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Abstract: 21 

Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In 22 

particular, exploiting the relaxation voltage curve features could enable battery capacity estimation 23 

without additional cycling information. Here, we report the study of three datasets comprising 130 24 

commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation 25 

approach. One dataset is collected for model building from batteries with LiNi0.86Co0.11Al0.03O2-based 26 

positive electrodes. The other two datasets, used for validation, are obtained from batteries with 27 

LiNi0.83Co0.11Mn0.07O2-based positive electrodes and batteries with the blend of Li(NiCoMn)O2 - 28 

Li(NiCoAl)O2 positive electrodes. Base models that use machine learning methods are employed to 29 

estimate the battery capacity using features derived from the relaxation voltage profiles. The best model 30 

achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning 31 

model is then developed by adding a featured linear transformation to the base model. This extended 32 

model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, 33 

indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation. 34 

Introduction 35 

Lithium-ion batteries have become the dominant energy storage device for portable electric devices, 36 

electric vehicles (EVs), and many other applications 
1
. However, battery degradation is an important 37 

concern in the use of lithium-ion batteries as its performance decreases over time due to irreversible 38 

physical and chemical changes 
2,3

. State of Health (SoH) has been used as an indicator of the state of the 39 

battery and is usually expressed by the ratio of the relative residual capacity with respect to the initial 40 

capacity 
4
. The accurate battery capacity estimation is challenging but critical to the reliable usage of the 41 

lithium-ion battery, i.e., accurate capacity estimation allows an accurate driving range prediction and 42 

accurate calculation of the maximum energy storage capability in a vehicle. Typically, the battery capacity 43 

is gained by a full discharge process after it has been fully charged. In a real-life usage scenario, the battery 44 
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full charge is often achieved while the EVs are parking with grid connection, however, the battery 45 

discharge depends on the user behavior with uncertainties in environmental and operational conditions, a 46 

complete discharge curve is seldom available for on-board battery health monitoring. The battery charging 47 

and discharging voltage, as one of the easily obtained parameters, depend on both, thermodynamic and 48 

kinetic characteristics of the battery. Thus, those methods using a charge/discharge process are proposed to 49 

estimate capacity for practical applications 5,6, in which the input variables are extracted from the measured 50 

voltage curves, and the data-driven methods using statistical and machine learning techniques have been 51 

popular in battery research recently due to their strong data processing and nonlinear fitting capabilities7,8. 52 

The data-driven methods do not need a deep understanding of battery electrochemical principles, but large 53 

numbers of data are required to ensure the reliability of model 9. Severson et al. 10 reported a promising route 54 

using machine learning to construct models that accurately predicted graphite||LiFePO4 (LFP) commercial 55 

cell lives using charge-discharge voltage data. Zhang et al. 11 identified battery degradation patterns from 56 

impedance spectroscopy using Gaussian process machine learning models. Ding et al. 12 introduced a 57 

machine learning method for the improvement of the efficiency of membrane electrode assembly design 58 

and experiment. Such data-driven methods focus on the relationships among the input and output features, 59 

and a key part of data-driven battery state estimation is the extraction of degradation features, which largely 60 

determines the estimation performance 13-15. 61 

    In practical electric transport applications, battery charging is essential and happens regularly 62 

compared to the random discharge process affected by the driving behaviors and road environments. 63 

Therefore, extracting voltage features from the charging process has attracted wide attention. Taking into 64 

account the state-of-the-art literature, three classes of voltage-based extraction methods can be defined: (I) 65 

CC (constant current) charge voltage-based, (II) CC-CV (constant current-constant voltage) charge 66 

voltage-based, and (III) rest voltage-based as listed in Supplementary Table 1. The partial charge process 67 

in a specific voltage range for feature extraction is commonly used for capacity estimation
16

, and the 68 

estimation accuracy of the state of art is ranging from a root-mean-square error (RMSE) of 0.39% to a 69 

RMSE of 4.26% based on in-house experiments and different public datasets 
5,6,17

. The transformations of 70 

the partial voltage curves, i.e., differential voltage analysis 18,19 and incremental capacity analysis 
20-22

, are 71 

used for battery aging mechanism identification and capacity fade evaluation. Typically, SVR (Support 72 

Vectors Regression) 
23

, GPPF (Gaussian Process Particle Filter) 
24

, BPNN (Back-Propagation Neural 73 

Network) 
25

, and linear model 
26

 are applied to estimate battery capacity using the partial incremental 74 

capacity curve. Compared to the charge voltage-based methods, studies extracting features from the rest 75 

voltage are few. A representative battery capacity estimation method utilizing the resting process was 76 

proposed by Baghdadi et al.
27

. They proposed a linear model to estimate battery capacity using the 77 

voltage after 30 min rest when the cell is fully charged, and the capacity estimation percentage error is 78 

ranging from 0.7% to 3.3% for three different commercial batteries. Schindler et al. 
28

 and C. Lüders et al. 79 
29

 took the voltage relaxation for the lithium plating detection in the battery capacity fade process. Qian et 80 

al. 
30

 used an equivalent circuit model (ECM) to describe the voltage relaxation and found that the 81 

extracted parameters provided an evaluation of the battery SoH and aging mechanisms. Attidekou et al. 
31

 82 

modeled the battery capacity decay during rest periods at 100% SoC using a dynamic time constant 83 

derived from the resistor-capacitor (RC) network model. However, as the amount of RC links increases, 84 

the complexity of the ECM will increase accordingly, which makes it difficult to use in an on-board 85 

application 
32

. Besides, the accuracy and robustness of capacity estimation are difficult to evaluate 86 

because of the diff erences in battery types and working conditions 
9,10

. 87 

It has been proven that the relaxation process including the relaxation voltage value at a specific time 88 

and the voltage curve during a specific period shows a relationship with the battery SoH 
28-31,33

. From the 89 

review of battery charging studies 
34-36

, the real-time data of EVs 
37,38

, and a survey of real-world EV 90 
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charging (Supplementary Note 1, Supplementary Table 2 and 3, and Supplementary Figure 1 and 2), in 91 

addition to the CC charging strategy, the multistage current charging algorithm using a SoC dependent 92 

charging current is a promising method to maximize the charging efficiency. The start of charge for the 93 

EVs is normally distributed around intermediate SoCs as expected from the statistics 
37,39,40

. The various 94 

multistage current charge strategies and the uncertain start of charge points bring difficulties to the 95 

acquirement of specific voltage ranges under constant current in the voltage-based methods. The 96 

relaxation after being fully charged is relatively unaffected by the charging process and is also easy to 97 

obtain since the battery is fully charged with high probability in real EV usage 
37,39,40

, there is also no 98 

need for additional devices as the voltage data can be directly obtained from the battery management 99 

system. However, to the best of our knowledge, the relaxation voltage curve of the battery has not yet 100 

been studied systematically with machine learning methods for large-scale data from different battery 101 

types. Herein, an approach based on features extracted from the battery relaxation voltage is proposed, 102 

which focuses on short-term battery capacity estimation without any previous cycling information for 103 

on-board implementation.  104 

In this study, base models using machine learning methods, i.e., the linear model (ElasticNet 
41

), and 105 

nonlinear models (XGBoost 
42

 and Support Vector Regression (SVR) 
43

), using large datasets from three 106 

kinds of commercial lithium-ion batteries are employed. The model inputs are statistical features 107 

extracted from the voltage relaxation curve. Batteries with LiNi0.86Co0.11Al0.03O2 positive electrode (NCA 108 

battery) cycled at different temperatures and current rates are used for base model building, showing the 109 

best test performance with a RMSE of 1.0%. The transfer learning method is applied on batteries with 110 

LiNi0.83Co0.11Mn0.07O2 positive electrode (NCM battery) and batteries with 42 (3) wt.% Li(NiCoMn)O2 111 

blended with 58 (3) wt.% Li(NiCoAl)O2 positive electrode (NCM+NCA battery), obtaining 1.7% RMSE 112 

and 1.6% RMSE respectively, and enabling the generalizability of our approach. 113 

 Results 114 

Data generation  115 

Large cycling datasets on NCA battery, NCM battery, and NCM+NCA battery are created in this 116 

study. The batteries are cycled in a temperature-controlled chamber with different charge current rates. 117 

The battery specifications are listed in Supplementary Table 4. Long-term cycling is conducted on all 118 

cells with a summary of cycling conditions in Table 1. The temperatures chosen are 25 °C, 35 °C, and 119 

45 °C. Current rates ranging from 0.25 C (0.875 A) to 4 C (10 A) are used. The current rate is calculated 120 

from the nominal capacity of batteries, i.e., 1C is equal to 3.5 A for the NCA battery and NCM battery, 121 

and 1C is equal to 2.5 A for the NCM+NCA battery. The cells are named as CYX-Y/Z according to their 122 

cycling conditions. X means the temperature, Y/Z represents the charge/discharge current rate. The 123 

number of cells assigned to each cycling condition in Table 1 is aimed to obtain a dataset covering 124 

possible variations between cells. One data unit comprises a relaxation voltage curve after full charge 125 

with the following discharge capacity. Each relaxation voltage curve is transformed into six statistical 126 

features, i.e., variance (Var), skewness (Ske), maxima (Max), minima (Min), mean (Mean), and excess 127 

kurtosis (Kur). The mathematical description of the six features is depicted in Supplementary Table 5. The 128 

datasets collected from NCA, NCM, and NCM+NCA cells are named as dataset 1, dataset 2, and dataset 129 

3 in this study, respectively. Dataset 1 is used for base model training and test. Dataset 2 and dataset 3 are 130 

used for assessing and improving the generalizability of the proposed approach by transfer learning. 131 

Voltage and current are the basic data recorded in these experiments, which include charging, 132 

discharging, and relaxation processes. The cell cycling is performed with constant current (CC) charging 133 

to 4.2 V with current rates ranging from 0.25 C (0.875 A) to 1 C (3.5 A), followed by a constant voltage 134 
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(CV) charging step at 4.2 V until a current of 0.05 C is reached. Constant current is then employed for the 135 

discharge to 2.65 V for the NCA cells and 2.5 V for the NCM and NCM+NCA cells, respectively. One 136 

complete cycling curve using a 0.5 C charging rate for the NCA cell is shown in Figure 1a, which 137 

includes five processes, i.e., (I) CC charging, (II) CV charging, (III) relaxation after charging, (IV) CC 138 

discharging, and (V) relaxation after discharging. The CC discharging capacity is treated as the battery 139 

residual capacity during cycling. The relaxation time between the CV charging and CC discharging is 30 140 

minutes for the NCA battery and NCM battery with a real sampling time of 120 s, and it is 60 minutes for 141 

the NCM+NCA battery with a sampling time of 30 s. The starting and ending voltage during the battery 142 

relaxation show a declining trend with increasing cycle number as presented in Figure 1b. 143 

Three datasets with capacity down to 71% of the nominal capacity are generated. The battery 144 

capacity as a function of cycle number for the NCA cells is shown in Figure 1c. The cycle number is 145 

ranging from 50 to 800 in the 100% - 71% capacity window. It is evident that both, charging current and 146 

temperature have a strong influence on the capacity decay, and the battery capacity shows significant 147 

variance as depicted in the embedded plot in Figure 1c, indicating the degradation distribution of the 148 

cycled cells. The worst scenario is the one with cells cycled at 1C charge at 25 
o
C (CY25-1/1), only 50 149 

cycles can be obtained until the cells reach 71% of the nominal capacity. 71% capacity is reached after 150 

125 and 600 cycles at 25 °C and 35 °C respectively, for cells charged with 0.5 C (CY25-0.5/1, and 151 

CY35-0.5/1). 71% capacity is reached after 250 cycles at 25 °C with 0.25 C charging current 152 

(CY25-0.25/1) and in a range of 500 to 800 cycles at 45 °C with 0.5C charging current (CY45-0.5/1). The 153 

cycling data of the NCM cells are shown in Figure 1d. Fatigue down to 71% residual capacity is found 154 

between 250 and 500 cycles (25 °C), 1250 and 1500 cycles (35 °C), and around 1000 cycles at 45 °C 155 

cycling temperature. The capacity fade results indicate that increasing the temperature to 35 °C and 45 °C 156 

has a beneficial effect on the capacity retention and that the charging current is at the limit of what the 157 

cells can handle. For NCA and NCM cells, a capacity spread for the cells cycled under equal conditions is 158 

observed, which is speculated to be ascribed to the intrinsic manufacturing variations as this spread is 159 

already seen at the beginning of cycling 
44,45

. The cycling data of the NCM+NCA cells are shown in 160 

Figure 1e, exhibiting a linear degradation trend regardless of the cycling discharge rates, and 71% 161 

residual capacity appears in a range of 750 to 850 cycles showing the influence of the cell cycling 162 

conditions. 163 

Feature extraction  164 

Summarizing statistics are proven to be effective to illustrate numerically the shape and position 165 

change of the voltage curve 5,10. As mentioned above, the relaxation process after fully charging is taken 166 

for feature extraction because of its strong relationship with battery degradation and its easy acquisition in 167 

battery real use. Each voltage relaxation curve is converted to six statistical features, i.e., Var, Ske, Max, 168 

Min, Mean, and Kur, as displayed in Figure 2.  169 

The relationship between battery capacity and the corresponding features is dependent on the cycling 170 

conditions as presented in Figure 2. It can be seen that it is difficult to describe the relationships only by 171 

linear functions. The Var in Figure 2a represents the distribution of the voltage points in one relaxation 172 

process, a decrease of Var versus capacity fade means that the relaxation voltages show a sharper 173 

distribution with increasing cycle number, and vice versa. Both Ske and Kur are normalized using Var, 174 

they are used to describe the shape of the corresponding voltage curve. The Ske in Figure 2b is positive 175 

for almost all cycling conditions, indicating that more than half of the sampled voltage data are below the 176 

average voltage (Mean), which corresponds to the shape of the relaxation voltage curve, i.e., with respect 177 

to the relaxation time, the voltage drops initially fast and then gradually slows down. The Max in Figure 178 
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2c presents a monotonous decrease of the maximum voltage versus capacity drop for all cycling 179 

conditions. The Min and Mean first increase and then decrease versus the capacity reduction as displayed 180 

in Figure 2d and Figure 2e, respectively. The Kur shown in Figure 2f is the excess kurtosis obtained from 181 

the kurtosis of the raw data minus the kurtosis of a normal distribution. The excess kurtosis is negative for 182 

all cycling conditions, meaning that the distribution of the relaxation voltage is gentler than a normal 183 

distribution. 184 

Capacity estimation 185 

Based on the features extracted from the relaxation voltage curve after charging, data-driven 186 

methods are used for battery capacity estimation. Owing to the difference in the order of magnitudes of 187 

the features, a standard normalization for battery features is performed for dataset 1. The features of 188 

dataset 2 and dataset 3 are normalized by applying the same normalizing scales as used for dataset 1. The 189 

capacity is uniformized considering the difference in the battery nominal capacity. The XGBoost 
42

 is 190 

selected as the main machine learning method. The ElasticNet 
41

 as the multivariate linear model is used 191 

for comparison, and the SVR 
43

 is a support for the verification of the transfer learning approach. For the 192 

base model training and test, different data splitting strategies are compared with dataset 1 in 193 

Supplementary Note 2 and Supplementary Table 6-9. The best test result of the temperature dependence 194 

splitting method shows a 1.5% RMSE. A 2.3% test RMSE is obtained from the time-series data splitting 195 

method. The data random splitting and cell stratified sampling methods achieve good estimation accuracy 196 

with 1.1% RMSEs, implying that the variation of the working conditions leading to different degradation 197 

patterns is essential to improve the generalization of the model. The results of cell stratified sampling 198 

method meaning that the data from the same cell is either in the training set or in the test set are presented 199 

in this study (Strategy D in Supplementary Note 2). The cells are approximately in a 4:1 ratio for training 200 

and test (Supplementary Table 9). In the model training process, the K-fold cross-validation with K=5 is 201 

used to determine the hyperparameters of the models. A feature reduction is performed by using different 202 

feature combinations to reduce the number of inputs and simplify the model complexity. The 203 

cross-validation RMSEs under different feature combinations using the XGBoost method are compared in 204 

Figure 3. The i and j are used to represent different feature combinations referring the Supplementary 205 

Table 10. 206 

It shows that the RMSE gradually decreases as the number of features increases, and the accuracy 207 

improvement is no longer obvious after using three features in Figure 3. The best estimation result is 208 

obtained by the input [Var, Ske, Max] in a three feature combination. The effect of the duration of the 209 

relaxation on the capacity estimation is presented in Supplementary Figure 3, in which the RMSEs of 210 

training and test decrease as the relaxation time increases in the XGBoost method, indicating that longer 211 

relaxation time improves the model accuracy. Therefore, the Var, Ske, and Max of the voltage relaxation 212 

after 30 minutes are extracted as inputs for the base model. The hyperparameters of each algorithm are 213 

available in Supplementary Table 11. The RMSEs of different estimation methods on dataset 1 are 214 

summarized in Figure 4a. It can be concluded that the test RMSE of XGBoost and SVR all reaches 1.1%, 215 

showing better performance than the linear model, and the RMSEs of train and test are close to each other, 216 

indicating the effectiveness of data splitting. The estimated capacity versus real capacity is illustrated in 217 

Figure 4b-4d for visualization purposes. 218 

Performance of the proposed approach 219 

The performance of the proposed approach is benchmarked with state-of-the-art models using 220 

voltage curves for battery capacity estimation as shown in Table 2. One representative method is selected 221 

from each class of the presented capacity estimation methods (Supplementary Table 1). Since the datasets 222 
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used in the literature are different in battery material and test procedures from ours, the strategy to solve 223 

this difference is to apply their algorithms to our datasets. A detailed description of data processing and 224 

estimation results for each method is presented in Supplementary Note 3 and Supplementary Figure 4-7. 225 

The performance of the linear model to estimate the battery capacity based on the resting voltage in Ref. 226 
27 shows a 2.5% RMSE, which can be explained by the large data volume and variety of working 227 

conditions in our dataset 1 highlighting the difficulty of capacity estimation only with the linear model. In 228 

the CC charge voltage-based methods, the random forest regression (RFR) method 17
 using the voltage 229 

ranging from 3.6V to 3.8 V achieves a RMSE of 1.0% on dataset 1, which is 0.1% less than our RMSE 230 

based on the voltage relaxation. A method based on the remaining electrical charge with a threshold 231 

according to the incremental capacity value is proposed in Ref. 26. The application of the same 232 

incremental capacity transformation method on dataset 1 provides a RMSE of 1.3%, indicating that our 233 

proposed approach has better accuracy. The Gaussian process regression (GPR) method 
46

 using a full 234 

CC-CV charge voltage curve obtains good estimation results on dataset 1 with a test RMSE of 1.1%. 235 

Compared with the current research status, especially with respect to large datasets, the proposed 236 

approach using resting voltage can achieve a good estimation accuracy. As mentioned in the introduction 237 

section, there are some challenges in the acquisition of specific charging voltage curves because the start 238 

of battery charge is usually dependent on the driver behavior and the charge modes differ significantly 239 

from the charging stations in the real application of EVs. The relaxation process of a battery being fully 240 

charged is easily obtained without the requirement of specific working conditions and voltage ranges, 241 

which offers a new sight for battery capacity estimation. 242 

Physical explanation 243 

The alternating current (AC) electrochemical impedance provides information in the frequency 244 

domain on the degradation mechanisms of the battery as proven in Ref.
47

. The degradation mechanisms 245 

can be determined from the change of electrochemical impedance parameters extracted by fitting the 246 

impedance spectra with an ECM 
48

. A schematic plot of electrochemical impedance spectra during cycling 247 

and the corresponding ECM are complemented in Supplementary Figure 8. Basically, an increase of R0 is 248 

likely due to contact loss and the reduction of ionic conductivity in the electrolyte 
49

. R1 represents the 249 

resistance associated with the anode solid electrolyte interphase (SEI) indicated by the semicircle at high 250 

frequencies 
48

. R2 is the charge-transfer resistance describing the rate of electrochemical reaction, which 251 

is related to the loss of electrode material through particle cracking 
19,50

. The capacity loss of the cycled 252 

cells in dataset 1 and dataset 2 has been investigated by in situ neutron powder diffraction in our previous 253 

work 
44

, which exhibits that the decrease in lithium content in the positive and negative electrodes 254 

correlates well with the observed discharge capacity. Both positive and negative electrodes do not 255 

decompose to other crystalline phases during cycling, but the lithium loss in the electrodes leading to 256 

lithiated material loss is traced by detecting changes in the lattices of the electrodes. The lithiated material 257 

loss and the SEI formation are suspected to contribute to the lithium loss. 258 

Herein, the dominating aging factors for each cycling group are discussed by fitted electrochemical 259 

impedance parameters in Figure 5. The coefficient of determination (R
2
) of each measured impedance 260 

spectrum between the raw and fitted data is summarized in Supplementary Table 12. All R
2
 values are 261 

greater than 0.999, indicating the credible fitting accuracy. All the raw and fitted impedance data can be 262 

found from the data availability. By comparison of the resistance increment from the initial value (Rinit) 263 

for all three type cells, the increment of R0 is minimal (Figure 5a, 5b, and 5c), followed by R1 (Figure 5d, 264 

5e, and 5f). R2 shows the highest increase during the battery capacity fade as shown in Figure 5g, 5h, and 265 

5i. The dominating degradation factors are different under different working conditions. For the NCA cell, 266 
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as shown in Figure 5a, the CY25-0.25/1 shows a steady and relatively small increase of R0, nevertheless, 267 

its R1 in Figure 5d shows an accelerated rise, indicating the increase in the thickness of the SEI layer. The 268 

R2 of CY25-0.25/1 in Figure 5g presents a similar increasing trend to its R0. The R0 of CY25-0.5/1 and 269 

CY25-1/1 in Figure 5a remains the largest resistive contribution throughout, but their R1 and R2 are 270 

relatively lower than that of others, which indicates a more serious cell degradation such as electrolyte 271 

dry-out or contact loss likely caused by lithium plating 
49,51

. For the results of NCM cells in Figure 5b, 5e, 272 

and 5h, all resistances of CY25-0.5/1 increase slowly, while resistances of cells cycled at 35
o
C and 45

 o
C 273 

exhibit a large increase rate. For the NCA+NCM cells, the influence of discharge rate is mainly 274 

represented by R1 by comparing the results in Figure 5c, 5f, and 5i. The CY25-0.5/4 SEI resistance 275 

increase in Figure 5f is significantly slower than that of other cycling conditions. The temperature 276 

influence on the degradation mechanism can be seen in Figure 5g and Figure 5h, in which the increase of 277 

R2 is associated mainly with the increase of ambient temperature. The cells cycled at 45
o
C and 35

 o
C 278 

mainly lead to an increase of R2, which could be associated with the positive active material loss, e.g., 279 

particle cracking and pulverization 
52,53

. The diversity of the battery internal degradation mechanisms 280 

results in various degradation paths, which can explain the difficulty in applying a simple linear model on 281 

the battery capacity estimation. Additionally, it seems that different battery types follow to some extent 282 

similar degradation rules, e.g., the exponential rise of R2, inspiring the use of transfer learning in the 283 

following part. 284 

Approach verification by transfer learning 285 

The transfer learning (TL) method, which is applied to improve the learning ability by rebuilding the 286 

machine learning model using a relatively small amount of newly collected data, is proposed for easy 287 

adaption to the variation of voltage features existing in dataset 2 and dataset 3 in which different batteries 288 

and cycling conditions are used. The model weights are pre-trained through dataset 1 to obtain the base 289 

model. Then, some new data units from dataset 2 and dataset 3 are set as the input variable to re-train the 290 

TL model. Different data selection methods are discussed in Supplementary Note 4 and Supplementary 291 

Table 13, depicting that the variation of working conditions is necessary to improve the accuracy of the 292 

model estimation. One cell is randomly selected from each cycling condition in dataset 2 and dataset 3, 293 

then the data units in each cell are chosen with an interval of 100 cycles as the input variables for the 294 

re-training of TL models (Strategy D in Supplementary Note 4). The sizes of the input variable are 295 

summarized in Supplementary Table 14 (occupying 0.06% of dataset 2 and 0.35% of dataset 3). 296 

Verification on dataset 2 and dataset 3 without changing any weights of the base model is used as a 297 

zero-shot learning (ZSL) reference. The full base model is retrained using the same input variables from 298 

dataset 2 and dataset 3 as a No TL comparison. Two TL methods (TL1 and TL2) with fine-tuning 299 

strategies are activated to adjust the weights of a newly added layer, while the weights of other layers 300 

remain unchanged. TL1 means that a linear transformation layer is added before the output of capacity. 301 

TL2 means that a linear transformation layer before the base model is constructed to adapt the input 302 

features as illustrated in Supplementary Figure 9. The test RMSEs are compared in Table 3. 303 

The ZSL strategy obtains more than 3.4% test RMSE on all datasets directly using the base models. 304 

The error between the estimated capacity and real capacity is quite large as shown in Supplementary 305 

Figure 10, meaning that the differences in battery types and materials cannot be ignored. When the base 306 

model is retrained in the No TL strategy, the XGBoost reaches a 2.9% test RMSE on dataset 2 and a 2.0% 307 

test RMSE on dataset 3, and the SVR gives no obvious improvement in the accuracy (Supplementary 308 

Figure 11 and Supplementary Table 15). When the TL1 is applied on dataset 2 and dataset 3, the test 309 

RMSE of the SVR method goes down to 2.6% and 3.5% respectively, but a high number of outliers still 310 
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appears in Supplementary Figure 12. The results of estimated capacity versus real capacity by TL2 are 311 

presented in Figure 6. The test RMSE is reduced to 2.4% by the XGBoost using the TL2 on dataset 2, 312 

noting that the performance of XGBoost using the No TL on dataset 3 is better than that of TL, which 313 

could be ascribed to the narrow distribution of capacity fade in dataset 3. The best accuracies on dataset 2 314 

and dataset 3 are all reached by SVR using the TL2, showing test RMSEs of 1.7% and 1.6%, respectively. 315 

It can be concluded that the use of TL2 improves the estimation accuracy, and the reason behind the 316 

accuracy improvement is that a linear transformation of the input features helps the model adapt to the 317 

differences in battery types but similarity degradation modes. Interestingly, we find that the SVR is more 318 

reliable and suitable for transfer learning than the XGBoost with a small amount of newly collected data. 319 

The possible reason is that the XGBoost is a discrete gradient boosting framework, the output of the 320 

model is limited by the base model even if a new layer is added before the base model, whereas the SVR 321 

is a kernel-based framework, in which the continuous calculation achieves a better prediction under the 322 

designed TL2. In summary, the proposed approach using the relaxation voltage curve is useful to estimate 323 

the battery capacity, and the transfer learning improves the accuracy of capacity estimation requiring little 324 

tuning to adapt to the difference in batteries. 325 

Discussion 326 

Accurate identification of lithium-ion battery capacity facilitates the accurate estimation of the 327 

driving range which is a primary concern for EVs. An approach without requiring information from the 328 

previous cycling to estimate battery capacity is proposed. The proposed approach uses three statistical 329 

features ([Var, Ske, Max]) extracted from the voltage relaxation curve as input to predict the capacity in 330 

the next cycle. The transfer learning embedding machine learning methods is applied on 130 cells to 331 

establish a suitable model and for the verification of the approach. The best base model achieves a 332 

root-mean-square error of 1.1%. The transfer learning adding a linear transformation layer before the base 333 

model shows good predictive ability within a RMSE of 1.7% on different batteries. The retraining of 334 

transfer learning only needs a small number of data units on the condition that a variation of the input data 335 

needs to be guaranteed to improve the applicability of the proposed approach. The relaxation process of a 336 

battery after full charge is easily obtained without the requirement of specific working conditions and 337 

voltage ranges, providing a new possibility for battery capacity estimation using data-driven methods in 338 

the system implementation of EV applications. 339 

Methods 340 

Cell selection and cycling 341 

Commercially available lithium-ion batteries, i.e., LG INR18650-35E (3.5 Ah, 3.6 V), Samsung 342 

INR18650-MJ1 (3.5 Ah, 3.6 V), and Samsung INR18650-25R (2.5Ah, 3.6 V), have been tested. More 343 

battery specifications are listed in Supplementary Table 4. The positive electrode compositions of the 344 

INR18650-35E battery and INR18650-MJ1 battery are LiNi0.86Co0.11Al0.03O2 and Li(Ni0.83Co0.11Mn0.07)O2 345 

respectively, and the negative electrodes for both cell types have roughly 97 wt% C and 2 wt% Si as well 346 

as traces of H, N, and S from Ref. 
44

. The positive electrode of the INR18650-25R battery is the blend of 347 

42 (3) wt.% Li(NiCoMn)O2 - 58 (3) wt.% Li(NiCoAl)O2, and the negative electrode is graphite from Ref. 348 
19

. The INR18650-35E battery is named as NCA battery. The INR18650-MJ1 is named as NCM battery. 349 

The INR18650-25R is named as NCM+NCA battery according to the positive electrode. A potentiostat 350 

(BioLogic BCS-815, France) is employed for cell cycling. The measurements are conducted at 25
 o
C, 35

 
351 

o
C, and 45

 o
C

 
in a climate chamber (BINDER,  0.2 

o
C, Germany). Long-term cycling is conducted on a 352 

total of 130 cells with a summary of cycling conditions as provided in Table 1. A schematic connection of 353 
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the potentiostat, chamber, and cells is shown in Supplementary Figure 13. For the NCA and NCM 354 

batteries, the metal taps are spot-welded to the cells, and the contact is soldered to the metal taps. A 355 

four-wire holder is used for the NCM+NCA battery. For partially charged/discharged NCA and NCM 356 

cells, the electrochemical impedance is measured in the fully charged state using a frequency range of 10 357 

kHz to 50 mHz (20 data points per decade of frequency) and a potential amplitude of 20 mV. 30 minutes 358 

are set at the open circuit voltage before the electrochemical impedance tests. The electrochemical 359 

impedance is tested every 25 cycles for the NCA battery and every 50 cycles for the NCM battery. For the 360 

NCM+NCA battery, the electrochemical impedance is conducted every 50 cycles at full charge in a range 361 

of 10 kHz to 0.01 Hz (6 data points per decade of frequency) with a sinusoidal amplitude of 250 mA. 60 362 

minutes are set at the open circuit voltage before the electrochemical impedance tests. The NCA cells and 363 

NCM cells are tested from 2016 to 2018, and the NCM+NCA cells are cycled in 2020. Different 364 

experimenters at different test periods are responsible for the difference in battery connection methods 365 

and experimental parameters in AC impedance tests, e.g., perturbation modes, perturbation amplitudes, 366 

and open circuit voltage time. 367 

Machine learning methods  368 

Two transfer learning strategies embedding the XGBoost method and SVR method are applied in our 369 

study, and an illustration of the implemented transfer learning process is shown in Supplementary Figure 370 

9. The algorithms of the ElasticNet method, XGBoost method, and SVR method are introduced in 371 

Supplementary Note 5. 372 

1) The base model is trained on all experimental data of NCA batteries (dataset 1). Firstly, the base 373 

model is directly verified on dataset 2 and dataset 3 without changing model weights as a zero-shot 374 

learning (ZSL) reference. 375 

2) The base model is retrained using some new data units (Strategy D in Supplementary Note 4) as input 376 

variables from dataset 2 and dataset 3 as a No TL comparison. 377 

3) Two transfer learning strategies (TL1 and TL2) are proposed by adding layers behind and in front of 378 

the base model. All weights in the base model are frozen in the transfer learning strategies except the 379 

newly added layer. In detail, TL1 means that a linear transformation layer is added before the output of 380 

capacity, which is described as 381 

                                (1) 382 

TL2 means that a linear transformation layer is constructed to adapt the input features, which is described 383 

as  384 

             [
    

    

    

]   [
   

   

   

]                                 (2) 385 

w, W, and b are the weights in the added layer. The target dataset from dataset 2 and dataset 3 are selected 386 

to train the new layer weights. 387 

4) The transfer learning models are verified on the remaining dataset 2 and dataset 3 respectively. The 388 

test RMSEs are compared in Table 3, and the estimation results are presented in Figure 6 and 389 

Supplementary Figure 10-12 for visualization purposes.  390 

Data availability 391 

The data generated in this study have been deposited in the Zenodo database under accession code 392 

[https://doi.org/10.5281/zenodo.6379165].  393 

Q’=wQ+  

https://doi.org/10.5281/zenodo.6379166
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Code availability 394 

The data processing is performed in python and is available at 395 

[https://github.com/Yixiu-Wang/data-driven-capacity-estimation-from-voltage-relaxation]. Code for the 396 

modelling work is available from the corresponding authors upon request. 397 
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Table 1 Cycled batteries and cycling conditions for the dataset generation. All cells are commercial 18650 525 

type batteries. The cycling temperature is controlled by climate chambers ( 0.2 
o
C). The current rate is 526 

calculated from the battery nominal capacity (1C =3.5 A for the NCA battery and NCM battery, and 527 

1C=2.5 A for the NCM+NCA battery). 528 

datasets 

Cell type 

Cycling 

temperature 

( 0.2 oC) 

Charge current 

rate 

(C)/discharge 

rate (C) 

Number of 

cells 

Number of 

data units 

Dataset 1 NCA battery 

Type: 18650 

Cutoff Voltage: 

2.65 - 4.2V 

Nominal capacity: 

3.5 Ah 

25 

0.25/1 7 1853 

0.5/1 19 3278 

1/1 9 260 

35 

0.5/1 

 

3 1112 

45 28 
15775 

Dataset 2 NCM battery 

Type: 18650 

Cutoff Voltage: 

2.5 - 4.2V 

Nominal capacity: 

3.5 Ah 

25 23 5490 

35 4 4712 

45 28 

17600 

Dataset 3 NCM+NCA 

battery 

Type: 18650 

Cutoff Voltage: 

2.5 - 4.2V 

Nominal capacity: 

2.5 Ah 

25 

0.5/1 3 2843 

0.5/2 3 2913 

0.5/4 3 

2826 

 529 

Table 2 Test means root-mean-square error (RMSE) of different models using voltage-based features for 530 

battery capacity estimation 531 

Features from Methods  Test RMSE on Dataset 

1 

Rest voltage-based Linear model
27

 0.025 

Constant current charge 

voltage-based  

Random forest 

regression
17

 

0.010 

Incremental capacity 

analysis transformation 

Linear model
26

 0.013 

Constant current - 

constant voltage charge 

voltage-based 

Gaussian process 

regression
46

 

0.011 

 532 

Table 3 Test RMSEs of battery capacity estimation using zero-shot learning (ZSL) and different transfer 533 

learning (TL) methods on dataset 2 and dataset 3 534 
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Methods Dataset ZSL No TL TL1 TL2 

XGBoost Dataset 2 0.038 0.029 0.027 0.024 

Dataset 3 0.038 0.020 0.034 0.024 

Support 

Vectors 

Regression  

Dataset 2 0.034 0.039 0.026 0.017 

Dataset 3 0.073 0.052 0.035 0.016 

 535 

 536 

Figure 1 Battery cycling data. Voltage and current profile in the first cycle of one CY25-0.5/1 NCA 537 

battery (a). A plot of relaxation voltage change (region III) while cycling for one NCA cell (b). NCA 538 

battery discharge capacity (until 71% of nominal capacity) versus cycle number of NCA battery (c), NCM 539 

battery (d), and NCM+NCA battery (e). The embedded plots in c, d, and e are the cycle distribution of 540 

cells at around 71% of nominal capacity, the points are offset randomly in the horizontal direction to 541 

avoid overlapping. 542 

 543 
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 544 

Figure 2 Extracted features from the voltage relaxation curves as a function of battery capacity for NCA 545 

cells. (a) Variance (Var), (b) skewness (Ske), (c) maxima (Max), (d) minima (Min), (e) mean (Mean), and 546 

(f) excess kurtosis (Kur). Feature changes between 3500 mAh and 2500 mAh (71% of nominal capacity) 547 

for NCA cells are shown to be consistent with the used datasets. The mathematical description of the six 548 

features is depicted in Supplementary Table 5.  549 

 550 

 551 

Figure 3 Cross-validation root-mean-square error (RMSE) of the XGBoost method using different feature 552 

combinations. (i, j) means different feature combinations referring the Supplementary Table 10. The (7, 1) 553 

= [ Var, Ske, Max] obtains the best cross-validation RMSE = 1.0% within a three feature combination. 554 

 555 
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 556 

Figure 4 Results of battery capacity estimation with the input of three features [Var, Ske, Max] by 557 

different estimation methods. The capacity results are uniformized by the nominal capacity for 558 

comparison. root-mean-square error (RMSE) of battery capacity estimation (a), test results of estimated 559 

capacity versus real capacity by ElasticNet (b), XGBoost (c), and Support Vectors Regression (SVR) (d) 560 

 561 
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 562 

Figure 5 AC electrochemical impedance variations of the lithium-ion cells during cycling. The resistance 563 

increment from the initial value (Rinit) is calculated for comparison. The ohmic resistance of NCA cells 564 

(a), NCM cells (b), and NCA+NCM cells (c). SEI resistance of NCA cells (d), NCM cells (e), and 565 

NCA+NCM cells (f). Charge transfer resistance of NCA cells(g), NCM cells (h), and NCA+NCM cells 566 

(i). Only resistances before the capacity reducing to 71% of nominal capacity are shown to be consistent 567 

with the datasets in the study. The coefficient of determination (R
2
) between the raw and fitted impedance 568 

data is summarized in Supplementary Table 12. The SEI resistances are not identified in some cycles 569 

(seen in Supplementary Table 12) for the NCA battery (d) and NCM battery (e). The shared information 570 

of raw impedance data and fitted data can be found in the data availability. 571 

 572 
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 573 

Figure 6 Test results of estimated capacity versus real capacity by transfer learning. The capacity results 574 

are uniformized by the nominal capacity for comparison. Results of TL2 embedding XGBoost method (a) 575 

and embedding SVR (b) on dataset 2. Results of TL2 embedding XGBoost method (c) and embedding 576 

SVR (d) on dataset 3. Additional results are disclosed in Supplementary Figure 10-12. 577 

 578 


