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Abstract—Accurate capacity estimation is critical to ensure
the safe and reliable usage of lithium-ion batteries, and data-
driven methods are a promising technique for this task. How-
ever, the existing studies require the whole charging curve for
feature extraction and usage of sophisticated machine learning
methods, which are not suitable for online applications. This
paper proposes a simple machine learning technique, partial least
squares regression, for online battery capacity estimation based
on the partial incremental capacity curve. The features can be
easily obtained by interpolation of the measured charging profile
without data smoothing, leading to a low computational cost. The
proposed method is realized and tested on three battery datasets
(#5, #7, #18) provided by NASA. Experimental results show that
the model trained on 80% of the data samples of cell #5 can
achieve a 0.01053Ah root mean squared error for the remaining
20% data of cell #5. The model is further verified on the other
two battery datasets without changing model weights, and the test
root mean squared error is 0.02046Ah for cell #7 and 0.02700Ah
for cell #18, indicating the generality of the proposed capacity
estimation method.

Index Terms—Ilithium-ion batteries, capacity estimation, par-
tial least squares regression, incremental capacity curve

I. INTRODUCTION

Nowadays, lithium-ion batteries have been the dominant
power sources for electric vehicles, portable electronic devices
and other applications because of their high energy and power
density [1]. However, battery degradation over time poses a
significant challenge in the use of lithium-ion batteries, which
leads to degraded performance and potentially higher operating
costs [2]. State of Health (SOH) is an indicator of the internal
performance of the battery, and it is usually expressed by
capacity. Typically, the battery capacity is calculated by in-
tegrating the discharging current from a complete discharging
process of a fully charged battery, but the complete discharging
process is usually unavailable due to the uncertainties in
environmental and operational conditions [3]. For the safe
and reliable usage of lithium-ion batteries, it is critical to
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accurately estimate the capacity through the partial charging
curve in real-time.

Many research efforts have been conducted to do capacity
estimation from the voltage and current measurements in the
last decades. These capacity estimation methods are based on
the relationship between the electricity charged or discharged
from the battery and the voltage difference before and after
the corresponding process [4], and they can be divided into
two main categories, namely model-based methods and data-
driven methods. The equivalent circuit model (ECM) [5] is a
common model used in the model-based capacity estimation
methods, which simulates the behaviour of a battery with a
combination of simple electronic components such as resistors
and capacitors. After establishing the battery state-space equa-
tions by utilizing ECM, some recursive adaptive filters such
as the extended Kalman filter (EKF) [6] [7] and particle filter
(PF) [8] have been adopted to identify model parameters and
update battery capacity. For example, Plett et al. [6] proposed
a dual EKF method to simultaneously estimate the State of
Charge (SOC) and capacity of the battery. The experimental
results show that capacity estimation has converged to the
correct value and exhibits little variation over time. Although
the model-based capacity estimation methods can achieve high
accuracy, but they are computationally intensive and are not
suitable for online applications.

In recent years, data-driven methods have become popular in
the research field of batteries and they can reflect the intrinsic
correlation between the measurements and the battery SOH
without expert knowledge on aging mechanisms. A wealth
of machine learning approaches have been used for capacity
estimation including Gaussian process regression (GPR) [9]
[10], relevance vector machine (RVM) [11], deep neural net-
works (DNNs) [12], random forest regression (RFR) [13], etc.
To estimate battery capacity accurately, it is critical to extract
representative features as input for the data-driven methods.



Zhang et al. [9] introduced a capacity estimation method by
combining the electrochemical impedance spectroscopy (EIS)
spectrum with GPR. However, the real-time acquisition of the
EIS spectrum is still a challenge in a real-life usage scenario of
EVs. Ref. [10]-[12] use the features extracted from the charg-
ing process to estimate the capacity and achieve high accuracy.
One limitation of these methods is that they require the use
of a whole charging curve to obtain health features, which
is not guaranteed during the vehicle operation. Yi et al. [13]
proposed an RFR with 500 regression trees for battery capacity
estimation based on the features extracted from the partial
constant current (CC) charging curve. However, the proposed
RFR itself is a complex algorithm and suffers from intensive
computation, which is not suitable for online use. Moreover,
the complex structure of RFR makes the need for more data
to train the model to reduce overfitting and collecting a large
amount of data is time-consuming in practice. Therefore, it
is necessary to develop a simple regression model for online
capacity estimation.

This paper proposes a simple machine learning technique,
partial least squares regression (PLSR), for online capacity es-
timation based on the partial incremental capacity (IC) curve.
The remainder of the paper is organized as follows. Section
IT gives out the cycling dataset of the study, and Section III
introduces the proposed methodology. The estimation results
and discussion are reported in Section IV and finally, some
conclusions are drawn in Section V.

II. CYCLING DATASET

To evaluate the performance of the proposed battery capac-
ity estimation method, a cycling dataset of three commercial
18650-size lithium-ion battery cells with the same type (#5,
#7, #18) from the Prognostics Center of Excellence(PCoE) at
Ames Research Center, NASA [14] is used in this work. These
batteries were run through 3 different operational profiles
(charging, discharging and impedance) at room temperature
of 24 °C. The charging process was performed in a CC mode
at 1.5A until the battery voltage reached 4.2V, followed by a
constant voltage (CV) charging step at 4.2V until the current
dropped to 20mA. The discharging process was carried out
in a CC mode at 2A until the battery voltage fell to 2.7V,
2.2V and 2.5V for cells #5, #7 and #18, respectively, and
battery capacity was obtained by integration of the discharge
current starting from a completely charged battery to the
battery voltage dropped to 2.7V. Impedance measurement was
conducted through an EIS frequency sweep from 0.1Hz to
5kHz, which can provide insight into the battery’s internal pa-
rameters. The repetitive cycles of the charging and discharging
process resulted in accelerated degradation of the batteries, and
the experiment was stopped when the battery capacity reached
end-of-life (EOL) criteria, which was a 30% fade in nominal
capacity (from 2Ah to 1.4Ah).

Fig. 1 shows the change of battery capacity with cycle
number for experimental cells. It is clear that as the number
of cycles increases, the battery capacity shows an overall
decreasing trend, suggesting that the repeated charging and

discharging process leads to irreversible physical and chemical
changes within the battery. It can also be noticed that the three
batteries exhibit different degradation characteristics, with cell
#18 showing the fastest capacity fade rate and cell #7 showing
the slowest capacity fade rate, indicating that different cut-off
voltages have a significant effect on battery degradation. More-
over, the curves in the figure also demonstrate that different
cells have different values of capacity for the same number
of cycles, which means that it is not practical to estimate
capacity directly using the cycle number. Thus, it is necessary
to use other cycling information, such as measurements from
the charging process, for battery capacity estimation.
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Fig. 1. Capacity change of three experimental batteries.

II1. METHODOLOGY
A. Partial incremental capacity curve

Incremental capacity (IC) is the differentiation of the change
in battery capacity over the change in terminal voltage, and IC
analysis is a powerful tool to study the degradation mechanism
of lithium-ion batteries. Each peak of the IC curves indicates
a specific electrochemical process within the cell, thus many
previous studies have used the peak position [15] and peak
intensity [16] of IC curves as features to estimate battery
capacity and achieved high accuracy. However, one drawback
of IC analysis is that it is very sensitive to data noise, and
the measurement noise of the battery system often makes
the peaks of the IC curve not easily identified. Typically,
proper data smoothing methods, such as the Gaussian filter,
have to be employed to obtain a smooth IC curve, but it is
hard to implement for online applications due to the limited
computational capability of the present battery management
system (BMS). In this paper, we propose to estimate the
battery capacity directly using the IC values for a specific
voltage region, with no need for data smoothing.

In reality, BMS samples current and voltage at equal time
intervals, which does not guarantee the same sampling points
for a specific voltage region over all cycles. In order to have
fixed length input features for the model, an interpolation-
based IC curve acquisition algorithm is proposed in this paper.



More specifically, considering the CC charging profile shown
in Fig. 2, it can be expressed as D™ = {(¢t/*, I, V/™),i =
1,2,--+,n™}, where I'™ and V™ are the measured current
and voltage at the sampling time point ¢, and n™ is the total
number of sampling points. For a specific voltage region from
Vi to Vp,, it can be discretized with AV interval to get the
desired V = {V,V, + AV,--- , V},} ={V;,i = 1,2,--- ,k},
where the number of discrete points k can be calculated by
k = (V,—V;)/AV +1. Then the time ¢; to have the desired V;
in V' can be obtained by interpolating the two nearest voltage
measurements V;™ and V', in D™, as shown in the following
equation:
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Similarly, I; can be calculated by the following equation:
Vi—V"
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After we get the desired Z = {I;,i = 1,2,--- ,k} and T =
{ti,i=1,2,---  k}, IC at V; can be approximated by
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Fig. 3 shows the IC curves for cycle 1 and cycle 100 of cell #5
when AV is 0.002V. As shown in the figure, we can notice that
the IC values at cycle 1 are generally higher than those at cycle
100, the curves show a significant difference in the voltage
range from 3.8V to 4.0V. Therefore, the specific voltage range
selected in this work is 3.8V-4.0V.
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Fig. 2. Constant current charging profile for cycle 1 of cell #5.

B. Fartial least squares regression

PLSR [17] is a generalization of the ordinary multiple linear
regression (MLR), and it is very effective when the number
of samples is smaller than the number of variables or when
there is severe collinearity in the variables. In this section, I
will give a brief introduction to PLSR.

= Cycle 1
Cycle 100

w
!

IS
L

w
!

‘m

N
!

Incremental Capacity (Ah/V)
-

3.8 3.9 4.1

Voltage (V)

3.4 3.5 3.6 3.7 4.0 4.2

Fig. 3. Incremental capacity curves of cell #5.

To facilitate understanding of PLSR, let’s start with MLR.
Considering a regression problem with the features matrix
X = {zy,i = 1,2,---,n,j = 1,2,--- ,p} and the target
y={yi,i =1,2,--- ,n}, where n is the number of samples
and p is the number of features, MLR establishes a linear
relationship between them by

y=Xb+e (5)

where b is the regression coefficient to be solved and e is
the residual. We can solve b by least squares method and the
solution is

b= (X'X)"'X"y (6)

When the data samples satisfy the Gauss—Markov theorem, (6)
is effective to obtain an unbiased least squares estimation of
b. However, small samples and colinearity often make it hard
to obtain valid estimation of b. PLSR addresses this problem
by projecting X and y into a low-dimensional space and then
performing regression. The implementation details of PLSR
are illustrated as follows.

PLSR starts with finding the first component c¢; of X with

¢1 = Xw;. By maximizing Cov(cy,y), we can solve the
optimization problem to get
XTy XXTy
wy = yor = Xwy = o (7N
[ XTyl| [ XTyl|

Then the regressions of X and y on c¢; are performed
separately:

X = clplT + X4 8)
y=cri+un
where the coefficients are
XTt,
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In addition, X and y are the residuals. By replacing X and
y with X7 and y; and repeating the above process, we can



obtain the other components c; and the corresponding weights
w;, p; and r;, where ¢ = 2,--- ,m and m is the number of
components.

Considering that

T
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(10)
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then we can have ¢; = Xw; and
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(12)

i=1
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where b = ) wjr; is the coefficient of PLSR.
i=1

IV. RESULTS AND DISCUSSIONS
A. Metrics

To evaluate the predictive performance of the proposed
model, coefficient of determination (R?) and root mean square
error (RMSE) are used in this work, and they are given by

Z(Ql - Qz)Q
R2=1- jvl - (13)
2(621- - Q)?
N
RMSE = | + Z —Qi)? (14)

where @; is the observed capacity, Qz is the predicted capacity
from the model, Q is the mean of the observed data and NN is
the total number of samples. For a model, R? close to 1 and
RMSE close to 0 indicate a good match between measured
and predicted data.

B. Performance of the proposed model

In this work, the effectiveness of the proposed PLSR model
is bench-marked with the other three commonly used machine
learning models, including MLR, support vector regression
(SVR) and random forest regression (RFR). MLR finds a
linear relationship between the inputs and output. SVR is a
special case of support vector machine in regression, which
was designed to find the optimal decision boundary. RFR
generates hundreds of independent decision trees and then
averages the results of all decision trees to get the output.
The input features of these models are the 100 IC values over
a voltage range of 3.8V to 4.0V for any cycle, and the output
is the corresponding capacity for that cycle. All models are

trained on a randomly selected 80% of the cycling data of
cell #5 and then are tested on the remaining 20% of the data.
Moreover, to verify the generality of the proposed models, the
models trained by data of cell #5 are also tested on data from
cell #7 and cell #18 without changing model weights.
TABLE I compares the performance of different models.
We can notice that MLR and SVR show poor prediction
accuracy for all 3 test cases. One possible reason for the
poor performance is that we have 100 features but only 98
training samples, and the number of features exceeds the
number of samples making the model severely overfitted. For
RFR, bootstrap aggregating and randomly selected features
make it less prone to overfitting and thus it shows higher
accuracy on the data samples from cell #5 and cell #7. In
an attempt to deal with the overfitting problem caused by too
many features for MLR and SVR, the correlation analysis is
applied to do the feature selection. Fig. 4 demonstrates the
Pearson correlation coefficient between capacity and features
obtained by using the training data, where the variable O is
the capacity. By selecting the 10 most relevant features to the
capacity as new inputs, we can retrain MLR and SVR, and
then evaluate their performance on the test dataset. We denote
the new models MLR-FS and SVR-FS. From TABLE 1, it is
clear that the accuracy of MLR-FS is significantly improved
compared to MLR for all 3 test cases, and SVR-FS also shows
some improvement for the data samples of cell #5 and cell #7.
However, we also notice that SVR-FS has a slight decrease
in accuracy for the data samples of cell #18, because some
information is lost in the simple feature selection.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT MODELS

Model Cell #5 Cell #7 Cell #18
R? RMSE R? RMSE RZ RMSE
MLR 0.7011 | 0.08336 | 0.6571 | 0.09384 | 0.1841 | 0.11893
MLR-FS | 0.9878 | 0.01682 | 0.9268 | 0.04334 | 0.6093 | 0.08230
SVR 0.8080 | 0.06681 | 0.7518 | 0.07984 | 0.6898 | 0.07334
SVR-FS | 0.8522 | 0.05861 | 0.7854 | 0.07423 | 0.4691 | 0.09594
RFR 0.9894 | 0.01572 | 0.9535 | 0.03456 | 0.4448 | 0.09811
PLSR 0.9952 | 0.01053 | 0.9837 | 0.02046 | 0.9580 | 0.02700

We also report the prediction performance of PLSR with
4 components. As shown in TABLE I, PLSR demonstrates
the best accuracy in all 3 test cases. The test error for cell
#5 achieves an RMSE of 0.01053Ah, which reaches the
accuracy of 0.010222Ah RMSE obtained using the whole
CC-CV charging curve in Ref. [11]. Ref. [11] also reports an
estimated error of 0.041133Ah RMSE for cell #18, which
is worse than our performance, confirming the generality of
our proposed model. The effectiveness of PLSR is expected,
because Fig. 4 implies a severe colinearity between features,
and PLSR is particularly suited for this case as it can project
the original variables to latent structures. For the proposed
PLSR, the predicted capacity versus observed capacity is
illustrated in Fig. 5 for visualization purposes. Fig. 6 further
demonstrates the distribution of prediction errors. As shown in
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Fig. 4. The result of correlation analysis between capacity and IC values.

Fig. 6(a), the prediction errors for data samples of cell #5 are
all within 0.02Ah, which corresponds to 1% of the relative
error to the nominal capacity. For data samples of cell #7,
Fig. 6(b) shows that the errors are mostly concentrated within
0.03Ah (1.5%), with only a few samples reaching 0.06Ah
(3%). From Fig. 6(c), it is clear that the prediction errors for
data samples of cell #18 are significantly larger than the other
two, with one sample reaching 0.15Ah (7.5%), but most of
the samples are still in the range of 0.025Ah (1.25%).
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Fig. 5. Test results of predicted capacity versus observed capacity by PLSR.

C. Influence of the Number of Components of PLSR

To investigate the influence of the different number of
components of PLSR on the prediction performance, TABLE
IT lists the accuracy of PLSR with the number of components
from 1 to 10. It can be seen that as the number of components
increases, the accuracy first demonstrates an upward trend,
followed by a downward trend. It makes sense as too few
components can cause a large amount of information to be
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Fig. 6. Distribution of prediction errors. (a) For data samples of cell #5; (b)
For data samples of cell #7; (c) For data samples of cell #18.

lost and thus reduce the model performance, while too many
components can make the model more prone to overfitting.
In our case, 4 components would result in the best prediction
performance for data samples of cell #5 and cell #7, while
6 components would lead to the best prediction accuracy for
data samples of cell #18.

TABLE I
PERFORMANCE COMPARISON WITH DIFFERENT NUMBER OF COMPONENTS

Number of Cell #5 Cell #7 Cell #18

components R? RMSE R? RMSE R? RMSE
1 0.9932 | 0.01261 0.9677 | 0.02878 | 0.7262 | 0.06890
2 0.9935 | 0.01233 | 0.9655 | 0.02977 | 0.8565 0.04987
3 0.9944 | 0.01140 | 0.9792 | 0.02311 | 0.9488 | 0.02980
4 0.9952 | 0.01053 | 0.9837 | 0.02046 | 0.9580 | 0.02700
5 0.9941 0.01171 0.9835 | 0.02057 | 0.9576 | 0.02710
6 0.9924 | 0.01327 | 0.9827 | 0.02107 | 0.9588 | 0.02672
7 0.9907 | 0.01467 | 0.9820 | 0.02149 | 0.9580 | 0.02699
8 0.9898 | 0.01544 | 0.9815 | 0.02179 | 0.9545 0.02809
9 0.9886 | 0.01629 | 0.9805 | 0.02240 | 0.9514 | 0.02903
10 0.9878 | 0.01687 | 0.9794 | 0.02302 | 0.9487 | 0.02981




V. CONCLUSIONS

In this paper, a PLSR is proposed to estimate battery capac-
ity based on the partial IC curve. Specifically, an interpolation-
based IC curve acquisition algorithm is first proposed to
approximate the IC value at desired voltage point from the
measured charging profile in the voltage range from 3.8-4.0V,
then a PLSR model is trained to learn the dependency of
the battery capacity on the IC values. Three battery datasets
(#5, #7, #18) from NASA are used to train and test the
proposed model. Experimental results show that the PLSR
model with 4 components trained on 80% data samples of
cell #5 can achieve a 0.9952 R? and a 0.01053Ah RMSE
for the remaining 20% data samples. Moreover, the trained
model obtains a 0.9837 R? and a 0.02046Ah RM SE for data
samples of cell #7 and a 0.9580 R? and a 0.02700Ah RM SE
for data samples of cell #18 without changing the model
weights. The success of this work promotes the development
of online battery estimation using data-driven methods.
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