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Abstract: Soft sensor has been playing an indispensable role in the process monitoring of key process variables. How to
know if deployed soft sensor models are still performing well is a challenging but crucial topic for the industry. If there
exists change points in soft sensor predictions, it indicates abrupt and significant changes in the process conditions. The
presence of change points may require us to rebuild the model to ensure that it does not drift. Root cause analysis plays an
important role in process monitoring when a change point occurs. Fast and accurate change point attribution is essential
for timely recovery of model performance. This work proposes a straightforward way to detect the change points and
find the root causes of changes. Off-line change point detection is used to detect changes by formulating change point
detection as a discrete optimization problem. Then, we work on understanding which feature or combination of features
that are shifting soft sensor predictions. Shapley additive explanations (SHAP) is adopted to explain the predictions of
soft sensor model. It connects optimal contribution distribution with local explanations using the classic Shapley values.
Finally, the effectiveness of proposed algorithms is validated on a real industrial data.

Keywords: Change point detection, Root causal analysis, Soft senor, Shapley additive explanations

1. INTRODUCTION

The real industrial process often has different tempo-
rary working conditions, where the change points occur
irregularly. Therefore, it is challenging for engineers to
quickly and accurately locate change points, and find the
root cause of changes [1]. Change point detection can
be regarded as dividing the time series into multiple seg-
ments with different piece-wise stationary distributions
[2]. Due to the lack of well-labeled samples and complex
process conditions, machine learning is more promis-
ing on rapid localization and discovery of change points
than relying on human experts. Change point detection
has received extensive attention from researchers and has
driven the development of fields such as finance [3], biol-
ogy [4], and signal processing [5], etc.

How do we know there exists change point in the de-
ployed soft sensor model? One obvious and simple way
is to calculate the residuals between the soft sensor pre-
dictions and the lab results (after aligning their times-
tamps, whether it’s the squared error, absolute error or
some other metric). Residual detection [7] directly de-
pends on the accuracy of the model, but the inaccuracy
of the model is inevitable, because it is very likely to en-
counter process conditions that were not present during
the model training. This makes it difficult for us to distin-
guish the change points from the residuals. Even though
the residual is correctly calculated, this does not provide
much information about detecting change points. For ex-
ample, how bad should the residuals be before we con-
sider it as a change point? It is not easy to set a threshold
for residuals to ensure excellent performance under vari-
ous working conditions.

To identify change points with very little assumptions
on the underlying distribution of data, we can formulate
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change point detection problem as a discrete optimiza-
tion problem [2, 6]. The algorithm is described by three
elements: a cost function, a search method and a con-
straint on the number of changes. The detailed discussion
is given in section 2 .

After detecting change points, it is important to auto-
matically locate the causes of those change points. Soft
sensors have great potential for providing accurate pre-
dictions while poor performance in explaining their pre-
dictions [8]. In some cases, we do not care why a decision
was made, it is enough to know that the predictive perfor-
mance on a test dataset was good. However, in industrial
process monitoring, knowing the ‘why’ is very important.
With the stringent requirements for product quality and
cost, the complexity and automation degree of the indus-
trial process are continuously growing. As the scale of
plants grows, it is urgent to enhance the safety, reliabil-
ity, and robustness of the process. Any change points
may lead to disastrous consequences. Therefore, it is not
enough to detect the change point, the model must also
explain the reason why change point occurs. The current
root cause analysis is mainly done with engineers’ exper-
tise, which is not feasible in complex processes.

Multivariate statistical process monitoring (MSPM)
models, such as principal component analysis (PCA) [9],
partial least squares (PLS) [10], independent component
analysis (ICA) [11], are efficient in complex processes
fault diagnosis and have received widespread attention
from scholars. MSPM generally assumes that the normal
process data X obeys a statistical distribution p(X) in
a steady state, and uses normal operating condition data
to estimate p(X). The corresponding threshold is then
determined based on hypothesis testing at a given signif-
icance level α. Within MSPM framework, the contribu-
tion of each feature to the statistics is calculated to iden-
tify the root causes. MSPM is based on the assumption of



steady state of the process, however, industrial processes
usually are non-stationary, such as catalyst activity reduc-
tion, migration of process conditions, etc.; if the steady
state model is used to explain the process, the credibility
of the results will inevitably be seriously affected.

Considering the characteristics of real industrial pro-
cesses, a new method is needed to interpret the output of
soft sensors with less assumptions about the model and
data. The Shapley value [12, 13] is a method to fairly dis-
tribute contribution of each player in cooperative game
theory, which can be used to explain the prediction of
any machine learning model. In soft sensor modeling, a
player is a individual input or a group of inputs of soft
sensor, a game is the prediction of soft sensor. It provides
not only global explanations but also local explanations.
If the Shapley value attribution is represented as a linear
additive feature model, then it will be Shapley additive
explanations (SHAP) model [14]. As [14] mentioned,
the Shapley value is the only machine learning explana-
tion method that guarantees a fair distribution among the
features.

This work aims to introduce Shapley value into the
analysis of soft sensor change points. The remaining
part of this article is organized as follows. In Sec-
tion 2, detailed explanations of change point detection
is given. Section 3 reviews the Shapley value and the
SHAP method. Section 4 presents a case study on the real
process data to verify the effectiveness of the proposed
method. Section 5 closes the paper with a summary.

2. CHANGE POINT DETECTION
Define signal y = {y1, · · · , yT } and assume y to be

piece-wise stationary, meaning that some characteristics
of the process change abruptly at some unknown instants
t1:K = {t1, t2, · · · tK}, where t1 < t2 < · · · < tK .
Change point detection is to estimate those instants when
y is observed. Define V (τ, y) as the total cost when
choosing possible segmentation τ and it can be given as
follows:

V (τ, y) :=

K∑
k=0

c
(
ytk.tk+1

)
= c

(
{yτ}t11

)
+ c

(
{yτ}t2t1+1

)
+ · · ·+ c

(
{yτ}tk+1

tk+1

)
+ · · ·+ c

(
{yτ}tKtK−1+1

) (1)

where {t1, t2, · · · , tk, · · · } represents the change point
indexes, c

(
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is a cost function for segment
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number of change points.
The segment cost c

(
ytk.tk+1

)
is expected to be low

if the segment is homogeneous (without change points
within the segment) and high if the segment is heteroge-
neous (with change points within the segment). Many
cost functions have been proposed, such as l1 cost, l2
cost, Poisson cost, kernel based cost, etc. In this work,
segment cost function c (ytk) is defined as l2 cost:
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where ȳtk.tk+1
is the mean of segment ytk.tk+1

.
For soft sensors, the number of change points K is un-

known, a regularizer pen(•) on the number of segment
is required to reduce overfitting. The choice of penalty
is strongly associated to the magnitude of the detected
change. A small penalty will result in detection of many
change points, even noise-induced fluctuations. A large
penalty, on the contrary, will lead to only a few impor-
tant change points being detected, or even none. There
are several choices for penalty, such as, linear penalty,
Bayesian Information Criterion(BIC), Akaike Informa-
tion Criterion (AIC), etc. In this work, liner penalty
pen(τ) is chosen and it is defined as follows:

pen(τ) := β |τ | (3)

where β represents the regularization coefficient. The
smaller β, the weaker the penalty. To search the change
points, pruned exact linear time (Pelt) is chosen as search
method with linear penalty. It is fast with O(t) computa-
tional efficiency, which is ideal for large-scale industrial
data. Fig.1 gives an example of change point detection.
Finally, for any yt ∈ τ , the change point detection prob-
lem can be formulated as a discrete optimization prob-
lem:

min
τ

V (τ, y)+pen(τ) :=

K∑
k=0

tk+1∑
t=tk

∥∥yt − ȳtk.tk+1

∥∥2
2
+β |τ |

Fig. 1 An example of change point detection

3. SHAPLEY ADDITIVE
EXPLANATIONS

The goal of our work is to distribute the contribu-
tion of each feature to the prediction. Let wx (S

′) =
|S′|!(M−|S′|−1)!

M ! , then the Shapley value of feature i is
defined as follows:

ϕi (f, x) =
∑

S′⊆M\i

wx (S
′)
[
f
(
S

′
∪ {i}

)
− f (S′)

]
(4)

where f is the black box model, x is the input data-
point, ϕi (•) is the Shapley value of feature i under model
f , M is the number of input features, S′ is a subset
of the features. For wx (S

′), the denominator M ! rep-
resents all possible feature combinations; the numera-
tor |S′|! (M − |S′| − 1)! means the appearance times of



S
′ ∪ {i} in all M ! combinations; f

(
S

′ ∪ {i}
)
− f (S′)

indicates the expected marginal contribution of feature i
in one combination. The Shapley value of a feature i is
the weighted average contributions under all feature com-
binations.

If the Shapley value attribution is represented as a lin-
ear additive feature model, then it will be Shapley addi-
tive explanations model, which is given as follows:

f(z′) = ϕ0 +

M∑
j=1

ϕjz
′
j (5)

where f (•) is the explanation model, ϕ0 is the base
prediction without knowing any input information, M
is the number of input features, and ϕj is the the dis-
tributed contribution for feature j, z′ ∈ {0, 1} is the
subset features vector, 1 indicates that the correspond-
ing feature is present while 0 is absent. From this def-
inition, we can conclude that if all features are present,
f(z′) = ϕ0 +

∑M
j=1 ϕj and if all features are absent,

f(z′) = ϕ0. To prove Eq.5, assume a linear model f̂(x)
with p features:

f̂(x) = β0 + β1x1 + . . .+ βpxp (6)

where βj is the coefficient of feature j. For one feature
j, its contribution on the model prediction f̂(x) can be
calculated as:

ϕj(f̂) = βjxj − E(βjXj) = βjxj − βjE(Xj) (7)

where E(βjXj) is the average estimated effect of feature
j. If all of p features are present, the total contribution of
p features on data point x can be given as follows:

p∑
j=1

ϕj(f̂) =

p∑
j=1

(βjxj − E(βjXj))

= (β0 +

p∑
j=1

βjxj)− (β0 +

p∑
j=1

E(βjXj))

= f̂(x)− E(f̂(X)) = f̂(x)− ϕ0

(8)

Fig.2 shows an example of SHAP analysis, the black
box model has 4 inputs and the model output is 1.34.
Based on the SHAP analysis, feature 1 has the largest
contribution while feature 3 has the smallest contribution.

Fig. 2 An example of SHAP analysis

4. SHAP ANALYSIS FOR SOFT SENSOR
CHANGE POINTS

In this work, we propose an efficient method to detect
the soft sensor change points and find the root causes of
changes. The framework of proposed method is given in
the Fig.3. By converting change point detection problem
to discrete optimization problem, the position of change
points in soft sensor predictions is detected. Then, Shap-
ley additive explanations (SHAP) is adopted to explain
and locate the root causes of the changes with the Shap-
ley value.

Fig. 3 The framework of proposed method

5. CASE STUDY

In this section, a real soft sensor data from Parkland re-
finery in Burnaby, British Columbia,Canada, is used for
case study. Considering the data security issues, the fea-
ture names are anonymized and the data is preprocessed.
The commercial process data is filtered by removing data
that is beyond a certain threshold and the outliers. 3-
σ limits are used to set the upper and lower threshold
limits. Then, data standardization is adapted to rescale
the range so that standardized data X has zero-mean and
unit-variance. Fig.4 shows the data after preprocessing.
The output of the soft sensor is the key performance in-
dicator (KPI), and the inputs are feature 1-9. Fig.5 gives
the correlation between all of the process variables.

5.1. Change point detection

For KPI, it is easy to find that there exists some change
points, which represents abrupt changes in soft sensor
predictions. For change point detection of the KPI, the
penalty β is set as 10, the cost function is chosen as l2
and change point is searched by Pelt method. Fig.6 gives
the change point detection result of KPI, 31 change points
are detected.

With the presence of change points, it is essential to
find the root cause of the change. If the change is caused
by some faults or variations in the inputs, rebuilding the
soft sensor is required to ensure a stable and reliable pre-
diction.



Fig. 4 Graphical representation of real process data

Fig. 5 Correlation between process variables

5.2. SHAP analysis
SHAP is a powerful method to fairly distribute the

contribution of each feature to the change. There exists
a Python package developed by Lundberg et al [14] that
can easily visualize the output of any machine learning
model. Bayesian Ridge regression is utilized to build soft
sensor and linear explainer is chosen to explain the output
of Bayesian Ridge model.

Fig.7 displays the impact of inputs on the soft sensors
prediction. Each instance is represented by a single dot
on the feature row with the SHAP value on x the axis.

Fig. 6 Change point detection result of KPI

The color bar represents the raw values of the feature,
and the dots ”stacked” along each feature row represent
the density. Fig.8 presents the average of absolute SHAP
values over all samples. The y axis is the feature impor-
tance order and x axis is the Shapley value of each fea-
ture. The red means the feature possesses positive impact
while the blue is negative impact. Here the base predic-
tion ϕ0(E(f̂(X))) is 0.087. To explain the global SHAP
feature importance, take feature 9 and feature 5 as an ex-
ample: for all data, the first most important feature 9 will
contribute 1.01 to the soft sensor output compared to the
base prediction while the second most important feature
5 will contribute -0.82 to the soft sensor output.

Fig. 7 Global SHAP feature importance

Fig. 8 The average of absolute SHAP values

Since the global SHAP feature importance plot con-
tains no more information beyond the importance, and
the features that are most globally important are not nec-
essarily the ones causes change. To find the root cause of



change, a more informative plot with local explanations
of inputs is needed.

Fig.9 is the Shapley value summary plot of each fea-
ture at each instance. f(x) is the soft sensor prediction,
the blue means the feature at that instance has a negative
contribution for the prediction while the red means the
positive contribution. Take the first instance (red zone)
as an example, feature 9 has positive contribution on the
soft sensor prediction while feature 1 has negative contri-
bution. The darker the color, the greater the contribution.
For example, feature 1, 9, etc have greater contribution
than feature 2, 5, etc.

Fig. 9 Local SHAP values for all data points

After detecting the location of change points, under-
stand what tags that are shifting inferential predictions is
important. Take one change point that detected in 1260
(black zone) as an example, figure 10 shows a set of
Shapley value of different input features. The Shapley
value of feature 5 is -0.76, which means the feature 5
has the largest negative contribution. Interestingly, fea-
ture 9 has negative contribution (-0.6) at instance 1260
while the global contribution (1.01) is positive. When
adding up all Shapley values (-0.25), the base prediction
0.087 (E(f̂(X))) will become the final model output -
0.163 (f(x)).

Fig. 10 Local SHAP values for instance 1260

From Fig.10, we are able to conclude that feature 5 is
more likely to be the root cause of change point 1260.
The reason we label feature 5 as root cause is that it has

the largest contribution. The black zone of Figs. 11-14
indicates the values of features 1,3,5,9 at data point 1260.
We can easily find that there is a large change in the value
of feature 5. At the same time, the values of features 1 ,3,
9 have relatively obvious drifts, which means that they
also have a large contribution to the change.

Fig. 11 Change point detection result of feature 1

Fig. 12 Change point detection result of feature 3

Fig. 13 Change point detection result of feature 5

Fig. 14 Change point detection result of feature 9

5.3. Discussion
The overall target of this work is to assist engineers to

better evaluate the soft sensor performance and locate the



root cause. Change point detection analysis and SHAP
analysis are able to guide the human expert to evaluate
and improve the performance of soft sensors. However,
various practical problems still exist.

First, it is important to point out the SHAP interpre-
tation method does not exactly mean causality in most
cases, the Shapley value of each feature is different from
the true causal effect. SHAP could fairly distribute the
contributions of each feature and discover informative re-
lationships between the input features and the prediction,
but the interpretation would be misleading if the distri-
bution of training data and test data are dramatically dif-
ferent [15, 16]. In our future work, we would like to in-
troduce causal models and causal inference into SHAP
analysis.

Second, simultaneous occurrences of multiple root
causes is a tough problem [17]. As we can see in case
study, for KPI change point 1260, input features 1,3,5
and 9 have changed significantly at the same time. It is
difficult to tell exactly whether just one feature or a com-
bination of features caused the change. Therefore, con-
ducting temporal analysis to infer whether a change point
includes multiple root causes is essential.

6. CONCLUSION
In this work, a novel method to detect the soft sen-

sor change points and find the root causes of changes is
proposed. Change points of soft sensor are detected by
solving a discrete optimization problem. As an important
contribution, this work uses SHAP to fairly distribution
the contribution of each feature. Without requiring strict
assumptions on the model and data distribution, the pro-
posed algorithm is able to perform well on any model.
The real-world commercial refinery case study validates
the effectiveness of the proposed method.
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