
time as samples accumulate. However, in general, adequate
samples are required to build acceptable SINDy or GSINDy
models, and the model accuracy is sensitive to noise in the
data. The numerical Lorenz system example and the DHT
unit industrial case study demonstrate the advantages of the
Kalman-GSINDy. The proposed algorithm can be applied to
a wide range of industrial processes to automatically identify
their digital twin models and adapt them with time.
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