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Abstract

Meta-learning is a branch of machine learning which trains neural network models to
synthesize a wide variety of data in order to rapidly solve new problems. In process control,
many systems have similar and well-understood dynamics, which suggests it is feasible to
create a generalizable controller through meta-learning. In this work, we formulate a meta
reinforcement learning (meta-RL) control strategy that can be used to tune proportional-
integral controllers. Our meta-RL agent has a recurrent structure that accumulates “context”
to learn a system’s dynamics through a hidden state variable in closed-loop. This architec-
ture enables the agent to automatically adapt to changes in the process dynamics. In tests
reported here, the meta-RL agent was trained entirely offline on first order plus time delay
systems, and produced excellent results on novel systems drawn from the same distribu-
tion of process dynamics used for training. A key design element is the ability to leverage
model-based information offline during training in simulated environments while maintaining
a model-free policy structure for interacting with novel processes where there is uncertainty
regarding the true process dynamics. Meta-learning is a promising approach for constructing

sample-efficient intelligent controllers.

Keywords: Meta-learning, deep learning, reinforcement learning, adaptive control, process
control, PID control

1. Introduction

Reinforcement learning (RL) is a branch of machine learning that formulates a goal-
oriented “policy” for taking actions in a stochastic environment [I]. This general framework
has attracted the interest of the process control community [2]. For example, one can consider

s feedback control problems without the need for a process model in this setting. Despite its
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appeal, an overarching challenge in RL is its need for a significant amount of data to learn a
useful policy.

Meta-learning, or “learning to learn”, is an active area of research in which the objective
is to learn an underlying structure governing a distribution of possible tasks [3]. In process
control applications, meta-learning is appealing because many systems have similar dynamics
or a known structure, which suggests training over a distribution could improve the sample
efﬁciencyE] when learning any single task. Moreover, extensive online learning is impractical
for training over a large number of systems; by focusing on learning a underlying structure
for the tasks, we can more readily adapt to a new system.

This paper proposes a method for improving the online sample efficiency of RL agents.
Our approach is to train a “meta” RL agent offline by exposing it to a broad distribution
of different dynamics. The agent synthesizes its experience from different environments to
quickly learn an optimal policy for its present environment. The training is performed com-
pletely offline and the result is a single RL agent that can quickly adapt its policy to a new
environment in a model-free fashion.

We apply this general method to the industrially-relevant problem of autonomous con-
troller tuning. We show how our trained agent can adaptively fine-tune proportional-integral
(PI) controller parameters when the underlying dynamics drift or are not contained in the
distribution used for training. We apply the same agent to novel dynamics featuring nonlin-
earities and different time scales. Moreover, perhaps the most appealing consequence of this
method is that it removes the need to accommodate a training algorithm on a system-by-
system basis — for example, through extensive online training or transfer learning, hyperpa-
rameter tuning, or system identification — because the adaptive policy is pre-computed and

represented in a single model.

1.1. Contributions

In this work, we propose the use of meta-reinforcement learning (meta-RL) for process
control applications. We create a recurrent neural network (RNN) based policy. The hidden
state of the RNN serves as an encoding of the system dynamics, which provides the network
with “context” for its policy. The controller is trained using a distribution of different pro-
cesses referred to as “tasks”. We use this framework to develop a versatile controller which can
quickly adapt to effectively control any process from a prescribed distribution of processes
rather than a single task.

This paper extends McClement et al. [4] with the following additional contributions:

'How efficient a machine learning model is at learning from data; a high sample efficiency means a model
can effectively learn from small amounts of data.
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e A simplified and improved meta-RL algorithm: while [4] required online training, the

meta-RL agent in this work is trained entirely offline in advance.

e Completely new simulation studies, including industrially-relevant examples dealing

with PI controllers and non-linear dynamics; and

e A method of leveraging known, model-based system information offline for the purposes

of training, with model-free online deployment.
This framework addresses key priorities in industrial process control, particularly:
e Initial tuning and commissioning of a PID controller, and
e Adaptive updates of the PID controller as the process changes over time.

e Scalable maintenance of PID controllers across many different systems without case-

by-case tuning.

This paper is organized as follows: In Section [2] we summarize key concepts from RL and
meta-RL; in Section[3|we describe our algorithm for meta-RL and its practical implementation
for process control applications. We demonstrate our approach through numerical examples
in Section 4 and conclude in Section [5]

1.2. Related work

We review some related work at the intersection of RL and process control. For a more
thorough overview the reader is referred to the survey papers by Shin et al. [5], Lee et al. [6],
or the tutorial-style papers by Nian et al. [2], Spielberg et al. [7].

Some initial studies by Hoskins and Himmelblau [8], Kaisare et al. [9], Lee and Lee [10], Lee
and Wong [11] in the 1990s and 2000s demonstrated the appeal of reinforcement learning and
approximate dynamic programming for process control applications. More recently, there has
been significant interest in deep RL methods for process control [12] 13| 14} 15, [16] 17 18].

Spielberg et al. [7] adapted the deep deterministic policy gradient (DDPG) algorithm for
setpoint tracking problems in a model-free fashion. Meanwhile, Wang et al. [19] developed a
deep RL algorithm based on proximal policy optimization [20]. Petsagkourakis et al. [21] use
transfer learning to adapt a policy developed in simulation to novel systems. Variations of
DDPG, such as twin-delayed DDPG (TD3) [22] or a Monte-Carlo based strategy, have also
shown promising results in complex control tasks [23, 24]. Other approaches to RL-based
control utilize a fixed controller structure such as PID [25, 26] 27, 28]; some of these are
applied to a physical system [29, [30] [31].

This present work differs significantly from the approaches mentioned so far. Other

approaches to more sample-efficient RL in process control utilize apprenticeship learning,
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transfer learning, or model-based strategies augmented with deep RL algorithms [32] 21 33].
Our method differs in two significant ways. First, the training and deployment process is
simplified with our meta-RL agent through its synthesized training over a large distribution
of systems. Therefore, only one model needs to be trained, rather than training models
on a system-by-system basis. Second, the meta-RL agent in our framework does not rely
on precise system identification and only a crude understanding of the process dynamics is
required. By training across a distribution of process dynamics, the meta-RL agent learns to
control a wide variety of processes with no online or task-specific training required. Although
the meta-RL agent is trained in simulation, the key to our approach is that the policy only
utilizes process data, and thus achieves efficient model-free control on novel dynamics. A
similar concept has been reported in the robotics literature where a robust policy for a single
agent is trained offline, leveraging “privileged” information about the system dynamics [34].
Most similar to this present work is a paper in the field of robotics where a recurrent PPO
policy was trained with randomized dynamics to improve the adaptation from simulated

environments to real ones [35].

2. Background

2.1. Reinforcement learning

In this section, we give a brief overview of deep RL and highlight some popular meta-RL
methods. We refer the reader to Nian et al. [2], Spielberg et al. [7], for tutorial overviews
of deep RL with applications to process control. We use the standard RL terminology that
can be found in Sutton and Barto [36]. Huisman et al. [37] gives a unified survey of deep
meta-learning.

The RL framework consists of an agent and an environment. For each state s, € S (the
state-space) the agent encounters, it takes some action a; € A (the action-space), leading to
a new state s;11. The action is chosen according to a conditional probability distribution 7
called a policy; we denote this relationship by a; ~ 7(a;|s;). Although the system dynamics
are not necessarily known, we assume they can be described as a Markov decision process
(MDP) with initial distribution p(sg) and transition probability p(s;i1|ss, a;). A state-space
model in control is a special case of an MDP, where the states are the usual (minimal
realization) vector that characterizes the system, while the actions are the control inputs.
However, the present formulation is more general, as we will demonstrate in later sections.
At each time step, a bounded scalar cos ¢, = c(84,a4) is evaluated. The cost function

describes the desirability of a state-action pair: defining it is a key part of the design process.

2In RL literature, the objective is a maximization problem in terms of a reward function. Equivalently,
we will formulate a minimization problem in terms of a cost function.
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The overall objective, however, is the expected long-term cost. In terms of a user-specified

discount factor 0 < v < 1, the optimization problem of interest becomes

] (1)

minimize J(¢) = Ej, 7, [Z 7 he(si, mp(st))
t=1
over all ¢ € R".

In this formulation, & denotes an infinite-horizon trajectory h = (sg, ag, co,- .., SN, aN,CN, - - -)
and the notation h ~ p™ indicates that the policy 7 induces a probability distribution p™ on
the set of such trajectories. Within the space of all possible policies, we optimize over a
parameterized subset whose members are denoted ;. We use ¢ as a generic term for a
vector of parameters: in our application, the individual parameters are weights in a neural
network.

Common approaches to solving Problem involve techniques based on ()-learning
(value-based methods) and the policy gradient theorem (policy-based methods) [36], or a
combination of both called actor-critic methods [38]. Closely-related functions to J are the

Q)-function (state-action value function) and value function, respectively:

Q(st, at) = Eppr,) Z’Yt_lc(sk,ak) 3t>at] (2)

V() = Ennpry | D7 (50, an) St] - (3)

The advantage function is then A(s,a) = Q(s,a)—V(s). These functions help form the basis
for deep RL algorithms, that is, algorithms that use deep neural networks to solve RL tasks.
Deep neural networks are a flexible form of function approximators, well-suited for learn-
ing complex control laws. Moreover, function approximation methods make RL problems
tractable in continuous state and action spaces [39, [40] 41]. Without them, discretization of
the state and action spaces is necessary, accentuating the “curse of dimensionality’ﬂ

A standard approach to solving Problem uses gradient descent:

U =1 —aVJ(y), (4)

where o > 0 is a step-size parameter. Analytic expressions for such a gradient exist for

both stochastic and deterministic policies [36] 40]. However, in practice, approximations are

3The “curse of dimensionality” refers to data sets having exponentially larger “sample spaces”’ as the
number of features grows. The larger sample space requires exponentially more training data to learn from,
reducing the sample efficiency.
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necessary. Therefore, it is of practical interest to formulate a “surrogate” objective that can
be used to decrease the true objective given in (|1).

Trust region policy optimization (TRPO) is an on-policy method for decreasing J with
each policy update [42]. Using the latest policy, whose weights we denote by w44, the

surrogate objective function is defined as

L) = By ot | 22 (500 (5)
The surrogate objective function Ly, ,, quantifies the advantage of the optimization variable,
policy m,;, over the trajectories of the most recent policy, using the old policy my , as an
importance sampling estimator. The keys behind the derivation of TRPO are twofold: 1)
There exists a non-trivial step-size that will improve the true objective J; 2) In order to
decrease the true objective, one must place a constraint on the “difference” between policies
between update iterations. We use the Kullback-Leibler (KL) divergence, defined for generic
probability densities p and ¢ by Dxy(p|lq) = Ezvp [log (M)] The principal result is that

q(=)
there is constant C such that

J(ﬂ-) < L%]d (w) + CD?(%X(W%M? W)

where D™ (m, ) = max Dk (7(s)||7(s)),

and that minimizing this function over ¢ will decrease the true objective J [42]. In practice,
TRPO minimizes L, subject to a hard constraint on Df™ between policy iterates. Regard-
less of this hard constraint, the optimization problem is solved using natural policy gradients,
which requires computing the Hessian of the KL-divergence with respect to the policy pa-
rameters. Thus, the main disadvantage of TRPO is its scalability due to its computational
burden.

Proximal policy optimization (PPO) is a first-order approximation of TRPO [20]. The
main idea behind PPO is to modify the surrogate loss function in Equation such that
parameter updates using stochastic gradient descent do not drastically change the policy

probability density. The new surrogate objective function is the following:

LEFO = E ., [ma { Wic) Ay . (s,a), sat iy (5) 1 Ay (s a }] 6
Yold ('lp) hep wold() X qu)old(s) 'l/f'old( ) )7 7_‘_1//'()1(1(8)7 , € ’l//'old( ) ) ( )
where sat(u;1,e) = u if —e < v —1 < € and sat(u;1,¢) = 1+ €pq otherwise. Despite
being somewhat complicated, the intuition for Equation @ is understood through cases

inside the ‘max’ functions: when A is positive, the term inside the expectation becomes
Ty (s)
Tg1q (5)

max ( 1— e) Ay..(s,a), which puts a limit on how much the objective can decrease;
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Figure 1: A diagram of the meta-RL agent’s interactions with the task distribution p(7T).

the case when A is negative is similar. Either way, the term inside the expectation can only
decrease by making actions more or less likely, depending on if the advantage is positive or
negative, respectively. Moreover, the saturation limits how much the new policy can deviate
from the old one. Trajectories with 7,4 are used to approximate A, ,, which is then used

to approximate and optimize Equation @ using gradient descent.

2.2. Meta Reinforcement Learning

While the algorithms mentioned above can achieve impressive results in a wide range of
domains, they are designed to be applied to a single MDP. In contrast, meta-RL aims to
generalize agents to a distribution of MDPs. Formally, a single MDP can be characterized
by a tuple 7 = (S, A, p, ¢,7); in contrast, meta-RL tackles an optimization problem over a
distribution ppeta(7) of MDPs. Therefore, in the meta-RL terminology, a “task” is simply
all the components comprising a single RL problem. The problem of interest in the meta-RL
setting is a generalization of the standard RL objective in Problem [37]:

minimize Jeta(¥) = Erpena(m) [J (@7 (T, ¥))]
over all ¥ e R"

(7)

Crucially, in the context of process control, meta-RL does not aim to find a single controller
that performs well across different plants. Note that 1* in Equation is the optimal weight
vector in as a function of a sampled MDP 7T and the meta-weights ¥. Meta-RL agents
aims to simultaneously learn the underlying structure characterizing different plants and the
corresponding optimal control strategy under its cost function. The practical benefit is that

this enables RL agents to quickly adapt to novel environments.
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There are two components to meta-learning algorithms: the models (e.g., actor-critic
networks) that solve a given task, and a set of meta-parameters that learn how to update
the model [43] 44]. Due to the shared structure among tasks in process control applications,
we are interested in context-based meta-RL methods [45] 46, 47]. These approaches learn
a latent representation of each task, enabling the agent to simultaneously learn the context
and the policy for a given task.

Our method is similar to Duan et al. [45]. We treat the problem in line as a single
RL problem. For each MDP T ~ p(T), the meta-RL agent has a maximum number of time
steps, T', to interact with the environment, called an episode. As each episode progresses,
the RL agent has an internal hidden state z; which evolves with each time step through the
MDP based on the RL states the agent observes: z; = fg(21-1, $:). The RL agent conditions
its actions on both s; and z;. An illustration of this concept is shown in Figure [l Therefore,
the purpose of the meta-parameters ¥ is to quickly adapt a control policy for an MDP
T ~ p(T) by solving for a suitable set of MDP-specific parameters encoded by z;. This is
why this approach is described as meta-RL; rather than training a reinforcement learning
agent to control a process, we are training a meta-reinforcement learning agent to find a
suitable set of parameters for a reinforcement learning agent which can control a process.
The advantage of training a meta-RL agent is that the final model is capable of controlling
every MDP across the task distribution p(7) whereas a regular RL agent could only be
optimized for a single task 7.

Clearly, the key component of the above framework is the hidden state. This is generated
with a recurrent neural network (RNN), which we briefly describe in a simplified form. An
RNN is a special neural network structure for processing sequential data. Its basic form [48§]

is shown below:

zp=f(Wz_1+Uxy +b) (8)
Oy = VZt +c. (9)

Here W,U,V,b,c are trainable weights, while x; is some input to the network and o; is
the output. f is a nonlinear function. An RNN can be thought of as a nonlinear state-
space system that is optimized for some objective. The characteristic feature of any type of
RNN is the hidden state, which evolves alongside sequential input data. The simple RNN
formulation in Equations [§] and [J] is prone to vanishing or exploding gradients. In practice,
we mitigate these problems by using a more sophisticated form of recurrent layer called the
gated recurrent unit (GRU). GRUs use trainable information gates to control the updates to
a layer’s hidden state which help avoid vanishing gradients, the reader is referred to [49] for

further information on the GRU architecture.
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3. Meta-RL for process control

We apply the meta-RL framework to the problem of tuning proportional-integral (PI)
controllers. The formulation can be applied to any fixed-structure controller, but due to

their prevalence, we focus on PI controllers as a practical illustration.

3.1. Tuasks, states, actions, costs

The systems of interest are first-order plus time delay (FOPTD): their transfer functions

have the form

where K is the process gain, 7 is the time constant, 6 is the time delay, and s is the Laplace

variable (not to be confused with s;, the RL state at time step t). Such models are often good
low-order approximations for the purposes of PI tuning [50]. The formulation in continuous
time is tidy, but in practice we of course discretize Equation (|10)).

A PI controller has the form

C(s) = K. (1+i), (11)
TIS
where K. and 7; are constant tuning parameters. In our numerical work, we used k, = K.
and k; = K./7r instead of K. and 77 in the RL state to improve the numerical stability of
the computationsﬂ

Prior work on RL for PI tuning suggests an update scheme of the form [31]:

(kp, ki| <= [kp, ki] +aV J([ky, ki]) (12)

where the RL policy is directly parameterized as a PI controller. Therefore, in the meta-RL
context, we take the actions to be changes to the PI parameters Alk,, k;].

For simplicity, the MDP state (s;) used by the RL agent to select its actions (updates
to the PI parameters) is based on the standard form of the PI controller. In practice,
different flavours of fixed-structure controllers can be used, including PI controllers in velocity
form and full PID controllers. The MDP state at time step ¢ contains the PI parameters,

the proportional setpoint error and the integrated setpoint error from the beginning of the

t
Sp = {kp,ki,et,/ erT} ) (14)

to

episode, tg:

4The inverse relationship between 7; and the controller output can cause instability early in offline
training, if a poorly trained meta-RL model sets 7; = 0. No similar stability concerns arise when using ;.
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The RL agent is trained to minimize its discounted future cost interacting with different
tasks. The cost function used to train the meta-RL agent is the squared error from a target
trajectory, shown in Equation (15). The target trajectory is calculated by applying a first
order filter to the setpoint signal’l The time constant of this filter is set to the desired closed-
loop time constant, 7. A target closed-loop time constant of 27 is chosen for robustness and
smooth control action, though other choices for 7, could be made by a control practitioner,
such as setting 74 to the process dead time [50]. An L' regularization penalty 3 > 0 on
the agent’s actions is also added to the cost function to encourage sparsity in the meta-RL
agent’s output and help the tuning algorithm converge to a constant set of PI parameters
(rather than acting as a non-linear feedback controller and constantly changing the controller

parameters in response to the current state of the system).

C = (ydesired,t - yt)2 + 61|Akp| + 52|Akz|7 (15)
Ydesired(3> - ﬂe—&e (16)
21s+ 1

Comparing the RL state definition to the RL cost definition, we see similar trajectories
through different MDPs will receive very different costs depending on the underlying system
dynamics in the particular tasks being controlled. In order for the meta-RL agent to perform
well on a new task, it needs to perform implicit system identification to generate an internal
representation of the system dynamics.

The advantages of this meta-RL scheme for PI tuning are summarized as follows:
e Tuning is performed in closed-loop and without explicit system identification.
e Tuning is performed automatically even as the underlying system changes.

e The agent can be deployed on new systems within the task distribution p(7") without
any online training. Further, as shown in Section [4.5] nearly any system can be modified
to be “in-distribution” in this sense.

e The meta-RL agent is a single model that is trained once, offline, so there is no need

to specify hyperparameters on a task-by-task basis.

e The meta-RL agent’s cost function is conditioned on the process dynamics and will

produce consistent closed-loop control behaviour on different systems.

5The filtered setpoint signal is only used to calculate the meta-RL agent’s cost function. The PI con-
troller itself does not use this filtered setpoint signal; the controller uses the unfiltered setpoint signal when
calculating control actions.

10
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This approach is not limited to PI tuning. It can also be applied to other scenarios where
the model structure is known. The agent then learns to behave near-optimally inside each
task in the training distribution, bypassing the need to identify model parameters and only

train on that instance of the dynamics.

3.2. RL Agent Structure
The structure of the meta-RL agent is shown in Figure[2] The grey box shows the “actor”,

i.e., the part of the agent used online for controller tuning. Through interacting with a system
and observing the RL states at each time step, the agent’s recurrent layers create an embed-
ding (hidden state) which encodes information needed to tune the PI parameters, including
information about the system dynamics and the uncertainty associated with this information.
These embeddings essentially represent process-specific RL parameters which are updated as
the meta-RL agent’s knowledge of the process dynamics changes. Two fully connected layers
use these embeddings to recommend adjustments to the controller’s PI parameters. The in-
clusion of recurrent layers is essential for the meta-RL agent’s performance. Having a hidden
state carried between time steps equips the agent with memory and enables the agent to learn
a representation of the process dynamics. A traditional feedforward RL network would be
unable to differentiate between different tasks and would perform significantly worse. This
concept is demonstrated in McClement et al. [4].

Outside of the grey box are additional parts of the meta-RL agent which are only used
during offline training. The “critic” (shown in green) is trained to calculate the value (an
estimate of the agent’s discounted future cost in the current MDP given the current RL
state). This value function is used to train the meta-RL actor through gradient descent
using Equation ({6).

A unique strategy we use to improve the training efficiency of the meta-RL agent is to give
the critic network access to “privileged information”, defined as any additional information
outside the RL state and denoted by (. In addition to the RL state, the critic conditions
its estimates of the value function on the true process parameters (K, 7, and ), as well
as the deep hidden statelﬂ of the actor. Knowledge of a task’s process dynamics, as well as
knowledge of the actor’s internal representation of the process dynamics through its hidden
state, allows the controller to more accurately estimate the value function, which improves
the quality of the surrogate objective function used to train the actor. Equipping the critic
with this information also allows it to operate as a simpler feedforward neural network rather
than a recurrent network like the actor.

The privileged information given to the critic network may at first appear to conflict

6The deep hidden state is the hidden state of the second (i.e. “deeper”) recurrent layer in the meta-RL
agent.

11
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with the advantages of the proposed meta-RL tuning method, since the critic requires the
true system parameters and much simpler tuning methods for PI controllers exist if such
information is known. However, this information is only required during offline training. The
meta-RL agent is trained on simulated systems with known process dynamics, but the end
result of this training procedure is a meta-RL agent that can be used to tune PI parameters
for a real process online with no task-specific training or knowledge of the process dynamics.
The portion of the meta-RL agent operating online contained in the grey box only requires

RL state information — process data — at each time step.

3.8. Training Algorithm

The meta-RL agent is trained by uniformly sampling K, 7, and 6 to create a FOPTD
system and initializing a PI controller with K. = 0.05 and 7; = 1.0. These initial PI tunings
were selected because they result in a very slow control response for any possible system
from the meta-RL training distribution. The ultimate performance of the PI controller can
then be attributed to the meta-RL agent’s tuning rather than a good initialization of the
controller’s parameters. The state of the system is randomly initialized near zero and the
setpoint is switched between 1 and —1 every 11 units of time. The meta-RL agent has no
inherent time scale and so we keep the units of time general to highlight the applicability of
the proposed PI tuning algorithm to both fast and slow processes (allowing time constants
whose orders range from milliseconds to hours).

Section shows the ranges from which the FOPTD model parameters are uniformly
sampled during training. In Section we demonstrate how data augmentation extends the
applicability of training across this range of parameters.

There are two main limitations to the size of the task distribution the meta-RL agent can
effectively be trained across. First, neural network training works best when the features of
interest have a consistent scale. However, for different systems, suitable k, and k; parameters
can vary by orders of magnitude. It becomes very difficult to train a neural network to
effectively process inputs with significantly varying magnitudes (k, and k; are part of the
RL state) as well as produce outputs which vary by orders of magnitude (Ak, and Ak; are
the RL actions). Second, the time scale of the distribution of systems must be reasonably
bounded so there exists a sampling timeﬂ for the meta-RL agent to use which is appropriate
for every system it interacts with. A large MDP time step on systems with fast dynamics
will not allow the meta-RL agent to effectively learn the process dynamics. The transient

response to any setpoint change or disturbance would occur between time steps and not be

"The sampling time referenced in this work is the sampling time for updates to the RL state (which is
also the time increment between updates to the controller gains). This is not the same as the controller
sampling time used to update the control action.

12
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Figure 2: The structure of the RL agent. The control policy used online is shown in the grey box while the
critic used during offline training is shown in green.
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visible to the neural network. On the other hand, a small sampling time on systems with slow
dynamics will cause transient system responses to stretch across many time steps. Recurrent
neural networks struggle to learn relationships in data occurring over very long sequences,

so the ability for the network to identify systems with slow dynamics is reduced if the time

310

step is too small.

Model Parameter K T g
Minimum 0.25 025 0
Maximum 1.0 1.0 1.0

Table 1: The range of model parameters used to train the meta-RL agent.

Algorithm 1 shows the procedure used to train the meta-RL agent. Simulations and
s1is model training were performed in Python 3 using the PyTorch machine learning library [51].
We started with the PPO algorithm as implemented in Open AI’s “Spinning Up” [52] and

modified it to accommodate a recurrent neural network and a distribution of control tasks.

14
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Algorithm 1 Meta-RL Controller Training
Adapted from the documentation of OpenAl’s PPO [52]

Input: Initial meta-policy parameters W, initial value function parameters ¢

1: for each training episode do

2: Sample a batch of n tasks 7; ~ p(T), 1 € {1,...,n}

3: Initialize a buffer to hold state transition data Dy

4: for each 7; do

5: Collect a trajectory h using the current meta-policy mg on task 7;

6: Store h in Dy,

7 end for R

8: Compute advantage estimates A; using generalized advantage estimation [53] and the
current value function V.

9: Divide trajectories into sequences of the desired length, [, for backpropagation through

time.
10: Update the policy by minimizing the PPO-Clip objective using gradient descent:

Z Zma (7T\I/ Cls|3t) A%k(st,at),

heDy t=0 T (as]5)

1\ =
k+1 = arg mm]Dk|T

sat (e, AVex (s, at)>

11: Update the value function to estimate the cost-to-go of an episode using gradient
descent:
1 d N
s — g min L 3 S (V(on ) - B
o |Dp|T e £
€Dy t=0
12: end for

4. Experimental results

4.1. Asymptotic Performance of the Meta-RL Tuning Algorithm

Figure |3| depicts the asymptotic performance of the meta-RL tuning method. The in-
tervals of K, 7, and 6/7 in Table (1] define a 3D box in which each point corresponds to
a different FOPTD system. After using the meta-RL agent to generate a PI controller for
every such system, we could apply a setpoint step from —1 to 1, observe the closed-loop
response (see Figure [4), and compute its mean-squared deviation from the target trajectory
in Equation . The results could, in principle, be used to produce a solid 3D heatmap.
Figure 3| shows two heatmaps sliced from this solid. In the left subplot, K is held constant at
0.5, while 7 and # vary on the horizontal and vertical axes. On the r1ght is held constant
at 0.5, while 7 and K vary on the horizontal and vertical axes. The dark color dominating

both images corresponds to a very small mean-squared error. Lighter shades in the right
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Figure 3: Tracking errors for various FOPTD systems under meta-RL supervision. Each point corresponds
to a unique combination of (K., T,#). Its color shows the corresponding closed-loop system’s mean-squared
deviation from the target response after the meta-RL agent has acted long enough for the PI parameters to
stabilize.

subplot indicate larger MSE values for systems where both K. and 7 are small. The system
for which the MSE is largest is labelled with a red dot. Overall, every system in the given
region of parameter space is well-controlled by the meta-RL tuning algorithm.

Figure 4| depicts the performance in the worst-case and best-case scenarios based on target
trajectory tracking performance selected from Figure |3| In the best-case, the mean squared
error between the meta-RL’s control trajectory and the target trajectory is 0.0004 while
in the worst-case the mean squared error is 0.0300. Even in the worst-case scenario, the
meta-RL algorithm’s PI tunings provide desirable control performance. Table [2| compares
the meta-RL agent’s PI tunings in the worst-case and best-case scenario to the PI tunings
calculated using the improved SIMC PI tuning method [54], which provides near-optimal
tunings for FOPTD systems. In the best-case (which from Figure 3 we see is similar to the
performance across most of the task distribution), there is a 2.99% difference between the
meta-RL PI tunings and the SIMC tunings.

Table 2: Comparison between the meta-RL agent’s PI tunings and those calculated using the SIMC method

[54].

K. 7T
System Meta-RL SIMC Meta-RL SIMC

Best-case (k= 0.5, 7 = 1.0, § = 0.2) 0.876 0.909 1.042 1.067
Worst-case (k= 0.25, 7 =0.25, # = 0.1) 1.227 1.667 0.367 0.283
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Figure 4: System output trajectories for a setpoint change from —1 to 1 using the meta-RL algorithm’s PI
tunings compared to the target trajectories. The worst-case (left) and best-case (right) are selected from the
heatmaps in Figure 3| A trajectory using the initial PI tunings is also shown for comparison.

ss  4.2. Online Sample Efficiency of the Meta-RL Tuning Algorithm
Section showed the asymptotic performance of the meta-RL PI tunings. Another

important consideration is the online sample efficiency of the PI tuning; how fast do the
controller parameters converge? Figure |5/ shows the time for both controller parameters to
arrive within 10% of their ultimate values. The convergence of the tunings depends on the
350 excitation in the system. In our experiments, excitation was created by setpoint changes
every 11 units of time. The convergence speed could be increased with more excitation (or
decreased with less). The meta-RL agent uses a sampling time of 2.75 units of time (i.e. the

PI parameters are updated every 2.75 units of time; 4 times for each setpoint change).
Systems with large process gains and fast dynamics converge quickest, requiring just a
35 single setpoint change (around 10 units of time). Systems with small gains and slow dynamics
take longer to converge, requiring 13 setpoint changes to converge (around 140 units of time).
Figure [6] shows the performance in the worst-case and best-case scenarios based on con-
vergence time selected from Figure 5l Requiring over 13 setpoint changes to near convergence
sounds undesirable, however from Figure [6] we see even in this worst-case scenario, reasonable
0PI tunings are reached after a single setpoint change. The performance continues to improve

with time to more closely match the target trajectory.
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Figure 6: System output trajectories showing the convergence of the controller’s PI parameters over time.
The worst-case (left) and best-case (right) are selected from the heatmaps in Figure H
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Figure 7: Meta-RL tuning with changing process dynamics. Solid lines show the controller parameters and
process output with meta-RL in continuous operation. Fixing K. and 77 at the the values initially produced
by the meta-RL algorithm produces the dash-dot lines shown for comparison.

4.8. Adaptive Control Using the Meta-RL Tuning Algorithm

In continuous operation, the proposed meta-RL tuning algorithm adapts effectively to
changes in process dynamics. Such a change can be viewed as a move to a different location
in the meta-RL agent’s task distribution. Two sample scenarios involving significant changes
to the process dynamics produce the results shown in Figure [/} In the first, 7 ramps up
from 0.4 to 1.0; in the second K steps up from 0.5 to 1.0. In both cases, a forgetting factor,
v = 0.99, is applied to the meta-RL agent’s hidden states at each time step. (This speeds
up adaptation without noticeably affecting performance.) Equation @D can be modified to

show how the forgetting factor is incorporated:
Zt = f(’}/Wthl + U.fCt + b) (17)

The controller’s parameters adapt to the changing system dynamics with very little distur-
bance to the system output (aside from an unavoidable disturbance when the process gain
is suddenly doubled). In the case where the process time constant drifts, the meta-RL’s
adaptive tuning achieves a mean squared error of 0.006 when tracking the target trajectory
through a setpoint change—a 100-fold improvement over the mean squared error of 0.0673
when there is no meta-RL adaptation. For the step change in the process gain, the meta-RL
adaptive tuning achieves a mean squared error of 0.0032 while without adaptive tuning the

mean squared error is 0.0290 (9 times larger).
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4.4. Internal Model Representation
The good simulation results in Sections to suggest that information about the

dynamics of the particular system being controlled must somehow be embedded in method.
To validate the hypothesis that the deep hidden states encode relevant information, we apply
principal component analysis (PCA) to the ultimate deep hidden states of a trained model.
We collect hidden state trajectories from simulations with different process gains and time
constants but a constant ratio 7/6. At the end of the simulations, the model has had time
to converge to the final PI parameters and we expect the hidden states to differ primarily
because of differences in the gain and time scale involved. Therefore, we expect differences
between hidden states associated with different systems to be captured by two principal
components (PCs) with very little loss of information.

Figure |8 confirms this hypothesis. Two orthogonal components capture 98% of the vari-
ance in the ultimate 100-dimensional deep hidden states. Projecting the hidden state into
the plane spanned by these components, we show the process gain and time constant associ-
ated with each observation. The hidden states create a near-orthogonal grid based on these
two parameters, whose variations act in complementary directions. Evidently the meta-RL
model’s hidden states constitute an internal representation of the process dynamics derived
from closed-loop process data in a model-free manner.

The bottom subplot in Figure|§[shows how the deep hidden state evolves over time during
a simulation involving a particular FOPTD system. The hidden states are initialized with
zeros at the start of every episode. This corresponds to a point in lower left corner of the
projected principal-component space, which the top subplot associates with systems having
large process gains. This association is established during the process of training the meta-
RL agent, and it admits a sensible interpretation. The system has “learned” to approach an
unfamiliar process by assuming it has high gain. This leads to small control moves, which
are appropriate until more information can be observed and incorporated into the controller
design. The deep hidden state moves to a final point whose projection is highlighted in the
figure: comparing the heatmaps in earlier subplots confirms that this point is associated with
the correct values of K = 0.75 and 7 = 0.25.

4.5. A simulated two-tank environment

The agent used above also performs well on a simulated version of the practical two-tank
control system detailed in Lawrence et al. [31]. Notable features of this example are the

following:

e The two-tank dynamics are nonlinear and slower than the FOPTD systems used for

training the meta-RL agent. That is, the two-tank system is “out of distribution”.
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e The required operating regimes were not anticipated during training. Indeed, the meta-

RL agent was only trained on step changes of +1 starting from 0.

We show how to apply the meta-RL agent to this novel environment despite these apparent
obstacles. This simulated environment is a reasonable surrogate for a real apparatus: it is
nonlinear, has a cascaded structure (for pump and flow control), and the pump, flow, level
measurements are realizable through the use of filters. These dynamics are detailed in [31]

but summarized here for completeness.

4.5.1. Dynamics of the two-tank system

Symbol  Value or unit Description

Ttank 1.2065 (length) Tank radius

Tpipe 0.125 (length) Outflow pipe radius
fmax 80 (volume/time) Maximum flow

fe 0.61 Flow coefficient
Tpinout,m 0.1, 0.1, 0.1, 0.2 (time) Time constants

g (length /time?) Gravitational constant
l length Tank level

m length Filtered tank level
fin volume/time Inflow

fout volume/time Outflow

D % Pump speed

D % Desired pump speed

Table 3: Parameters and variables for the two-tank system. “Tank” here refers to the upper tank. The
four time constants refer to the pump speed, inflow, outflow, and measured level, respectively. Length is in
decimeters (dm), time is in minutes, volume is in liters. The tank height in our simulation is 12.192 dm.

We consider the problem of controlling the liquid level in an upper tank, positioned
vertically above a second tank that serves as a reservoir. Water drains from the tank into the
reservoir through an outflow pipe, and is replenished by water from the reservoir delivered
by a pump whose flow rate is our manipulated variable. More precisely, two PI controllers
are in operation: For a desired level, one PI controller outputs the desired flow rate based
on level tracking error. This flow rate is then used as a reference signal for the second PI
controller, whose output is the pump speed. The first is referred to as the “level controller”
and the second as the “flow controller”. System parameters, values, and descriptions are given
in Table 3l

The system dynamics are based on Bernoulli’s equation, fou ~ fev/2¢¢, and the conser-

22



435

440

vation of fluid volume in the upper tank:

d

a (Trrgank€> = 7T,'ai?a,nké = fin - fout- (18)

(We use dot notation to represent differentiation with respect to time.) Our application
involves four filtered signals, with time constants 7, for the pump, 7, for changes in the
inflow, 7,y for the outflow, and 7, for the measured level dynamics. We therefore have the
following system of differential equations describing the pump, flows, level, and measured

level:

PP =P (19)
inJin in = Jmax | TA~ 20
Tinfin+ fin = Fnox (705 (20)
7—outfout + fout = 71—Tiipefc V 296 (21)
71-IrtQanké = fin - fOut (22)
T +m = /. (23)
To track a desired leve ¢, we can employ level and flow controllers by including the following
equations:
D= PIﬂow(fin - fin) (24)
fin = PIlevel(Z_ m) (25)

Equations f use shorthand for PI controllers taking the error signals fi, — fin and
¢ — m, respectively. For our purposes, Plgo, is fixed and a part of the environment, while
Plievel is the tunable controller.

This mathematical description is given to provide intuition for our control system. For
the following results, we emphasize that the meta-RL agent was not trained on data from

this environment, yet it iteratively fine-tunes the controller Plieyer.

4.5.2. Adapting the Meta-RL Model to the Two Tank System

While the two-tank system is nonlinear, an accurate first order approximation of the

dynamics relating the level in the tank to the pump flow rate setpoint is:

1.7
G — —13s
() 55s + 1

For a realistic example of how the meta-RL tuning algorithm can be used, we assume

(26)

8Barred variables are used to denote setpoints. For example, ¢ represents the tank level setpoint.

23



445

450

455

460

|
Agent
A _
;Ae 'S Environment
Fm e L o o o o e e e e e e e e e e e e e e e e e e e e = o
! Level Flow sP;en;% Flow Level :
: Setp0|nt Level setpoint FIOW setpoiri Pump_ rate - Tank Output N :
| P Pl " flow " process T
i I
[ -1 [« |
: |
|
. -1 |« I
|

Figure 9: A schematic of the simulated nonlinear two-tank control system corresponding to Equations ([19)
to . The “pump-flow” block is modeled by Equations to (20); The “tank process” is modeled by
Equations to ; the level and flow controllers in Equations and output flow setpoints and
pump speed setpoints, respectively. The meta-RL agent generates incremental changes to the PI parameters
of the level controller.

only a crude approximation of the process’ dynamics is available. The following crude model

will be used to set up the meta-RL tuning algorithm:

~ 1.2

G = 30551
Crucially, the meta-RL agent is still interacting with the full two-tank system, given by
Equations to , and illustrated in Figure @ This model is simply used for data
processing purposes, as we demonstrate below. Equation is only used to facilitate

(27)

discussion about how a crude model compares to an accurate for meta-RL adaptation.

Our objective is to use the meta-RL algorithm to control the tank level around the
operating region of 50-60 cm. First, we need to augment the process data to match the data
distribution used to train the model (centered at 0, ranging from —1 to 1). To do this, we
first apply a constant control action to bring the tank level into the desired operating region
(u = 12 liter/min). Next, all process data has the mean (55 c¢m) subtracted and is scaled
down by a factor of 10. This brings the data the meta-RL agent observes into alignment
with its training distribution. Scaling the data also has the effect of decreasing the gain in
the apparent process model to 0.12.

Next, we adjust the controller gain. The meta-RL algorithm is equipped to handle systems

0.5
0.12?

geometrically centre the model in Equation to appear to the meta-RL agent as a system

with process gains ranging from 0.25-1.0. By scaling the controller’s output by we

with & = 0.5. If the estimated process gain used to set up the meta-RL agent is incorrect
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by any factor between 0.5x to 2.0x, the true process gain will still fall within the task
distribution. In this case, the true process gain of 1.7 appears as a process gain 0.71 to the
meta-RL agent.

Next, we select an appropriate sampling time. By picking a slow sampling time, the tank’s
dynamics appear faster from the perspective of the meta-RL agent. To geometrically center
the time constant in Equation to the meta-RL’s task distribution, we set the sampling
time to every % = 60 seconds. The true time constant of 55 seconds then appears as a time
constant of 0.92 to the meta-RL agent.

Through data augmentation, controller gain adjustment, and sampling time adjustment,
the meta-RL agent’s task distribution can be adapted to many “out-of-distribution” systems
as long as the magnitudes of each parameter can be estimated.

Alternatively, if a meta-RL agent is being created for a particular application where there
is a very coarse understanding of the process dynamics, the agent could be trained across a
wide distribution of possible process dynamics to avoid the need for data augmentation and
directly deploy the meta-RL agent on the system as in the previous examples in Sections
4.1)J4.2][4.3] However, the advantage of direct deployment without data augmentation comes
at the expense of training a meta-RL agent from scratch. Both these meta-RL approaches
avoid the disadvantages of conventional RL methods: the need for very accurate estimates

of the process dynamics or additional online fine-tuning to deal with plant-model mismatch.

4.5.8. Results

Figure [10| shows the tuning performance of the meta-RL agent on the two-tank system.
After just one setpoint change, the meta-RL agent is able to find reasonable PI parameters
for the system, demonstrating it is effective not just on true FOPTD systems, but also on
nonlinear systems which can be approximated with FOPTD models. This example also
contextualizes the sample efficiency of the meta-RL algorithm by providing an example with
real units of time. For a system with a time constant around 1 minute and a dead time
of around 13 seconds, it takes around 4 minutes for the PI parameters to nearly converge.
Figure also shows the performance of the meta-RL agent when there is noise of +£1 cm
added to the tank level measurements. Despite the meta-RL agent not being trained on
systems with noise, we see the agent’s performance is not significantly affected by this change.

This case study shows that the meta-RL algorithm can apply to a very large variety of
processes. While a process model is not needed for the meta-RL algorithm to work, the
magnitude of the process gain and time constant must be known so the process data can
be properly augmented. The task of scaling the gains and process dynamics needs to be

automated for successful industry acceptance and this is an area for future work.
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Figure 10: Performance of the meta-RL tuning algorithm for controlling the water level in a non-linear two-
tank system both with and without measurement noise. The performance without the meta-RL tuning is
also shown as a point of reference.

5. Conclusion

This work presents a meta-RL approach to tuning fixed-structure controllers in closed-loop
without explicit system identification and demonstrates the approach using PI controllers.
The method algorithm can be used to automate the initial tuning of controllers and, in con-
tinuous operation, to adaptively update controller parameters as process dynamics change
over time. Assuming the magnitude of the process gain and time constant are known, the
meta-RL tuning algorithm can be applied to any system which can be reasonably approxi-
mated as FOPTDP]

A major challenge of applying RL to industrial process control is sample efficiency. The
meta-RL model presented in this work addresses this problem by training a model to control
a large distribution of possible systems offline in advance. The meta-RL model is then
able to tune fixed-structure process controllers online with no process-specific training and
no process model. There are two key design considerations which enable this performance.
First is the inclusion of a hidden state in the RL agent, giving the meta-RL agent a memory it
uses to learn internal representations of the process dynamics through process data. Second
is constructing a value function which uses extra information in addition to the RL state.

Conditioning the value function on this additional information, Vj(s, () as opposed to Vy(s),

9The present work focuses on FOPTD systems with 7 > #, however the results could be extended to
dead-time dominant systems by expanding the task distribution p(T).
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improves the training efficiency of the meta-RL model.

Industrial priorities suggest further investigation of the promising meta-RL framework
presented here. For example, the training procedure should incorporate noisy process data
and process disturbances of the sort often seen in real-world settings. The methods stabil-
ity should also be investigated more deeply. (Using RL methods to produce PI parameters
rather than to provide direct control inputs has the advantage of allowing access to known
stability criteria. This is clearly relevant in practice, and may also suggest a feasible ap-
proach to future theoretical work.) The versatility of the meta-RL algorithm could also be
improved by adding derivative action and extending the task distribution to incorporate a
greater diversity of processes, including integrating processes and processes with higher order
dynamics. Moreover, the task distribution could be extended to encompass both different
process dynamics and different control objectives — a complex process may require fast con-
trol for certain control loops and slower, smoother control for others. Finally, to add value
to industry outside of continuous online tuning, we suggest exploring whether the meta-RL
agent can be trained to identify when PID controllers should be retuned and what perturba-
tion is needed for controller tuning (without relying on external sources of excitation, such

as setpoint changes).
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Appendix: Meta-RL Implementation Details

A.1: Hyperparameters used to train the meta-RL network.

Hidden layer size 100
Recurrent cell type GRU
Activation function for feedforward layers | Leaky-ReLLU
Optimizer Adam
Initial learning rate 3 x 1074
Episode length 40 steps (110 time units)
Sequence length for backpropagation 40 steps
Training episodes per epoch 300

Epochs 2500
Discount factor* 0.99

GAE \* 0.95

Policy iterations* Up to 20
Value iterations* 40
Maximum KL divergence* 0.015
Regularization penalty on Ak,, 3; 0.5
Regularization penalty on Ak;, (s 0.5

*These hyperparameters are specific to PPO or RL more generally. The reader is referred to the original
PPO paper by Schulman et al. [20] for further explanation of these hyperparameters.
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A.1: Performance of the meta-RL agent when the value function is trained without information about the
process dynamics (top) vs. with this information (bottom).

Comparison of the Meta-RL Agent’s Performance With and Without Information About the

Process Dynamics During Training

In Section 3.2, additional information outside of the RL state s; used to train the value
function is introduced. To investigate whether this additional information influenced the
meta-RL agent’s performance, an ablation study is conducted. The meta-RL agent’s value
function is trained with and without information about the process dynamics for an equal
number of epochs. The performance of each meta-RL agent is presented in Figure Al.
The meta-RL agent’s performance is significantly better when the value function is trained
with this additional information. The meta-RL agent’s worst-case setpoint tracking error as
measured by the mean squared error from the target trajectory for a step change from —1

to 1 is 0.467 without this information compared to 0.030 with this information.

Sample Trajectories With and Without Regularization in the Reward Function

The cost in Equation includes penalty terms proportional to the size of the parameter

updates proposed by the meta-RL agent. These regularization terms aid in the convergence
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A.2: Performance of the meta-RL agent with and without cost regularization. For regularized trajectories,

B1 = B2 = 0.5 in Equation ; trajectories with no regularization have 57 = Py = 0. The system has
K=057=1.0,0=1.0.

of the PI parameters. Sample trajectories produced by the meta-RL agent trained with and
without this regularization are shown for comparison.
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