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Abstract 21 

The optimal co-planning of the integrated energy system (IES) and machine learning (ML) 22 

application on the multivariable prediction of IES parameters have mostly been carried out 23 

separately in the literature. Meanwhile, the synergy of optimization methods and ML 24 

techniques can enhance the feasibility of a zero-emission IES, boost realistic planning, and 25 

promote accurate day-ahead scheduling. Thus, a comprehensive review of integrated 26 

optimization and ML techniques in IES is crucial and hereby presented in this study. Critical 27 

issues such as an overview of IES structure, IES modeling approaches and techniques, 28 

application of ML in IES research, and the trends of integrating ML and optimization 29 

techniques for optimal and feasible planning of IES were presented. Specifically, extant studies 30 

on the integrated approach were reviewed under ML hyperparameter tuning using optimization, 31 

combined uncertainty estimation and decision making, integrated ML and scenario generation, 32 

integrated prediction, and optimal decision-making techniques. Findings from this review show 33 

that the IES structure depends on the available technologies, the multi-energy demand patterns, 34 

the available renewable resources, and the planner's objective. It was also revealed that despite 35 

the popularity of ML models and the benefits of synergizing them with optimization models, 36 
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the application of IES has not been fully explored. The main conclusion from the review is that 1 

an IES framework with the aim of a carbon neutrality target is worthy of development. Also, 2 

the application of integrated ML and optimization on IES is still at its infant stage; hence, more 3 

research exploration is required in this area. 4 

Keywords: multi-energy system; machine learning; deep learning; mathematical programming; 5 

optimization methods; carbon neutrality.  6 

1. Introduction 7 

1.1 Motivation and Background 8 

The rapid penetration of renewable energy systems (RES), the adoption of electric (EV) and 9 

hydrogen vehicles (HV), and the recent research breakthrough on energy storage have created 10 

a pathway for decarbonizing the transportation sector and actualizing the Paris climate accord 11 

[1]. This is evident in the global annual increase in renewable energy capacity installation and 12 

the surge in replacing gasoline vehicles with EV and HV [2]. Whereas, to overcome the 13 

challenges associated with operating each energy equipment separately, such as the increase in 14 

operating cost; energy loss; low efficiency; lack of optimal coordination and scheduling, an 15 

integrated energy system (IES) that deals with the co-planning and operation of energy 16 

infrastructure in one-fold have been a centre of attraction. In fact, the IES concept is described 17 

by the European Union Commission as a strategy for the deep decarbonization of the energy 18 

sector [3]. Immerse contributions have also been made in IES research either through 19 

optimization techniques or simulation approaches [4]. However, to ensure realistic 20 

optimization of IES, accurate prediction of the renewables, multi-energy demand, and other 21 

associated parameters that vary with time are criteria for optimal decision making, and machine 22 

learning (ML) techniques are recognized tools for carrying out these tasks [5]. Strictly speaking, 23 

the optimal co-planning of IES and the application of ML on multivariable prediction of IES 24 

parameters have mostly been carried out separately in the literature. Hence, only a few 25 

researchers have considered the benefits of synergizing the two approaches, and a verified 26 

framework for executing the synergized approach has not been established.  To the authors’ 27 

best knowledge, a comprehensive review on the current application of this integrated approach 28 

for modelling IES has not been considered. In this light, this paper seeks to address this.  29 
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1.2 Related review works 1 

Due to the benefits associated with IES, some review studies on its state-of-the-art technologies 2 

and approaches have been conducted. Through related keywords search (i.e., integrated energy 3 

systems, multi-energy systems, integrated electricity and heat system, energy hub, multi-carrier 4 

energy systems) on the Scopus, ScienceDirect, and Web of Science, 36 review articles 5 

published between 2007 to 2021 were identified.  6 

Table 1 presents the extant review studies on IES. It was observed that these studies focus on 7 

1) modeling of IES, 2) planning, 3) operation, 4) flexibility, and 5) scale. For instance, 8 

Moahmmadi et al.[6] gave an overview of IES modeling components relating to energy 9 

generation, conversion equipment, transmission, distribution, IES energy storage equipment, 10 

and the multi-energy demand. Huang et al. [7] presented details on IES multi-networks. The 11 

non-linear and linear mathematical equations governing the electrical, thermal, and gas 12 

network models were analyzed, followed by the planning and operation of the network system 13 

at the district level. In ref. [8], the modeling approaches of IES optimal operation were reviewed. 14 

The identified modeling approaches included operation model with flexibility improvement, 15 

operation model with uncertainty, joint optimal dispatch of the electrical power system (EPS) 16 

and district heat system (DHS), and modeling for joint market-clearing of EPS and DHS. 17 

Similarly, optimization of IES operation under renewable energy domination was also 18 

reviewed in [9]. Chicco et al. [10] reviewed various flexibility potentials of distributed IES in 19 

terms of flexibility. The flexibility potentials were discussed with respect to input and output 20 

energy vector shifting, temporary arbitrage through virtual storage, renewable energy, energy 21 

production curtailment, and reactive power control. Also, optimal flexibility at the demand side 22 

regarding integrated demand response was extensively reviewed in [10-12]. In terms of scale, 23 

the application of IES at the building cluster level was presented in [13]. Doubleday et al. [14] 24 

presented an overview of the planning of IES for urban district applications with high 25 

renewable penetrations, while the planning and the modeling tools for IES at the national levels 26 

were described in [15, 16].  27 

1.3 Novel contribution 28 

While extensive reviews have been conducted on IES, especially planning, operation, modeling, 29 

and scale, the current trend and the prospect of ML application in IES have not been presented. 30 

In contrast, ML has been the primary tool for achieving smart cities [17], especially proactive 31 

measures and future events prediction. It is worth mentioning that ML is not a new tool. 32 
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Comprehensive reviews of its application regarding renewable energy forecast, energy load 1 

prediction, and building application were presented in [5]. However, surveys on its integration 2 

with renowned optimization techniques are few to the best of our knowledge. Thus, this study 3 

seeks to explore the concept of IES, identify the areas that ML has been applied to improve 4 

IES, describe the likely future trends of integrating ML and optimization techniques for optimal 5 

and feasible planning of IES, and ultimately, highlight the gaps to be addressed for zero-carbon 6 

policies actualization. In summary, the main contributions of this current study are itemized 7 

below: 8 

1) A comprehensive overview of IES is presented, ranging from the technologies, 9 

configurations, and modeling methods; 10 

2) A critical review of various studies that have applied optimization methods and ML 11 

techniques to IES research are compared and examined; 12 

3) The possible application of integrated optimization and ML techniques on IES in terms 13 

of future prediction and optimal decision making are presented; 14 

4) Potential research guidance for future studies is provided to enhance the application of 15 

integrated optimization methods and ML on IES. 16 

  17 
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Table 1. The main contributions of previous review work on Integrated Energy Systems IES 

Ref. Highlights Area of review focus Year 

IES 

Review 

ML 

techniques 

review on 

IES 

Application of 

optimization in 

IES 

Integrated 

ML and 

optimization 

[19] Analysed thermal power plants, intermittent RE and IES. ✔    2021 

[20] Developed a holistic system-of-systems approach for IES. ✔     2021 

[21] Analysis of electrical gas systems and autonomous system scheduling. ✔  ✔  2021 

[22] Identified barriers in district energy-electricity system interface. ✔    2021 

[23] Extensively reviewed the sector coupling concept.  ✔    2021 

[24] Analysed a cost-based function model via a hybrid optimization approach.   ✔  2021 

[25] An overview of IES planning approaches and optimization methods. ✔  ✔  2021 

[26] Reviewed applications and energy performance of district energy network. ✔  ✔  2021 

[27] Examined the trends in the technical and economic planning of local energy 

systems.  
✔  ✔  2021 

[28] Provided an overview and study path for IES operation optimization.  ✔  ✔  2021 

[29] Examined the software packages needed for optimizing energy hub (EH). ✔    2021 

[30] Reviewed the modelling tools suitable for IES optimization in mixed-used 

districts. 
✔ ✔ ✔  2021 

[31] Focused on the integration of renewable energies in CHP systems. ✔  ✔  2020 

[32] Reviewed the research trends on integrating multi-vector energy networks.  ✔  ✔  2020 

[33] Review on IES modelling tools with focus on multi-criteria analysis.  ✔    2020 

[34] Reviewed the demand response modelling frameworks implemented in IES.  ✔    2020 

[35] Examined the combined energy modelling studies in sub-Saharan Africa. ✔    2020 

[36] Conducted a stepwise survey on customers’ demand response.  ✔    2019 

[37] Identified the main components of energy infrastructures (EI).  ✔    2019 

[38] Presented an up-to-date overview of EH-based operational frameworks.  ✔  ✔  2019 

[39] Reviewed current practices in smart district planning.  ✔  ✔  2019 

[40] Analysed open-source tools for their maturity based on function. ✔    2019 

[14] Identified the factors influencing urban energy systems at cluster level.  ✔  ✔  2018 
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[41] An overview on the main aspects of integrated grid based IES modelling.  ✔  ✔  2018 

[42] Investigated the energy flow in multi-carrier ES via a point estimate 

approach.  
✔    2018 

[43] Reviewed the barriers on the polygeneration of integrated gasification 

combined cycle process.   
✔    2018 

[6] Reviewed the EH concepts and applications in various energy-use sectors.  ✔    2018 

[44] Presented an analytical overview on Energy Internet.  ✔  ✔  2018 

[45] Provided an overview of hybrid nuclear-renewable ES’ operations. ✔    2018 

[46] Examined mutually dependent electricity grids and natural gas networks. ✔  ✔  2018 

[47] A review on the adoption of a neighbourhood-scale distributed ES.  ✔    2018 

[48] Examined the development status of power-to-gas technology. ✔  ✔  2017 

[49] Investigated the main structures employed in EH models.  ✔  ✔  2017 

[13] Evaluated the key issues on integrated demand response (IDR) in IES.  ✔  ✔  2017 

[50] Critically studied the links between emerging modern energy concepts.  ✔  ✔  2017 

[51] Addressed issues relevant to the integration of variable RES in long-term ES 

models. 
✔  ✔  2017 

[52] An overview on the suitability and challenges of natural gas and wind power. ✔    2017 

[53] Evaluated the effects of district energy networks on multi-carrier energy 

systems' optimization.  
✔  ✔  2016 

[54] Considered the features, potentials, and barriers of future power systems.  ✔ ✔ ✔  2016 

[17] An overview on the modelling approaches and simulation tools.  ✔  ✔  2015 

[55] Surveyed the strengths, and weaknesses of IES for residential ZEBs.  ✔    2014 

[56] Investigated the integration concepts for CCHP and polygeneration systems.  ✔    2007 

[57] Developed the energy hub concept.  ✔    2007 

[This 

review] 

An all-inclusive analysis of IES structure and modelling approach 

alongside the application of integrated optimization techniques and ML 

applications for optimal and feasible planning of IES. 

✔  ✔ ✔ ✔ 2022 
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1.4  Research Methodology 1 

The research methodology used in this study is outlined in Figure 1. As shown, the 2 

methodology is composed of three important steps. The first step involved literature search 3 

from Scopus, Web of Science (WOS) and ScienceDirect search engines. This search was 4 

conducted by entering the following queries; 5 

1. "Integrated energy system" OR "multi-energy system" OR "Integrated electricity and 6 

gas system") AND "Optimization”. 7 

2. "Integrated energy system" OR "multi-energy system" OR "Integrated electricity and 8 

gas system") AND ("Machine learning" OR "deep learning". 9 

3. "Integrated energy system" OR "multi-energy system" OR "Integrated electricity and 10 

gas system") AND ("Machine learning" OR "deep learning") AND ("Optimization"). 11 

The first, second and third bullet points are queries used in searching for documents related to 12 

optimization techniques in IES, ML models in IES, and Integrated optimization and ML 13 

approaches in IES, respectively. These three sub-topics are elaborated in sections 3, 4 and 5. The search 14 

document also covered documents published between 2007 and 2021.  15 

Also, the results from the search queries were carefully screened, analyzed and filtered as described in 16 

step 2. Such initial screening applies to the title and abstracts. Next, a preliminary content review was 17 

done to ensure the content of each paper matches the goal of this study. Lastly, step 3 involved the 18 

detailed critical analysis of the final selected documents under sections 3, 4 and 5. The result of the 19 

critical analysis is summarized in Section 6. 20 

21 

Fig 1. Survey methodology 22 
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1.5  Paper structure 1 

The rest of the paper is structured as follows; Section 2 presents an overview of IES. Sections 2 

3 and 4 present the various optimization and machine learning techniques used in previous IES 3 

studies. Furthermore, in Section 5, studies with information on integrated optimization and 4 

machine learning techniques in IES were reviewed. Finally, Section 6 concludes the study and 5 

proffers areas for future study. The paper’s structure is graphically illustrated in Fig. 2. 6 

 7 

Fig 2. Structure of the paper 8 
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2. Integrated energy systems (IES) overview 1 

Overtime challenges such as intermittency of renewable resources, huge transmission losses, 2 

energy wastage, huge capital investment, high operation cost, and the need to decarbonize the 3 

transportation and thermal production sector have been associated with standalone renewable 4 

generation. These challenges have led to a paradigm shift towards IES research and 5 

commercialization. The concept of IES was first introduced in 2005 by an ETH Zurich research 6 

team under the caption of a project called "vision of future energy networks". The goal of the 7 

project was to synergize benefits among various energy components [57]. Mancarella [58] gave 8 

a detailed account of IES benefits over operating individual energy infrastructures separately 9 

and elaborated the concept in terms of spatial, multi-service, and multi-fuel perspectives. 10 

Guelpa et al. [36] also presented an in-depth account of IES components such as power 11 

generation, energy conversion, energy storage, IES network connections, and modelling 12 

techniques. In summary, the focus of research communities has shifted towards IES exploration, 13 

and some notable contributions have been made [59]. In addition, many countries have adopted 14 

the concept of IES as a policy to drive the achievement of sustainable energy goals. 15 

2.1 IES strategy adoption as a policy 16 

IES has garnered numerous attention among scholars and policymakers. For instance, the 17 

International Institute for Energy Systems Integration (iiESI) was founded in 2014 to oversee 18 

the development of innovative strategies for the coordination and optimization of energy 19 

infrastructure [60]. Likewise, some countries have proposed diverse energy development 20 

strategies to fully implement IES in the different energy sectors. For example, the United States 21 

Department of Energy (DOE) established the IES development strategy in 2001 to promote 22 

renewable energy adoption and the integration of multi-energy technologies. In 2003, a 23 

research project titled “Vision of Future Energy Networks” was launched in Switzerland to 24 

consider the synergy of multiple energy sectors and their feasibility. In 2009, the Canadian 25 

government pushed the IES strategy based on the promising research output of a project 26 

entitled “Combining our Energies: Integrated Energy Systems for Canadian Communities” 27 

[61]. The German government also released an issue that detailed the technical feasibility of 28 

IES operation in Germany in 2010 [62]. In 2015, the Chinese government depicted its plan 29 

under “Energy Internet” to achieve a clean and efficient energy supply by coupling and 30 

coordinating different energy sectors [63]. The Danish government's aim to reach 100% clean 31 

energy by 2050 is also noteworthy, and implementation has begun with the development of 32 

novel CHP and central heating systems. [64].  33 
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2.2 IES configuration and technological advancement 1 

IES integrates multiple energy carriers. To optimize these carriers and yield the benefits 2 

described in the introductory section, the configuration of this system is subdivided into four 3 

(4) components. These include the energy input, energy hub equipment (conversion and storage 4 

technologies), network configuration, and energy output. Fig. 3 illustrates the components of 5 

IES, while Fig. 4 describes the structure. The descriptions of each component are explained in 6 

the proceeding section. 7 

 8 

Fig 3. A typical Integrated-energy system (IES) architecture 9 

 10 

 11 

 12 

 13 

 14 

 15 
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 1 

Fig 4. Integrated-energy system (IES) Structure 2 

2.3.1 IES input structure 3 

2.3.1.1 Electricity from Grid/ Renewable resources 4 

IES is based on the first law of thermodynamics, which states that "energy can neither be 5 

created nor destroyed but transformed from one form to another." This principle makes IES 6 

dependent on some energy input. The electricity input to the IES is supplied from the grid or 7 

distributed renewable energy resources (DRES). The IES input port is connected to the grid 8 

distribution network via transformer and metering devices when power is imported from the 9 

grid. [65]. This procedure reduces computational stress during the planning of IES components. 10 

However, because DRES has been identified as a promising option for accomplishing GHG 11 

emission reduction targets, it has been prioritized as an electrical input in the IES configuration. 12 

Previous studies on IES modelling have considered utility grid, renewable resources, or both 13 

as the electricity input. However, choosing between the three is based on the study's objective. 14 

For example, Ma, et al. [66] coupled the utility grid with renewable resources as the electricity 15 

input for IES when the power supply by the DRES is insufficient. The study also looked at the 16 

trade-off between grid-connected electricity and renewable energy resources. The findings 17 

showed decreased carbon penalty cost and operation cost due to renewable energy penetration. 18 

Also, Lu, et al. [67] combined municipal grid and photovoltaic as the electricity input for the 19 
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IES to increase the reliability of the input, while Cao, et al. [68] considered the photovoltaic 1 

system as the only electricity input in their model, to minimize carbon emission.   2 

The previous studies show that the selection between utility grid or DRES depends on the 3 

predefined mode of operation of the system, which can be grid-connected or island mode. 4 

Furthermore, because renewable resources are inherently intermittent, stand-alone DRES are 5 

rarely used, which could result in a power supply mismatch. This overwhelming dependence 6 

on the utility grid in IES configuration generates two underlying questions: (1) Is IES 7 

contributing to the decarbonization of the electricity sector? (2) is IES a complete structure of 8 

the energy system as described? The typical approach in the literature is the minimization of 9 

carbon emission costs and the introduction of energy storage. Comodi, et al. [69] proposed an 10 

IES model for achieving low carbon energy communities, which involved introducing DRES, 11 

thermal storage, and district cooling. However, the model still depends on the municipal grid 12 

as part of the electricity input. A clear distinction between zero-carbon and low-carbon 13 

communities must be made in IES modeling at the planning stage to reach zero-carbon 14 

communities. This necessitates further research into making IES carbon-neutral while 15 

preserving a trade-off between investment costs., maintenance, and life cycle, which will 16 

contribute to the feasibility of achieving zero carbon communities. 17 

2.3.1.2 Gas energy input 18 

The distinct attribute of natural and hydrogen gas makes them the second source of energy 19 

input for IES. These gases can be converted to electricity, heat, or both by using appropriate 20 

conversion technologies at a specific temperature and pressure. Natural gas (NG) is a methane-21 

based fossil fuel energy extracted from beneath the earth through a process called fracking. In 22 

contrast, Hydrogen gas (HG) is a fuel gas produced mostly using commercialized methods such 23 

as thermochemical, steam reforming, and electrolysis. [70].  24 

NG and HG have been considered as energy gas inputs in several studies. The conversion 25 

technologies used in the energy hub usually determine the choice. For example, authors in [71-26 

73] selected NG as their input to feed the gas turbine, while in [74-76], HG was chosen as input 27 

to meet the fuel cell demand. While HG has been identified as a clean energy source compared 28 

to NG, the latter still dominates. This is due to the high cost of hydrogen production and the 29 

additional equipment needed when using hydrogen in IES components. For instance, an 30 

electrolyser is required to split water into hydrogen and oxygen, which leads to an increment 31 

in the economic cost. 32 
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Selecting between NG and HG as an energy input requires careful analysis. According to the 1 

Energy Institute  [77], methane leakages through the NG supply chain has contributed to 20% 2 

of global greenhouse gas (GHG) emissions. These environmental challenges associated with 3 

NG make HG a better alternative since it emits low carbon or zero-carbon emission if DRES 4 

is used in the electrolytic process. The benefits of HG over NG were evaluated by Ruming in 5 

[74], who concluded that the introduction of HG gas and its storage make IES a zero-carbon 6 

technology. On the other hand, the production of HG gas requires significant energy input. For 7 

example, water electrolysis requires 50-55kWh of electricity and nine (9) litres of water to 8 

produce 1kg of HG containing 33.33kWh of energy [82]. Its storage also requires high-pressure 9 

tanks of 350-700bar of ample space. Likewise, its high energy density of 120-140MJ/Kg makes 10 

it highly inflammable, posing a risk if installed in a densely populated area [78]. Therefore, in-11 

depth analysis is required before choosing either NG or HG gas as input for IES. 12 

2.3.2 Energy Hub equipment 13 

IES consists of conversion and storage technologies. The conversion equipment converts the 14 

input energy, or the energy generated within the system, from one form to another, while 15 

storage equipment stores the energy for later use. This section describes the trends of 16 

conversion and storage technologies adopted in the literature for IES models. 17 

2.3.2.1 Combined heat and power (CHP) 18 

The research communities and the policymakers have identified the combined heat and power 19 

(CHP) plant as the prominent technology in achieving various energy policy programs. CHP 20 

refers to any equipment that produces heat and electricity simultaneously from one source of 21 

energy input, compared to other energy-generating equipment that losses part of its output as 22 

heat. CHP can recover waste heat supplied to meet the heat demand of the end-users, or it is 23 

used as an energy input for another conversion device. This distinct attribute increases the 24 

efficiency of CHP and results in primary energy consumption reduction of the system[48].  25 

Gas turbine and fuel cell (FC) have been the most studied CHP. NG or biogas is used to power 26 

gas turbines, while most FC utilizes hydrogen. FC has high efficiency compared to other CHP, 27 

and its overall efficiency, including thermal, can be up to 90%. However, the high cost of 28 

investment and maintenance hinders its adoption in practice [79]. Different types of FC 29 

technologies have been developed in recent years. The materials used as electrolyte, operating 30 

temperatures, and efficiencies are the major parameters that differentiate them. The description 31 

of these technologies can be found in [80]. Proton Exchange Membrane PEMFC is the most 32 
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adopted FC for IES due to its availability and its commercialization on a large scale. Authors 1 

in [81] considered reversible solid oxide fuel cell (RSOFC) in their model. This type of FC can 2 

function as a co-generation plant and electrolyser and eliminates the need for electrolyser in 3 

IES components. However, RSOFC is still at the research development level and is yet to be 4 

commercialized. 5 

The selection and determination of CHP capacity have been previously studied based on the 6 

energy demand priority (electricity or heat), the overall efficiencies (thermal and electricity) 7 

and the dispatch factors. Authors in [76] considered the selection of CHP among various 8 

available technologies and the determination of its capacities. CHP can be made to generate 9 

cooling in addition to its default output. This involves the integration of CHP with other 10 

equipment such as absorption or electric chiller. By doing this, the CHP changes to combine 11 

cooling, power, and heat (CCHP) equipment, and several authors used this approach as 12 

described in refs [71, 73, 82-88]. In modelling CHP or CCHP, the modellers relied on the 13 

manufacturer’s data as the parameters for modelling the equipment. For instance, the 14 

coefficient of performance (COP) and the efficiencies were used directly in [84, 87, 89]. This 15 

calls for consideration since the COP and efficiencies are given based on experimental data, 16 

which may vary during the actual operation of the systems. Moreover, the computation of 17 

system COP and efficiencies is based on some measured parameters described in [90], which 18 

are subject to uncertainties since they were measured under controlled conditions. 19 

2.3.2.2 Heating equipment 20 

Heat has been identified as the most significant end-use energy, and it accounts for about 50% 21 

of total energy consumption [91]. While half of it is utilized in the industrial sector, 48% is 22 

used in the building sector for space heating, water heating, and cooking. Various kind of 23 

heating equipment has been considered in the literature. Heat pumps have been considered a 24 

better choice due to high efficiencies than electric heaters and boilers. These pumps help 25 

minimise the operation and maintenance cost but with a high investment cost. The use of 26 

renewable energy heat has recently received great attention. For example, the total solar 27 

thermal capacity installed as of 2017 was 472GWth, which is expected to increase by 20% in 28 

2023 [91], while geothermal installed capacity as of 2017 was 14GW [92]. The increase in 29 

these renewable heat technologies is attributed to the need for low carbon communities. Thus, 30 

various government policies encourage its development. 31 
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The most commonly used heat equipment includes a gas boiler (GB), electric heat pump, and 1 

electric boiler. Nonetheless, GB is the most considered heat equipment because GB has a lower 2 

investment cost than ground source heat pumps, which have a higher coefficient of 3 

performance (COP). Notably, the system COP, efficiency, equipment cost, operation and 4 

maintenance cost, and carbon emission rate are the main factors in determining the selection 5 

of heating equipment in IES research. These factors require careful analysis and are affected 6 

by the main objective of the IES modelling. For instance, GB will not be considered if the 7 

objective is to achieve a zero-carbon model since it utilizes NG. Thus, selecting heat equipment 8 

from their available categories requires careful analysis, contributing to optimal selection and 9 

capacity sizing. 10 

2.3.2.3 Cooling equipment 11 

In the cooling dominated region, the supply of cool air into room spaces is in high demand. 12 

Similar to heating, cooling equipment is required to convert an energy input from a source to 13 

a cooling load demand for various purposes. In IES modelling, the chiller plant is the most 14 

considered cooling equipment due to its application for large space cooling and industrial 15 

application. Vapour compressors and vapour absorption are the main categories of chiller 16 

plants in terms of their processes. For vapour compression chiller, electric power is used to 17 

drive the mechanical compressor to force the refrigerant within the system. On the other hand, 18 

an absorption chiller utilizes a thermal compressor which is driven by a thermal source to move 19 

the refrigerant through the condenser within the system. The thermal energy can be supplied 20 

by a direct fire burner, low or high pressure steam, hot water, or exhaust heat recovered from 21 

the CHP plant [93]. A direct relationship has been established between the thermal source's 22 

temperature and the absorption chiller's performance (AC). For instance, an AC supplied with 23 

hot water of 5000F has a COP of 0.7 compared an AC fed with an exhaust fire of 3300F with a 24 

COP of 1.38 [94]. 25 

Electric chiller (EC) is the most adopted cooling equipment due to its high COP. However, 26 

considering waste heat utiliZation, the authors in [95] used a double effect AC for optimal heat 27 

recovery from the reciprocating engine (RE). Also, the optimal capacity of the AC selected is 28 

larger than the EC in [66] due to the large capacity of CHP, which will produce more thermal 29 

energy. Thus, the consideration of AC as cooling equipment depends on the quality and 30 

quantity of thermal energy available. 31 
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The use of AC in IES modelling has its setback due to low COP compared to an EC [93]. 1 

Likewise, utilizing large space for installation is another major challenge compared to EC. 2 

Moreover, AC requires two energy sources, i.e., power and heat; thus, any fluctuation in the 3 

energy supply sources will lead to inefficiency of the system during operation. In terms of 4 

sustainability, AC uses refrigerants (water or ammonia) and absorbents (lithium bromide or 5 

ammonia) which are less hazardous to the environment. Furthermore, AC is noise-free 6 

equipment compared to EC, making them the ideal equipment when occupants' physiological 7 

comforts are considered during IES modelling. Hence, modelling additional constraints into 8 

capacity sizing and real-time operations are required to model the components. 9 

2.3.2.4 Energy storage equipment 10 

Energy storage systems (ESS) are integral components of IES models. The main function of 11 

ESS is to capture the energy produced when they are not needed or when excess energy is 12 

produced. This stored energy is later used in the required time or fed into a nearby energy 13 

network in exchange for incentives. Some of the benefits of ESS as part of IES components 14 

are increased system reliability, resilience, and performance[48], reduced operating costs of 15 

IES and capacity sizing of IES infrastructure. 16 

In IES models, the common ESSs considered are electrical storage (ES), thermal storage (TES), 17 

and gas storage (GS). Previously, various ES technologies have been developed. These are 18 

electrochemical, mechanical energy, and chemical storage. A detailed review of these 19 

technologies is described in [96]. TES is used to store the output of cooling or heating 20 

equipment. The design of TES depends on the storage duration, which can be short-term 21 

storage (STS) or long-term storage (LTS). The STS is designed to meet the daily thermal 22 

fluctuation needs, while the LTS is designed for long term usages, such as weeks or months. 23 

The TES can also be coupled with a district thermal network for optimal management. A 24 

comprehensive review of TES design, evaluation, and coupling with the district network was 25 

carried out by Guepla and Verda in [97]. Also, the NG or HG produced by the electrolyzer 26 

within the system is stored in the GS. Various technologies available for GS are aquifer, 27 

depleted cavern, line-pack effect, and hydrated-based technology [98]. The selection of these 28 

materials for GS depends on the storage duration, which can also be short-term or long-term. 29 

As HG gas is characterized by high energy density compared to NG, unique materials are 30 

required for its compartment. Kojima [99] reviewed HG storage alloys, carbon materials, liquid 31 

hydride, and nano-composite materials application as hydrogen storage materials. These 32 
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materials were evaluated based on their gravimetric and volumetric hydrogen densities. Kojima 1 

[99] concluded that ammonia is the most suitable material for hydrogen storage due to its high 2 

HG storage density. 3 

For modelling ESS, the key features to consider are the capacity of the ESS unit, energy and 4 

power density, storage efficiency, and life span of the units. These features also affect the 5 

system's investment, operation, and maintenance costs. Thus, a balanced approach is required 6 

in the selection of ESS. For ES, electrochemical storage is the most adopted due to its matured 7 

technology and low installation cost. They are unaffected by geographical location compared 8 

to pumped hydro storage (PHS), which requires water for functionality. Mazzoni et al. [95] 9 

studied the comparison between various electrochemical storage equipment in IES models. The 10 

authors found out that Li-ion batteries are the best options for electrical storage due to their 11 

high round trip efficiency. TES has received enormous attention in the research community 12 

due to its lower cost than ES. The rate of GS penetration in IES is low since the adoption of 13 

FC and electrolyzer usually influences it as conversion technologies in the model. Also, since 14 

the price of NG is usually constant both at the peak demand and off-peak, as in the case of [76, 15 

88, 100], the provision of NG storage will have no economic benefit to the system.  16 

The design of these three ESS forms in IES models is based on the system's state of charge 17 

(SOC), charging and discharging efficiency, and capacity constraints. However, most studies 18 

neglect the effect of ambient temperature and the degradation effects of the ESS model, which 19 

affects the storage efficiency over time [101]. The energy storage ageing effect also influences 20 

the system's performance, especially when it is designed for long service life [102]. This 21 

degradation effect is also applicable to all IES components. However, it is more pronounced in 22 

ESS due to the rapid depletion of the systems caused by some chemical reactions, especially 23 

in electrochemical storage. This necessitates the creation of a precise energy storage ageing 24 

model, accurate self-discharge efficiency estimation, and determining the effect of ambient 25 

temperature in ESS modelling, particularly for IES with long service life. Furthermore, for 26 

large scale and remote areas, applied electrochemical storage may not be feasible due to the 27 

high investment cost and increase in maintenance and replacement costs. As a result, a large-28 

scale analysis of various types of ESS in IES for remote places is required. 29 

2.3.2.5 multi-energy system networks 30 

IES networks serve as interconnectors among various components in IES models. The 31 

networks are the edges or arcs connecting nodes in terms of graph theory. Following this 32 



18 
 

description, each piece of equipment in IES models denotes nodes while the connectors 1 

between them are arcs, and these connectors can either be electric cables or pipelines, as 2 

illustrated in Fig. 5. The IES networks can be classified based on the energy type and location 3 

within the systems. Generally, IES networks are based on the energy carrier type, i.e., electrical, 4 

thermal, and gas networks. IES networks can also be classified based on their location for 5 

detailed analysis. These are the input, components, and supply network. The input networks 6 

are the energy carrier from the energy source, e.g., power grid and gas grid, into the IES models. 7 

The component networks are categorized as the interconnectors within the system components, 8 

which may be of different configurations, while the supply networks serve as energy carriers 9 

from the IES to the end-users. 10 

To model realistic and feasible IES components, the inclusion of IES networks is important, 11 

especially for district multi-energy systems where there is a high tendency for transmission 12 

losses [103]. For the analysis of electric networks in IES models, the approach usually adopted 13 

is the maintenance of voltage magnitude regulation, reactive power, and active power, 14 

especially when it involves electric buses connection. These are achieved by formulating 15 

electrical network constraints using either direct current (DC) or alternating current (AC) 16 

power flow model [103, 104]. Similarly, a hydraulic-thermal model approach modulates 17 

thermal, and gas networks to model nodal balance, head losses, and pressure drops. Details on 18 

this approach can be found in [101]. For effective energy management, smart devices are 19 

installed, which requires optimization. These were considered by Wag et al. [105] for active 20 

distribution networks in IES models. Some of the integrated smart devices considered are 21 

capacitor banks (CB), voltage regulators (VRs), and static var compensation (SVR).  22 
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 Generally, most studies on IES energy networks focus more on optimal operation and 1 

scheduling dispatch. The coupling of the approach with the capacity planning of IES is rarely 2 

explored. Furthermore, the uncertainties associated with the energy network parameters are 3 

rarely considered, while the optimal sizing of the energy networks is another area that has not 4 

been incorporated into IES modelling.  5 

 6 

Fig 5. Integrated-energy system (IES) energy networks [7] 7 

2.3.3 IES output structure 8 

The output of IES depends on the energy demand of the end-users and the type of conversion 9 

technologies. These outputs are electricity, HG or NG, heat, cool air, water, and other demands. 10 

Most consumers' energy demand usually combines two or more energy vector outputs. For 11 

instance, a commercial building may demand electricity for electrical equipment, cooling of 12 

the indoor area, and a hydrogen station for fuelling the hydrogen vehicle. The terminologies 13 

adopted in describing the various combination of IES energy output are described below: 14 

2.3.3.1 Cogeneration 15 

Cogeneration is the production of two energy vectors simultaneously as the output of the 16 

generation system [106]. Though this terminology has been used for CHP equipment in 17 
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situations where the outputs are electricity and heat, IES can be configured to produce different 1 

combinations of two energy vectors depending on the consumer's demand. For instance, an IES 2 

can be designed to generate electricity and cooling by introducing the electric chiller in the 3 

model, as illustrated in Fig. 6. 4 

 5 

Fig 6. Cogeneration output 6 

2.3.3.2 Trigeneration 7 

Trigeneration is the production of three energy vectors simultaneously as output. The term is 8 

used with CCHP when electricity, heat, and cooling are produced simultaneously[66]. The 9 

system can also be configured to produce three different combinations of energy outputs, as 10 

described in Fig. 7. 11 

 12 
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 1 

Fig 7. Trigeneration output 2 

2.3.3.3 Polygeneration 3 

IES is characterized as polygeneration when the energy output is more than three combinations 4 

simultaneously, as shown in Fig. 8. The concept of polygeneration originated from providing 5 

all energy-related demands of the consumer; this can involve the inclusion of electro-fuel 6 

generation or portable water production into the system[107]. In addition, the number of energy 7 

networks at the output of IES does not determine if the system is a polygeneration. For instance, 8 

a system with four (4) networks at the supply side, where two of the networks are electricity 9 

carriers, is not a polygeneration system. 10 
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  1 

Fig 8. Polygeneration output 2 

2.4 Modelling of IES 3 

The modelling of IES involves the optimization of system components at the planning and 4 

operation stage. The optimal selection of available technologies, capacity sizing, and network 5 

configuration are the important factors at the planning stage, while the optimal regulation of 6 

IES dynamics behaviour is the primary consideration at the operation stage. Modelling at these 7 

two stages should be designed to be feasible and realistic while considering optimal primary 8 

energy, economics, and environmental conditions to ensure overall system stability and 9 

integrity. The modelling of IES can be classified into modelling approaches and modelling 10 

techniques, as illustrated in Fig. 9.  11 
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 1 

Fig 9. Integrated-energy system (IES) modelling structure 2 

 3 

2.4.1 Modelling approach 4 

IES requires information like energy demand data, equipment technical parameters, cost 5 

information of the available technologies, energy input data, climate data, energy price, and 6 

carbon emission details to model the system. The modelling approach is the process of 7 

considering how this information will be handled in the IES model. The most common 8 

approaches are: 9 

• Deterministic modelling: This is a simplified approach with less computation time. It is 10 

based on the system's prior accurate and exact information during the modelling stage. 11 

Numerous research works have considered using this approach to prove the novelty of 12 

their techniques. Cheng et al. [108] used a deterministic approach to show the effect of 13 

thermal storage and heating network on IES performance. The study results show that 14 

the proposed method can reduce fuel costs and the capacity of the selected technologies. 15 

Also, a novel deterministic approach for modelling energy hub was proposed by Gotze 16 

et al. [109]. The authors argued that the proposed approach could simplify energy hub 17 

modelling. Furthermore, the authors in ref. [68] considered deterministic approach in 18 

modelling IES for low carbon community with electric vehicle integration (EV). 19 

• Uncertainty modelling: The intermittency nature of renewable energy resources, 20 

fluctuation in energy price, non-static energy demand, and deviation from experimental 21 
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data of energy system during real-time operation have a major impact on IES behaviour. 1 

As a result, the deterministic approach is unsuitable for real-time applications. 2 

Compared to the deterministic approach, the complexity and computational time 3 

required to model a system under uncertainty will be higher, which has attracted many 4 

research efforts in recent times. The two main categories of uncertainty modelling 5 

approaches are stochastic and robust models. The stochastic model is based on 6 

developing a scenario tree by applying a probability distribution function (PDF) on 7 

known deterministic values to unveil the stochastic parameters. However, the main 8 

challenge is that the PDF may be difficult to obtain [110]. On the other hand, the robust 9 

model uses a min-max approach to explain uncertainty without using a probability 10 

function. However, the main challenge with a robust model is that it covers unlikely 11 

events that lead to conservativeness [36, 111]. Comprehensive details and comparisons 12 

between stochastic and robust optimization approaches can be found in [112]. 13 

2.4.2 Modelling techniques 14 

The determination of IES components' optimal selection, sizing, and performance evaluation 15 

is carried out by simulation or optimization techniques. However, due to the limitation of the 16 

simulation approach in terms of optimal capacity selection and sizing, and the determination 17 

of optimal global solution [113], optimization modelling has been the main technique adopted. 18 

The optimization approach entails applying a mathematical technique to describe the complete 19 

system, which is then optimized holistically using the established objective function and 20 

constraints. In literature, modelling techniques adopted are the coupling matrix approach and 21 

energy flow model.  22 

Geldl introduced the coupling matrix approach in 2007, and this approach involves multiple 23 

energy inflows into the energy hub model to generate multiple energy outflows in a steady 24 

state[109]. The energy hub is described as a coupling matrix representing the converter's 25 

efficiencies. The energy transition within the Energy Hub can be calculated and optimized with 26 

this concept for system planning and operation. 27 
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  1 

Fig 10. coupling matrix approach of IES[72]  2 

Due to its simplification and effectiveness, numerous publications have adopted this approach. 3 

The authors in refs. [72, 100] used the coupling matrix approach to apply IES to responsive 4 

loads and demand response (DR) programs. The approach was also adopted in ref. [114] plug-5 

in electric fuel cell vehicle. In addition to the systems, equipment constraints, energy balances, 6 

and variable system efficiencies are included in the model as performance constraints[109]. 7 

However, the coupling matrix approach has some limitations. It has a limited number of 8 

constraints, making it inappropriate for modelling realistic and feasible IES. Secondly, the 9 

energy storage is modelled outside the converter, leading to decreased IES performance 10 

[109]. 11 

3.0 Optimization techniques application in IES research 12 

In a real-world application, strategically employed robust methods are vital in IES optimization 13 

whilst considering the nature of objectives (single or multi-objectives), variables, and 14 

constraints alongside technical and economic parameters of the chosen technologies. The 15 

objective function formulation depends on the objectives of the study, which can be planning 16 

optimization [111], operation optimization [115], or a combination of both. For instance, the 17 

optimization of overall investment cost applies to the planning stage while running cost and 18 

carbon emission optimization is for the operation stage [116]. Thus, this section explores the 19 

application of several optimization approaches in IES as it birthed intensified interest among 20 

researchers. Previous studies showed diverse modelling techniques developed for IES 21 

optimization, ranging from conventional to meta-heuristic methods. The conventional methods 22 

mainly include linear programming, mixed-integer linear programming, and nonlinear 23 

programming, while the meta-heuristic techniques are evolutionary techniques that mimic 24 

biology or evolutionary nature. 25 
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3.1 Conventional mathematical programming techniques  1 

Generally, mathematical programming is an optimization method wherein the objective and 2 

constraints are sets of mathematical functions and functional relationships. The problem is 3 

formulated by describing the suitable objective function to be minimized or maximized, the 4 

application scenario constraints and decision variables bound. For IES research, the nature of 5 

the objective function may be single or multi-objective, while the constraints may be linear or 6 

non-linear. This optimization technique is, however, conventional and often referred to as 7 

classical techniques, which comprise linear programming (LP), mixed-integer linear 8 

programming (MILP), and mixed-integer nonlinear programming (MINLP) [117]. 9 

LP is a broad and vast decision-making tool wherein the objective is a linear function, the 10 

nature of the variables is linear, and the constraints on the decision problem have a linear 11 

relationship. Its result is achieved by finding the minimum or maximum value of the objective 12 

function [118]. A typical LP problem can be expressed in the standard matrix form [119]: 13 

min
𝑥   

𝑓𝑥
𝑇 14 

Such that: 15 

     {
𝐴. 𝑥 ≤ 𝑏

𝐴𝑒𝑞. 𝑥 =  𝑏𝑒𝑞
𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

 16 

where, 𝑓, 𝑥, 𝑏, 𝑏𝑒𝑞, 𝑙𝑏, 𝑢𝑏 are vectors and 𝐴 and 𝐴𝑒𝑞 are matrices. 17 

As regards IES setting, researchers have applied LP models to propose hybrid off-grid energy 18 

systems [120], analyse characteristic regional energy systems with varying renewables [121, 19 

122], optimize energy storage and hybrid power systems and capacities [123, 124], evaluate 20 

future energy-financial plans and incentive policies [125], improve energy schedule [126], and 21 

so forth. To achieve the model results, most objectives tend to minimize cost, maximize profit, 22 

address DR issues or meet energy demands, while some focus on integrating different objective 23 

functions such as import energy, export energy and storage as considered in [126]. Positively, 24 

LP has been a forthright optimization tool in IES applications since it is easy to code and allows 25 

for optimal scheduling. Nevertheless, it is limited to cases where linear functions can be used 26 

to describe the relations among the integrated systems.  27 

In contrast to LP, MILP combines continuous and discrete mathematical modelling techniques 28 

used to detect likely trade-offs between competing objectives. It is also used to address intricate 29 

optimization problems [127]. It is usually applied in IES when describing binary decision 30 
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variables, integers values, and continuous variables in an optimization problem. For instance, 1 

the ON and OFF status of energy equipment, selection, sizing, and location of energy 2 

infrastructure [128]. Authors in [129] optimized the total energy cost and system reliability of 3 

DES via a MILP model to provide an ideal integrated plan which reduced the total cost, CO2 4 

emissions and primary energy use. Omu et al. [130] applied the MILP model to analytically 5 

compare the economic and environmental effects between distributed energy resource systems 6 

(DERS) and centralised ones. The model reduced the annual cost and CO2 emissions and 7 

provided an optimal design for DERS. MILP approach was used in [131] to transform the 8 

optimal scheduling model of an IES whilst considering unit commitment (UC) to coordinate 9 

the energy supply systems and energy storage operation. Similarly, the UC problems of hybrid 10 

power systems (HPS) were solved in [132] through an improved MILP approach based on 11 

hierarchical constraints to promote a higher efficiency of the HPS.  12 

Generally, several computation complexities, chiefly those with large decision variables, have 13 

been tackled via the MILP approach, with cost minimization being the most common objective 14 

function. Thus, it assures global optimality and few iterations since its decision variables are 15 

constrained to be integer values. It is also effective for demand-side management due to its 16 

simple usage and platform support [23]. Nonetheless, the drawbacks of MILP include low 17 

execution time [14], risk of problem high dimensionality [12], non-feasibility for large scale 18 

integrations [25], among others. However, decomposition algorithms like Benders 19 

decomposition [133] and Dantwig-Wolfe algorithm [134] can be applied to enhance MILP, 20 

especially for large scale problems. 21 

The MINLP is a versatile optimization method that integrates the MILP and NLP capabilities 22 

and applies it to objective functions and/or constraints having nonlinear problems alongside 23 

continuous and integer variables [135, 136]. This modelling approach often considers the 24 

feasibility, reliability, flexibility, and optimality of constraints in the design, sizing, and 25 

operation of IES. Previous methods introduced the MINLP solver in a generic algebraic 26 

modelling system (GAMS) software to find out the optimum operation strategies for CHP units 27 

[137], CCHP systems [138], polygeneration systems [139], energy storage systems [140], and 28 

energy hub [141]. It is worth mentioning that these MINLP solvers can operate in both convex 29 

and nonconvex regions. Meanwhile, in the absence of MINLP solvers, linearization and 30 

relaxation techniques are applied to reformulate the model before applying available 31 

commercial solvers [142]. 32 
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3.2 Meta-heuristic methods 1 

Due to the growing diversities and complexities in energy generation, conventional techniques 2 

are gradually fizzling out owing to their inability to deliver optimal solutions within finite time 3 

[143, 144]. Hence, meta-heuristic algorithms have been applied to tackle the challenges of 4 

continuous and nonlinear problems since they are quick and effective for obtaining the global 5 

optimum. Scientifically, these methods can be biology-based, physics-based, sociology-based 6 

and mathematics-based [145], as shown in Fig. 11. Meanwhile, genetic algorithm, particle 7 

swarm optimization, evolutionary algorithm and simulated annealing are the most 8 

implemented meta-heuristics for solving optimization and design problems in IES. 9 

 10 
Fig 11. Meta-Heuristic methods; GA: Genetic algorithm; ABC: Artificial bee colony; GWO: Grey wolf 11 
optimization; ABSO: Artificial bee swarm optimization; WOA: Whale optimization algorithm; PSO: Particle 12 
swarm optimization; SA: Simulated annealing; WDO: Wind-driven optimization; HSA: Harmony search 13 
algorithm; TLBO: Teaching learning-based optimization; ICA: Imperialist competitive algorithm; PSA: Particle 14 
search algorithm; SCE: Shuffled complex evolution 15 
 16 
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4.0 Machine learning and Deep learning (MLDL) applications in IES research  1 

ML is a computer algorithm that learns from previous data to predict future outcomes [146]. 2 

Overtime, ML has become one of the artificial intelligence (AI) techniques explored in the 3 

architecture, engineering and construction (AEC) industry [147]. Generally, the chief ML tool 4 

is an artificial neural network (ANN) [148]. Nonetheless, other ML tools like support vector 5 

machines (SVM) and Gaussian process regressors (GPR) have been used in building energy 6 

studies [149, 150]. Studies show that ML models have been used to predict building energy 7 

consumption [148]. ANN and clustering have proven to be alternative energy analysis tools for 8 

determining energy performance. [151, 152]. GPR has also been used in determining heat, 9 

ventilation and air conditioning (HVAC) loads [148]. A summary of some established ML 10 

models for building energy research is outlined in Figure 12, while further reading on these 11 

models can also be found in [153].  12 

Furthermore, ML algorithms can identify objects in images, transcribe speech into text, match 13 

items with users’ interests, and select useful search results. These applications use a class of 14 

techniques called deep learning (DL) [154]. DL is an ML concept based on ANN. The main 15 

distinction between ML and DL lies in the latter’s ability to recognise images [155]. Also, 16 

unlike ML, DL consists of more than one hidden layer organised in a deeply nested network 17 

[155]. In a broad sense, the convolutional neural network (CNN) and recurrent neural network 18 

(RNN) are the major DL models. However, other DL models like deep belief networks (DBNs), 19 

autoencoders (AEs), and long short-term memory (LSTM) networks also exist [156]. 20 

Previously, DL has been used for estimating building energy use and photovoltaic (PV) power 21 

[146, 157, 158]. Also, DL has been implemented in solar, wind, biomass, and hydro energy 22 

research [159-161]. Figure 13 summarises DL models in renewable energy research, while 23 

further details on DL for solar and wind forecasting are provided in [162].24 
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Fig. 12. ML models for renewable energy applications. 
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 Fig. 13. Deep learning models for renewable energy application    
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Generally, a model’s accuracy is known by determining its errors, and the smaller the error, 1 

the better its’ performance [163]. Some of these metrics include the coefficient of 2 

determination (R2), root mean square error (RMSE), mean bias error (MBE), mean absolute 3 

error (MAE), among others. A comprehensive review of statistical metrics can be found in 4 

Despotovic et al. [177].  5 

Following the success of ML and DL (MLDL) models in building energy research, the 6 

remaining part of this section reviewed studies where MLDL have been applied in IES 7 

research. As a reminder, IES is made of multi-input and multi-output generation. Thus, we 8 

consider extant studies where MLDL have been applied for multi-energy demand prediction, 9 

multi-power generation prediction and multi renewable resources data prediction. The 10 

statistical accuracies of some of these extant models were also presented. Before a review of 11 

the relevant literature (i.e., Section 4.5 to 4.7), we briefly provide an overview of the ML 12 

models used in the identified IES studies;  13 

4.1 Artificial neural networks (ANN) 14 

ANN are computational models designed to mimic the human brain [164]. This model consists 15 

of input, hidden, and output layers and an activation function [165], and the data processing is 16 

performed within the hidden layer [166]. Commonly used ANN are feed-forward network 17 

multi-layer perceptron and radial basis function networks. Importantly, since DL models also 18 

stem from neural networks, other forms of ANN are CNN, LSTM and RNN, among others. 19 

While CNN is designed to process data with multiple arrays, RNN is used for tasks with 20 

sequential inputs [167]. Eqn. (1) shows the general mathematical expression of a neural 21 

network, while Figure 14 shows an overview of an ANN structure, RNN architecture, and CNN 22 

architecture. 23 

= ( )
NH

T i

0 j j

j=1

y v + v g w x


                    (1)            24 

where xi is the input vector x, wj is the weight vector for jth hidden node, v0, v1, …, vNH are 25 

the weights for the output node and y


 is the network output. Also, the function g represents 26 

the hidden node output given in terms of a function.  27 

 28 

 29 
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 1 

Fig 14. (a) artificial neural network (ANN); (b) Recurrent neural network (RNN); (c) 2 

Convolutional neural network (CNN) 3 

Generally, ANN can model large, non-linear, and complex systems. They are fault-tolerant, 4 

robust, and immune to noise [165] and can be used to reduce data dimensionality (Bermejo et 5 

al., 2019). Similarly, DL networks like CNN and RNN produce highly efficient results during 6 

image and speech processing [168]. The drawback of using ANN is that large data is required, 7 

and determining the optimum number of hidden neurons can be challenging [169]. Additionally, 8 

the DL models can be computationally complex and prone to overfitting [170]. Some 9 

renewable applications of ANN are solar radiation forecasting [171], electricity consumption 10 

estimation [152], PV energy prediction [172], wind energy forecasting [173], hydraulic energy 11 

prediction [174] and biofuel applications [165, 175]. 12 

4.2 Support vector machines 13 

The SVM algorithm was developed by Vapnik [176].  Figure 15 presents the structure of a 14 

SVM. For a regression problem, the support vector output (ysvm) is expressed as; 15 
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. ( )+bT

svmy w  =                                 (2)            1 

where w is the weight vector, b is the bias term, and ϴ(χ) represents the non-linear mapping 2 

function that maps δ into higher dimensional feature space.  3 

 4 

Fig 15. Support Vector Machine (SVM) 5 

The SVM is a supervised ML model that estimates based on kernel functions. Different kernel 6 

functions form different SVMs, and this influences its prediction accuracy. The commonly 7 

used kernel functions are linear, polynomial, radial basis and sigmoid. However, the RBF 8 

expressed in Eqn. 3 is the most used in many applications [177].  9 

2
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j eK x x 

− −

=                                  (3) 10 

where σ defines the width of the kernel.  11 

For a support vector, the optimum result is derived when a hybrid approach is used [178]. Such 12 

hybrid SVM is derived using optimization algorithms like Bayesian optimization, grid search 13 

algorithm, firefly algorithm, genetic algorithm (GA), particle swarm optimization (PSO), 14 

among others. In general, SVM is generally implemented using the structural risk minimization 15 
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principle [179]. It has less likelihood of overfitting, and local optimal solution can be easily 1 

obtained. SVM is robust and has high accuracy [166, 178]. Despite its advantages, SVM 2 

implementation requires much computational time and selecting the appropriate kernel can be 3 

challenging.  4 

Furthermore, SVM has been applied in energy research involving solar radiation and energy 5 

prediction [167], wind speed and power estimation [180], biofuel classification [181], 6 

hydropower consumption forecasting [182] among others.  7 

4.3 Random forest (RF) 8 

RF was proposed by Breiman et al [183]. It is a tree ensemble method that simultaneously 9 

grows several decision trees (DT) to reduce the model’s bias and variance [184]. Also, in RF, 10 

the performance of a number of weak learners is boosted via a voting scheme [185]. Bootstrap 11 

resampling, random feature selection, out-of-bag error estimation, and full-depth decision tree 12 

(DT) growing are the main features of RF [186]. Strictly speaking, RF has better accuracy than 13 

most tree-based models [187]. Also, it is invulnerable to over-fitting and has a high tolerance 14 

for noisy data [187]. Interestingly, RF is particularly useful in determining variable importance 15 

in a model [188]. Eqn (4) shows the mathematical expression of RF;  16 

^ 1
( ) = ( )

C

RF i

i=1

c
f x T x

c
                    (4)            17 

where x is the vectored input parameter, c is the number of trees, and Ti(x) is a single regression 18 

tree based on a subset of inputs and the bootstrapped samples.  19 

In renewable energy applications, RF has been used for wind power forecasting [189], building 20 

energy consumption estimation [190], solar radiation prediction [166], biofuel applications 21 

[191] among others. Figure 16 shows the structure of a typical RF.  22 
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 1 

Fig 16. Random forest  2 

4.4 Linear regression (LR) 3 

Linear regression is one of the most often utilized mathematical methods in supervised ML. 4 

[192]. It is considered the easiest ML algorithm for data mining beginners because there is no 5 

requirement for parameter modification. [193]. LR investigates the linear relationship between 6 

a continuous dependent variable and one or more independent variables [194]. The 7 

mathematical expression of the most common LR is; 8 

0 1 1 2 2 3 3 + +...   i i i i p i py x x x x      += + +          (4) 9 

where i represents n observations, yi is the dependent variable, xi is the independent variable, 10 

β0 is the constant term, βp is the slope coefficients of each independent variable, and ε is the 11 

error term. 12 

However, other regression models can be found in Fahrmeir et al. [195]. Generally, LR requires 13 

fewer computing resources and offers a fast prediction speed [193]. It is simple and minimizes 14 

the amount of input data [196]. Nonetheless, LR models can barely meet high-precision 15 

prediction, especially for HVAC loads, influenced by non-linear and uncertain factors. Also, 16 

they cannot accurately predict weather-sensitive loads [193]. Despite its shortcomings, LR is 17 

useful in building energy performance load prediction, solar radiation forecasting [194], wind 18 

forecasting [195], and whatnot.  19 
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4.5 ML in  multi renewable resources data prediction 1 

One of the most important components of building energy studies is gathering data for 2 

renewable energy applications. Previously, Shboul et al. [197] used ANN to estimate global, 3 

direct and diffuse solar radiation alongside wind speed and direction in the Arabian Peninsula. 4 

The input variables were used for solar radiation, clock time, day, month, solar azimuth, solar 5 

altitude, and cloud identification quality. Likewise, clock time, day, month, air temperature, 6 

relative humidity, atmospheric pressure and precipitable water were input parameters for 7 

predicting wind speed. It was observed that the model could efficiently predict the output 8 

variables with correlation coefficient (R) values of over 0.96 and a mean absolute percentage 9 

error (MAPE) that does not exceed 3%. The study also concluded that the Levenberg–10 

Marquardt (LM) ANN function gives a better prediction when compared with the predictions 11 

of the scaled conjugate gradient (SCG) ANN learning functions. Alhussein et al. [198] 12 

estimated short term global solar radiation and wind speed in the United States of America 13 

(USA) using a multi-headed convolutional neural network (MH-CNN). The MH-CNN was 14 

compared to the conventional smart persistent model. The study concluded that the MH-CNN 15 

outperformed the conventional ML models used for comparative analysis. In reality, the 16 

predicted wind and solar data RMSE were reduced by 44.94% and 7.68%, respectively. Also, 17 

[199] used the multilayer perceptron, generalized feedforward, radial basis function and RNN 18 

models to predict wind speed and six other meteorological variables. The other meteorological 19 

variables predicted were relative humidity, sunshine hours, evaporation, maximum, minimum 20 

and dew point temperature, while the input variables were latitude, longitude, solar altitude, 21 

months, temperature, relative humidity, sunshine duration maximum, and minimum pressures. 22 

The study deduced that the DL model (i.e., RNN) outperformed the other ML models. Bamisele 23 

et al.[200] predicted the global and diffuse component of solar radiation using an array of 24 

MLDL models in Nigeria. The precise models used were ANN, CNN, RNN, polynomial 25 

regression, SVM and random forest. The input data for the models were the year, month, day, 26 

hour, ambient temperature, wind, speed, and sun altitude. Apart from SVM, all MLDL models 27 

proved effective for predicting global and diffuse irradiance. However, the best performing 28 

model was RNN, and it had R, RMSE and MAE values of 0.954, 82.22W/m2, and 36.52 W/m2, 29 

respectively. Moreso, an ANN model for predicting the luminous efficacies of direct, diffuse 30 

and global radiation, was developed in [201, 202]. Luminous efficacies have been previously 31 

used to derive irradiance or illuminance data [176]. The input data used were direct 32 

transmittance, atmospheric pressure, solar zenith angle and diffuse fraction. Findings from the 33 
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study showed that ANN can replace conventional empirical modelling techniques for modelling 1 

luminous efficacies. Also, the RMSE for the complex ANN was < 2% for each of the predicted 2 

luminous efficacies. A general finding from the reviewed studies shows that DL are better for 3 

predicting multi-energy demand data. Nonetheless, before using DL, careful consideration 4 

should be made since they can be computationally intensive [200].  5 

4.6  ML in multi-energy demand prediction 6 

The short-term and multi-energy prediction of energy loads is highly desirable for building 7 

energy management. [203] incorporated wavelength transforms (WT) with fixed and adaptive 8 

ML models such as MLP, radial basis functions (RBF), linear regression (LR), and generalised 9 

autoregressive conditional hetero-schedastic (GARCH) to forecast electricity demand and gas 10 

prices in the United Kingdom (UK). The proposed models used electricity demand and supply 11 

alongside gas prices as inputs. It was concluded that combining the WT and adaptive model 12 

improved forecasting accuracy. Moreover, the MF combined with adaptive MLP and GARCH 13 

proved to be the best model for predicting electricity demand and gas price forecast, and these 14 

had normalised RMSEs of 0.02314 and 0.15384, respectively. Zhu et al. [204] proposed a new 15 

hybrid neural network model made of LSTM and CNN  to predict heating, gas, and electrical 16 

loads in combined cooling, heating, and power (CCHP) systems in Beijing, China. The model 17 

input data were environmental factors (i.e., moisture content, humidifying capacity, dry bulb 18 

temperature, and total radiation) and historical heating, gas, and electrical load values. These 19 

data were used to test and train the proposed model in a comparative analysis with 20 

backpropagation (BP) network, ARIMA, SVM, LSTM, and CNN models. The MAPE result 21 

showed that the BP network and SVM's performance is relatively poor compared to CNN and 22 

LSTM. Overall, in comparison with other models, CNN-LSTM has the highest forecasting 23 

accuracy. Precisely, the %MAPE of CNN-LSTM was 0.056, 0.055, and 0.082 for heating, gas, 24 

and electric load, respectively. In a recent and further study, Zhang et al. [157] proposed a 25 

hybrid multi-task learning model, which consisted of a CNN and a sequence-to-sequence 26 

model (CNN-Seq2Seq) to forecast short-time multi-energy load for Zhejiang, China. 27 

Electricity load, day type and meteorological variables were used as input, while the multi-28 

energy load consisted of heating, cooling and electricity demand. According to the comparison 29 

findings with CNN-LSTM, CNN, and LSTM models, the proposed model had the best overall 30 

forecasting accuracy. The results confirmed the feasibility, efficiency, and superiority of CNN-31 

Seq2Seq models in multi-output prediction. Zheng et al. [205] proposed a bi-directional gated 32 

recurrent unit multi-task neural network (BiGRU-MTL) to forecast multi-energy load in an 33 
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IES. The forecasting effect of the proposed model was verified using cooling, heating, and 1 

electricity loads, dry bulb temperature, relative humidity, charging of thermal energy storage 2 

and discharging of thermal energy storage data from the University of Texas at Austin. The 3 

advantage of the proposed model was probed against GRU, BiGRU,LSTM-RNN and DBN. 4 

Findings show the proposed model had the lowest MAPE (i.e., heating 3.253; cooling 1.744; 5 

electricity 1.420) and RMSE values for heating, cooling and electricity loads. It was also 6 

deduced that BiGRU has the second least errors as compared to other models. However, its 7 

accuracy is further increased by the addition of MTL, thereby reducing its MAPE for 8 

forecasting cooling, heating and electricity loads by 9.29%, 26.54% and 10.30%, respectively. 9 

Luo et al. [157] created single and multiple objective models to predict heating, cooling, 10 

lighting load, and BIPV power. The multi-objective models were based on ANN, SVM, and 11 

LSTM. The inputs were hourly weather data, building energy data and building operating 12 

schedules, while the study location was London, UK. A comparative analysis of the single and 13 

multi-objective models showed that although the MAPE of both multi-objective and single 14 

models were quite similar, the multi-objective model reduced the computational time by over 15 

87%. It concluded that the multi-objective ANN model is the best when considering both 16 

prediction accuracy and computational time. In a bid to forecast the net load of the integrated 17 

local energy system, Zhou et al. [206] proposed a multi-energy forecasting framework using a 18 

deep belief network (DBN) with multi-energy coupling in China. The input parameters for the 19 

study were electrical, thermal, and gas loads. For performance comparison, the DBN model 20 

was compared with a DBN model without using multi-energy coupling. The result showed that 21 

DBN with multi-energy coupling reduced the MAPE, RMSE, and coefficient of variation of 22 

root-mean squared error (CV-RMSE) by 3.74%, 8.1% and 4.46%, respectively. Also, the model 23 

outperformed other MLDL models like BP neural network, autoregressive integrated moving 24 

average (ARIMA) and SVM. From the studies reviewed, it can be inferred that predictions of 25 

MLDL models can be improved when made into hybrid models. Furthermore, hybrid models 26 

can further be improved by adding boosters such Seq2Seq. 27 

4.7  ML in multi-power generation prediction 28 

Studies have shown that ML can be applied in multi-energy power generation of hybrid 29 

systems. Qadir et al. [207] enhanced the prediction accuracy of a hybrid PV- wind energy 30 

system using ANN. Weather parameters like solar irradiation, wind speed, ambient temperature, 31 

humidity, precipitation, atmospheric pressure, and wind direction were used for the analysis. 32 

Aside from using ANN for prediction, other ML algorithms were used for feature selection 33 
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(FS). FS exercises have been found to help improve the accuracy of ML models by removing 1 

redundant variables, and this agrees with Quadri et al. [207] findings. Specifically, the linear 2 

regressor was the best model for FS, and it gave a MSE of 0.0000001, MAE of 0.00083, R2 of 3 

99.6% and computational time of 0.02 seconds. Furthermore, Chandrasekaran [208] used ANN 4 

as a decision-making tool for a proposed hybrid renewable energy system composed of PV, 5 

battery and wind turbine.  All components of the system were connected to an electrical grid 6 

with the aid of an inverter. The study concluded that ML algorithms could serve as an 7 

optimization tool for planning and designing power plants to meet energy demand and supply. 8 

Generally, just like the aforementioned applications of MLDL in multi-energy studies, MLDL 9 

is an emerging tool in multi-power generation leading to a scarcity of studies. Such scarcity is 10 

understandable since, more recently, Rahman et al. [209] recommended using ANN and other 11 

DL models in hybrid renewable energy forecasting. The recommendation by Rahman et al. 12 

also shows limited use of MLDL in IES studies.  13 

5. Integrated machine learning and optimization approach in IES. 14 

As described in the preceding section, ML has garnered strong research attention in the energy 15 

field, both in industrial application and academic research exploration. Specifically, ML is used 16 

as a data-driven model in energy-related research and application to predict future expectations 17 

in time series scenarios, regression analysis, or classification purposes. On the other hand, 18 

optimal capacity planning [210], unit commitment scheduling [211], energy network planning 19 

[212], operation scheduling [213], energy market trading [214], active and reactive power 20 

regularization [115] are solved by describing the problems using mathematical modelling 21 

formulations. The problem is formulated by describing the objective function to be minimized 22 

or maximized and the application scenario constraints and decision variables bound. Next, an 23 

appropriate commercial solver (GUROBI or CPLEX) or an improved solver is applied to obtain 24 

the optimal decision variables at the feasible region. Optimization techniques have been a 25 

versatile tool used by engineers and decision-makers for many decades. Compared to the 26 

simulation approach, an optimization formulation can achieve global optimal solution and 27 

provide flexibility in modelling uncertainty parameters randomness [113]. In contrast, the main 28 

drawback of optimization techniques is the computational period and the hardware requirement, 29 

which may affect the overall economic cost [8]. Generally, the computational period of the 30 

optimization algorithm is affected by the hardware properties of the computer, such as the 31 

RAM, processor speed, operation systems, and the number of cores [215]. In addition, the 32 

nature of the optimization problem also contributes to the number of iterations of the problem 33 
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before converging. For instance, an integer problem (IP) is an NP-hard problem that is difficult 1 

to solve by most solvers [216]. In addition to the nature of the problem (either convex or non-2 

convex), the linearity of the problem (linear or non-linear), number of constraints and number 3 

of decision variables [215] are other influencing factors. Hence, for real-time decision making 4 

that is dynamic and requires an ultra-fast response, the application of optimization techniques 5 

become a perplexing task. Whereas, with the availability and accessibility to enriched historical 6 

data, a data driven MLDL model that is suitable for rapid future forecast or output expectation 7 

can be developed using any of the suitable ML techniques illustrated in section 4. 8 

Meanwhile, MLDL also have some shortcomings, which are 1) MLDL is a black-box model 9 

which is usually trained using the trial and error method by tuning the associated parameters 10 

until the desired result is achieved; hence, the global optimality cannot be guaranteed, 2) 11 

MLDL is only suitable for prediction or forecasting, not applicable for decision making or 12 

optimal planning, and 3) while the accuracy of MLDL is determined by achieving the lowest 13 

discrepancy, i.e., the error between the predicted and test data.  During practical application, 14 

the accuracy may deviate from the observed value in real-time. Hence, considering the strength 15 

and weaknesses of these two approaches, few studies have considered their integration to 16 

complement each other. The following section describes works on the integration of ML and 17 

optimization techniques and extends the analysis to its application for IES. 18 

5.1. Machine learning hyperparameter selection using optimization. 19 

The accuracy and reliability of ML models are evaluated by achieving the lowest error. The 20 

value of these errors is affected by the ML hyperparameters such as the number of hidden 21 

layers, number of neurons, selected training algorithm, number of batches, etc. To ensure a 22 

global optimal solution, researchers have adopted the formulation of ML algorithm as an 23 

optimization problem. This is done by defining the selected evaluation metric as the objective 24 

function, formulation of the ML algorithm as constraints, and the definition of the 25 

hyperparameters as a decision variable. A typical example is a simplified ReLU optimization 26 

problem described in eq(5)-eq(9). Where the loss function to be minimised is MSE described 27 

in eq(5) for a feedforward neural network (NN). ReLU activation function is described as 𝑦 =28 

max (0, 𝑤𝑇𝑥 + 𝑏)  where 𝑥 ∈ ℝ𝑛  and 𝑦 ∈ [0, ∞)  denote the input and output of a node, 29 

respectively, while 𝑤𝑇𝑥 + 𝑏 is the preactivation. Parameters 𝑤 ∈ ℝ𝑛 and 𝑏 ∈ ℝ represents the 30 

weight and bias of the node, respectively. A big-M linearization method is introduced to 31 

properly encode the NN problem as a mixed-integer problem (MILP) where LB and UB denote 32 
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the lower and upper bound of the output node to tight the formulation.  This approach is adopted 1 

in [217-219]. However, the evolution algorithm (EA) has been the most applied for ML 2 

hyperparameters tuning [220]. A genetic algorithm (GA) was integrated with the ANN model 3 

to optimize the short-term photovoltaic power forecasting [221]. This was carried out by 4 

formulating the overall ANN as a mathematical problem. Then a GA was used as an optimizer 5 

to select an appropriate combination of ANN hyperparameters. Joaquim et al. [222] developed 6 

an integrated GA-ANN model for short-term electricity load forecasting using Portugal, New 7 

York, and Rio de Janeiro. The proposed method achieved an average percentage error lower 8 

than 2%. Particle Swarm Optimization (PSO) is another inspired nature global optimization 9 

algorithm applied as a hyperparameter tuning optimizer in [223]. PSO was used to optimize an 10 

integrated convolution neural network (CNN) and LSTM energy forecasting model. The 11 

proposed model achieved nearly perfect prediction and the lowest mean squared error. Wang 12 

et al.[224] further proposed an integrated optimizer of simulated annealing (SA) and PSO for 13 

the tuning of SVM hyperparameter in forecasting electricity load.  14 

Remarkably, optimization techniques have been applied extensively to select the best 15 

hyperparameters combination and to achieve the global optimal loss function of ML model, 16 

especially for single load prediction. However, since IES multi-energy demand forecasting or 17 

renewable energy prediction require special attention due to the coupling relationship between 18 

the system, the application of optimization techniques to aid the selection of optimal 19 

hyperparameter settings has not been explored. Although, some studies have proposed some 20 

innovative approaches considering the correlation between multi-energy demand forecasting 21 

in the ML architecture. Another example is Xuan et al. [225] which considered the introduction 22 

of multi-task learning and homoscedastic uncertainty for multi-load energy prediction for 23 

regional IES. The proposed method outperformed CNN and conventional LSTM. However, 24 

the hyperparameter selection was based on the rule of thumb selection which may lead to a 25 

sub-optimal solution. 26 

5.2 Uncertainty estimation and decision making  27 

The intermittency of renewable resources and unpredicted demand fluctuation during real-time 28 

operation cannot be neglected during operation scheduling and planning of IES [111]. In fact, 29 

using the deterministic approach is an obsolete method for IES unless for model verification. 30 

In the literature, these uncertainties are mostly quantified using statistical methods. Then the 31 

output serves as input parameters for the formulated optimization problem [102]. Recently, few 32 
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researchers have applied a generative adversarial network (GAN), and some novel MLDL 1 

approaches for uncertainty quantification in IES. 2 

5.2.1 Generative adversarial network (GAN) 3 

A generative adversarial network (GAN) is a promising DL architecture for data generation 4 

while considering the randomness of the data during real operation. The model has been mostly 5 

applied for image restoration and generation and numerical data scenes generation. It was 6 

introduced by Goodfellow et al. [226] in 2014. The model is made of a generative network 7 

(GN) and a discriminating network (DN). The main idea of the model is a game-theoretic 8 

approach within a deep learning context between GN and DN. The GN acts like a counterfeiter 9 

by generating samples similar to the original data using a random vector as input. On the other 10 

hand, the DN acts like a judge to determine if the data generated by GN is real or fake compared 11 

to the original data. The training continues until the GN can fool DN by generating data that 12 

cannot be identified by DN as fake. Then the trained GN can generate multiple data scenarios 13 

that can serve as input for other analyses. Figure 17 illustrates GAN architecture, while a 14 

comprehensive review of the GAN was conducted by Navidan et al. in [227]. Considering the 15 

advantage of GAN, the approach has been applied in energy-related research. Wang et al. [228] 16 

utilized the Wasserstein GAN approach for photovoltaic and wind power multi-scenario 17 

generation. A time-series GAN was proposed as a controller for smart control of microgrids in 18 

[229], while a realistic building electrical load profiles with uncertainties were generated 19 

through GAN by Zhang et al. in [229]. Similarly, the optimal operation of the hydro-wind-solar 20 

hybrid system in the short term was improved using GAN in [230]. The application of GAN 21 

has also been extended to IES in a few studies. Liao et al. [231] proposed an improved GAN 22 

for multi-energy load stochastic scenario generation. This was combined with an autoencoder-23 

decoder to transform the load curves from high-dimensional to low-dimensional variables. 24 

GAN was developed as IES operating scenario generator in [232]. Similarly, Kong et al. [233] 25 

applied an improved WGN integrated with a gaussian process (GP) for the scenario generation 26 

of IES multi-load. Despite the uncertainty nature that GAN considers compared to other DL 27 

architecture, the approach has rarely been applied on time-series sequential prediction. Also, 28 

considering the limited number of studies that adopted GAN, its application on IES is still open 29 

for more studies 30 
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1 

Fig 17. Generative adversarial Network architecture [230] 2 

5.2.2 Integrated MLDL and statistical scene generation 3 

Aside from using optimization as hyperparameter tuning, few studies have also considered the 4 

integration of ML and optimization techniques for uncertainties estimation instead of using 5 

statistical methods such as Monte-Carlo sampling [234], Latin-hypercube sampling [235], and 6 

non-parametric estimation. An example of such integration is the use of kernel density 7 

estimation during decision making. The approach has mostly been used for time-series 8 

forecasting of renewable power, electricity price, and energy demand. The methodology 9 

adopted for this process is illustrated in Fig. 18. As described, a historical model is used to 10 

build ML time series, forecasting models. The standard deviation (also the mean squared error) 11 

obtained by the model is then used for multiple scenario generation using the normal 12 

distribution function. The aim is that the error series have low autocorrelation with zero mean. 13 

Then the generated scenario is used to update the predicted values, followed by a scenario 14 

reduction approach. The advantage of this approach is that the algorithm considers the non-15 

linear relationship and autocorrelation of the time series and variables compared to pure 16 

statistical methods. In addition, the introduction of stochastic sampling further increases the 17 

reliability of the time-series forecasting by lowering the deviation during real-time. Zeynali et 18 

al. [236] proposed ANN-stochastic based scenario generation model to generate a set of input 19 

for IES home energy management. The ANN was used for time-series forecasting, which is 20 

updated by stochastic scenario generation. Then the energy management was formulated as an 21 

optimization problem for the operation scheduling process. In [237], a first order autoregressive 22 

model is used for wind speed forecasting followed by multiple scenario generation by Monte-23 

Carlo sampling, while the whole wind prediction scenarios is transformed by using aggregated 24 

power curve model.  25 
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 1 

Fig. 18. Integrated ANN and Monte-Carlo Scene generation[236] 2 

In summary, numerous studies have been conducted on integrating uncertainty estimation 3 

using statistical methods and optimal decision making. Hasan et al. [238] presented a 4 

comprehensive review on uncertainty modelling for power systems . However, most of the 5 

highlighted methods in their reviews are statistical approaches that neglect autocorrelation 6 

between variables and sequential influence. Furthermore, the few studies that considered 7 

integrated ML, stochastic, and optimization models for realistic forecasting and decision 8 
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making focused on conventional time series models (ARIMA, autoregressive model) affected 1 

by gradient vanishing and explosion, especially for long-term series model [239], compared to 2 

LSTM. In addition, their model cannot be guaranteed to achieve a global optimal solution since 3 

the hyperparameters were selected based on trial and error. Notably, to the best of the authors' 4 

knowledge, the approach described in this section has rarely been applied to IES and 5 

considering its judicious advantage, the approach is worthy of exploration in IES research and 6 

implementation.  7 

5.3.  Prediction and optimal decision making  8 

Considering the strength of ML for prediction and forecasting and the possibility of achieving 9 

global optimal decision-making on energy systems using a suitable optimization method, the 10 

integration of these two approaches becomes a viable mechanism for the optimal planning and 11 

operation of IES in the island or coupling mode. Without hesitation, numerous contributions 12 

have been made to improve MLDL models՚ accuracy and computational efficiency. Also, the 13 

utilization of optimization techniques in providing solutions to IES decision making has been 14 

well established. Nonetheless, only a few studies have considered the application of the 15 

integrated approach, especially for IES. Although an integrated predict and decide approach 16 

has been presented in [240], a typical innovative example was demonstrated in [241], where a 17 

combination of the autoregressive model and Cholesky decomposition was applied for 18 

prediction purposes. This was followed by optimal decision-making considering consumers' 19 

psychological preferences. However, ML, especially the DL techniques, supersedes the 20 

statistical approach for time-series prediction. 21 

Taheri et al. [242] used a deep RNN for the long-term planning of IES. The DRNN, based on 22 

LSTM with three (3) layers, was proposed for heat and electricity demand prediction. While a 23 

co-optimization and operation planning was formulated as a MILP problem, the day-ahead 24 

energy prediction is fed into the step-by-step optimization problem that GPR facilitates. 25 

Interestingly, the proposed integrated deep learning and optimization algorithm predicted the 26 

energy demand and scheduled the energy hub (EH) for day-ahead operation with a less 27 

computational period. Kong et al. [233] applied GAN for multi-load generation. Then a two-28 

stage robust stochastic optimization was proposed to solve the scheduling problem undertaken 29 

by a multi-energy virtual power plant (MEVPP). Alabi et al. [243] also applied an integrated 30 

approach of deep learning and optimization methods for the optimal prediction and scheduling 31 

of IES. Notably, throughout our literature consultation, we observed that the application of 32 
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integrated ML and OP for prediction and optimal decision making on IES is still at its infant 1 

stage, which indicates a huge research gap that requires further exploration.  2 

6. Conclusion and future research trends 3 

In this section, we presented the summary of our review under each concept for clarification 4 

purposes, and the possible future research directions were identified. 5 

6.1 Review summary 6 

IES has been identified as the substantial approach to achieving deep decarbonization of the 7 

energy sector and the right strategy toward carbon neutrality. Thus, a comprehensive review 8 

spanning its energy components, structure, its modelling approach, and the application of 9 

optimization and MLDL are presented in this study. The review summary is presented below: 10 

1) IES structure is categorised into energy input, energy hub equipment which comprises 11 

conversion technologies, storage technologies and IES networks. The last part is the 12 

IES output structure that is subdivided into cogeneration, trigeneration, and 13 

polygeneration. Specifically, the contributions of various studies on each IES structure 14 

were identified, and the main submission is that the structure depends on the available 15 

technologies, the prosumers or consumers' multi-energy demand patterns, the available 16 

renewable resources, and the objective of the planner, either to minimize carbon 17 

emission or to achieve zero-emission. 18 

2) In this study, the IES modelling is also classified into the modelling approach and 19 

modelling techniques. The modelling approach is the first level when deciding either to 20 

consider the uncertainty or fluctuation associated with IES parameters or deterministic. 21 

Simulation techniques and optimization are categorised under the modelling techniques. 22 

The optimization technique is the most adopted technique due to its flexibility and 23 

ability to achieve global optimal decisions compared to simulation. The optimization 24 

technique is classified into conventional mathematical and meta-heuristics methods, 25 

while a succinct description of their applications was also described.    26 

3) The application of ML and DL in IES research was also presented in this study. The 27 

MLDL applications were reviewed under three categories: multi-power generation 28 

prediction, multi-energy demand prediction, and multi-renewable resources prediction. 29 

The submission was that despite the popularity of MLDL, its application on IES has 30 

not been fully explored, and there is no verified universal framework for executing the 31 

task. 32 
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4) The final part of the review was the application of integrated optimization techniques 1 

and ML approach in IES. This part was reviewed under three subheadings i.e., ML 2 

hyperparameter selection using optimization, uncertainty estimation and decision 3 

making, and prediction and optimization decision making on IES using the integrated 4 

approach.  5 

6.2 future research trend 6 

In respect to the review presented, some noticeable areas for possible future research 7 

exploration are summarized below: 8 

1) A framework that will enable in-depth analysis of IES structure, components selection 9 

and configuration is worthy of development, as this will clearly illustrate the pros and 10 

cons of the approach in terms of feasibility, economic implication, environmental 11 

impact, and the suitability of the approach in terms of carbon neutrality target.  12 

2) Numerous modelling techniques with the consideration of uncertainties influence have 13 

been proposed in the literature. However, a robust model that considers the 14 

uncertainties associated with IES energy network parameters, consideration of IES 15 

degradation (especially storage technologies, real-time COP and efficiency of the 16 

equipment instead of constant parameter), and the consideration of flexibility potentials 17 

will create a pathway towards the feasibility of carbon neutrality. 18 

3) Generally, MLDL has not been extensively applied in IES and the few studies that have 19 

implemented it either for multi-renewable resources or multi-energy prediction only 20 

select the hyperparameters using a trial and error approach. Thus, extensive research on 21 

the suitable MLDL for IES time-series forecasting is still required. 22 

4) Despite the benefits of synergizing optimization and MLDL in IES research, the 23 

application is still at the infant stage. Thus, a universal approach for the integrated 24 

optimization and MLDL while considering the correlation among IES variables, 25 

uncertainty influence on the predicted variables, the optimality of overall process, 26 

especially in terms of convergence speed and optimal decision making, is a promising 27 

future direction.  28 
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