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Co-processing biogenic feedstocks allows oil refiners to use their infrastructure while reducing the
carbon intensity of the fuels they produce. Although policies such as British Columbia and California’s
low carbon fuel standards have incentivized refiners to make these lower carbon intensity fuels,
tracking the “green molecules” has proven to be challenging, particularly if the biogenic feedstocks
are inserted at the fluid catalytic cracker. Various models based on commercial fluid catalytic cracker
co-processing data were used to predict the green component (the renewable part) of combusted
coke with these values compared to the results obtained using 14C analysis. As the complexity and
cost of sampling the flue gas made frequent testing impractical, a model that could better predict
the renewable content of the fuels was developed. A combination of process data assessment and
causal discovery significantly minimized prediction errors and provided a more robust model. This
approach, combined with regular 14C validation, is the most practical way to quantify the renewable
content of the fuels when following a co-procesing regime and will likely be needed by both refiners
and policymakers.
Keywords: Tracking green molecules; Co-processing; Decarbonization; Causal discovery; Low car-
bon intensity fuels

1 Introduction
Decarbonizing the transport sector has proven to be challenging
with renewable fuels only contributing around 4% of the world’s
fuels, even after several decades of development1. As “conven-
tional biofuels” such as bioethanol and biodiesel are not “drop-
in”, they have limited potential to decarbonize long distant trans-
port such as aviation, trucking and marine2. To date, drop-in bio-
fuels such as renewable diesel are produced by dedicated “stan-
dalone” refineries, using lipid feedstocks, as exemplified by com-
panies such as Neste3. An alternative approach to making lower
carbon intensity (CI) fuels is to co-process biogenic feedstocks
at existing oil refineries as this approach makes use of existing
infrastructure, downstream supply chains and expertise in pro-
cessing/selling liquid fuels4,5. Co-processing has been fully com-
mercialized in various parts of the world, such as Europe and
North America, with policies such as the low carbon fuels stan-
dard (LCFS) incentivizing the production and use of lower-CI fu-
els6,7.

Currently, co-processing is achieved by feeding oleochemi-
cal/lipid feedstocks, such as fats, oils, and greases (FOG’s),
into various unit operations in existing oil refineries4,8. As the
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global availability of lipids is limited, in the future, it is antici-
pated that biomass-derived biocrudes will supplement lipid feed-
stocks9,10. For example, the Swedish oil company Preem initially
co-processed tall oil at their Gothenburg refinery in 201011. Cur-
rently, they have not only increased their co-processing ratio from
30% to 85%12 and have also commercialized co-processing fast
pyrolysis oils made from sawdust or agricultural residues13.

Progress in this area has been primarily “incentivized” by poli-
cies that require fuel suppliers to reduce the carbon intensities of
the fuels they produce. However, to generate credits, both the
volume of the renewable fraction and its carbon intensity needs
to be quantified. Earlier work has shown that tracking the green
molecules can be quite challenging when biogenic feedstocks are
blended with fossil fuels9,14,15. One problem is the unequal al-
location of green molecules to each fraction combined with the
limited ways in which the renewable content of each stream can
be quantified. For example, ASTM-certified AMS 14C quantifica-
tion is costly, time-consuming and is typically carried out via a
third party. Similarly, sampling the various streams, such as fuel
gases with high H2S content, is challenging and expensive. Con-
sequently, alternative, more user-friendly and cheaper methods
are needed to supplement 14C monitoring with the hope that “soft
sensors” can be established at various points within a refinery so
data can be collected and validated16,17.

As reported previously18, commercial refinery operation data
combined with multiple linear regression and a bootstrap method
was successfully used to establish a “soft sensor” to estimate the
amount of green coke generated during co-processing. These val-
ues were further assessed by comparing the ratio between the bio-
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genic and fossil feedstock flows. However, when the various com-
ponents that were relevant to the amount of coke generated were
also considered, it proved difficult to determine which features
were the most important. For example, statistical features such
as the t value only showed statistical significance as compared to
whether the values made sense for the refining operations, plus,
how many features are required for effective modeling. Although
the model is likely to perform better with the incorporation of
more variables derived from training data, it could be less ef-
fective at predicting unseen testing data due to factors such as
overfitting.

In the work described here, causal discovery analysis was in-
corporated into the model to try to better identify key features as
causal-and-effect variables should contain all the necessary infor-
mation and should be invariant in all situations19. For example,
causal discovery does not need to determine the number of se-
lected features in advance. Thus, the interpretability and robust-
ness of the proposed model should be enhanced due to the intro-
duction of causality analysis. If process-based industries, such as
refinery co-processing biogenic feedstocks, can successfully use
causal discovery-based models to mitigate the limitation of cor-
relation and traditional machine learning algorithms, this should
provide a useful way of tracking the green molecules during and
after co-processing.

2 Methods
To predict the green/renewable molecules present in a particular
refinery stream, after co-processing biogenic feedstocks, a data-
driven model was developed. The model made use of long-term
operational data, with the determined values compared to val-
ues derived by 14C analysis. As AMS isotope 14C analysis is only
available at a few, dedicated labs, combined with the time taken
and the cost associated with analysis, this method is unlikely to
be incorporated into routine refinery lab analysis. However, 14C
analysis is the only method certified by ASTM and it is currently
the method used by refiners who are co-processing biogenic feed-
stocks to quantify the carbon intensities of their processes and
fuels, with the driver that they generate credits under British
Columbia’s and California’s low carbon fuel standard (LCFS)20.

2.1 FCC co-processing and data retrieval using Seeq

As oleochemical/lipid feedstocks are being co-processed by Park-
land at their refinery in Burnaby, British Columbia, Canada14,18,
hourly data has been continuously generated over the last 17
months (as compared to the 12 months of data reported in pre-
vious work) [18]. With the accumulation of more data, the work
reported here also assessed whether the coefficients that were
used previously to calculate the amount of green molecules had
changed in any way. The Seeq datalab was used to connect the
refinery’s process data with open access python library (70% for
training and 30% for testing)21.

As there is no direct way of measuring the coke burn, the re-
ported values were derived from the flue gas as all of the coke
generated is combusted to CO2 and the flow of CO2 is monitored
continuously22. Consequently, we monitored the amount of CO2

in the flue gas and built models to predict the green/renewable
fraction of the flue gas. Essentially, we were trying to build a
reliable and interpretable “soft sensor” that could measure the
renewable content of the coke stream.

As described earlier18,22, the selection of parameters that im-
pacted the amount of coke produced and burned were based on
process knowledge and the FCC heat balance, which is at the core
of the catalytic cracking reactions. For example, just enough coke
is burnt to satisfy the heat demand for the reactions such as heat-
ing the feedstocks, providing heat for the endothermic catalytic
cracking reactions, etc. As discussed below, causal discovery was
used to select model components and they were compared to es-
tablished methods such as correlations.

2.2 Data “pretreatment"
The filtering of the commercial process data included removing
data that was outside of a defined threshold as well as identi-
fying outliers. For example, outliers, such as a lower feed rate,
might be due to a turnaround or an occasional unit upset. Con-
sequently, this data is likely to be not stable/not representative.
Thus, 3-σ limits were used to set the upper and lower threshold
limits. This provided a statistical calculation that refers to data
x within three standard deviations (3σ) of the mean µ. The val-
ues within three standard deviations account for about 99.73%
(P(µ −3σ ≤ x ≤ µ +3σ) ≈ 99.73%) and can usually be consid-
ered as normal operating process data.

Data standardization involves re-scaling the range so that the
standardized data xs has a zero-mean and unit-variance, but
without distorting the differences over the range of x (xs =

(x−µ)/δ).). It is important to standardize the data when com-
paring measurements that have different units since variables
measured at different scales do not contribute equally. For ex-
ample, if one of the features has a broad range of values, the
model outputs may be largely impacted by this particular feature.
In the work reported here, we first removed any outliers and any
data that was beyond the 3-σ limits threshold, then compared the
impact of standardization on the model.

2.3 Causal discovery feature selection from observational
data

In machine learning, when one wants to infer a target variable Y
with a set of variables F , a subset S of F is usually sufficient. Thus,
other variables (subset V ) are not needed. However, when all the
process variables are included, the “soft sensor” will be complex,
possibly leading to overfitting and reduced generalization ability.
Consequently, this influences the accuracy of the online predic-
tion. A subset S that contains all the useful information is called
a Markov blanket MB(Y )23 and it can be summarised in the fol-
lowing equation:

P(Y | F) = P(Y | S,V ) = P(Y | MB(Y ),V ) = P(Y | MB(Y )) (1)

The Markov blanket (yellow zone in Figure 1) contains the par-
ents (the variable that points to the target variable), the children
(the variable that the target variable point to) and the spouse of
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the target variable (another variable that also points to the tar-
get variable). The definition of a Markov blanket comes from the
structural causal model framework and it establishes the optimal
feature subset for the best prediction24. In the work reported
here, we assessed the use of causal discovery to refine feature
selection while comparing it with traditional selection methods
which are typically based on process knowledge or statistical val-
ues such as the t and p values.

Fig. 1 An example of Markov blanket

A criticism of many correlation methodologies such as multi-
ple linear regression is that correlation does not necessarily mean
causation. Consequently, in the work reported here, we assessed
if causal discovery could be used to select specific features. Past
work has shown that causality can be used to obtain an inter-
pretable stable model in complex industrial processes17,25.

To discover causality or identify a Markov blanket from large
amounts of process variables, causal discovery methods are typ-
ically divided into methods based on non-temporal26–28 or tem-
poral observation data29,30. Although the time dimension in the
time series data contains important information that the effect
cannot occur before the cause in time, the results of the time se-
ries data are sensitive to factors such as the frequency of data
collection. As it is difficult to identify high time resolution causal
relations from low time resolution data, causal discovery algo-
rithms based on non-temporal observation data are typically used
to provide a wider range of applications.

For causal discovery algorithms based on non-temporal obser-
vation data, the three predominant kinds of dedicated causal
discovery algorithms are constraint-based26, score-based28 and
casual-function-based27. The constraint-based algorithms con-
struct the causal structure with the conditional independence con-
straint. The score-based algorithms construct the causal structure
using scoring functions and search algorithms to select the best
causal network. The causal function-based algorithms construct
the causal structure using special assumptions regarding the data
generation mechanisms used.

In the work reported here, we used a causal-function-based
discovery algorithm called the Direct linear non-Gaussian acyclic
model (DirectLiNGAM)27. This model algorithm contains three
basic assumptions including a direct acyclic graph(DAG), the re-
lationship between variables is linear, plus the disturbances are
independent and non-Gaussian. For the observation data matrix

X = (x1, · · · ,xd), the structural causal model of DirectLiNGAM can
be represented as follows:

xi = ∑
k( j)<k(i)

bi jx j + ei ⇔ X = BX + e ⇔ X = (I −B)−1e (2)

Assuming the data in this equation is generated by BX +e, B is a
lower triangular matrix, k (i) denotes the causal order of xi, ei de-
notes the noise of xi. The primary goal is to estimate connection
matrix B, causal order k, and disturbance e from the observation
data X . Define a variable with no parents as an exogenous vari-
able, the following lemmas can be used to find the causal struc-
ture.

Lemma127: If x j and its residual r( j)
i =xi −

cov(xi,x j)
var(x j)

x j are inde-
pendent for all i ̸= j, then x j is exogenous variables.

Lemma227: If x j is exogenous variable and define r( j) is a vec-

tor that collects the residuals r( j)
i when all xi of X are regressed

on x j(i ̸= j). Then we can prove that r( j) still satisfies the LiNGAM
model, r( j) = B( j)r( j)+ e( j).

In the DirectLiNGAM model, we can iteratively use Lemma 2 to
find the exogenous variables and place the exogenous variables
at the top until all of the other variables are ordered.

One of the reasons the DirectLiNGAM model was used is that
it guarantees the convergence of the right solution within a small
fixed number of steps if all the model assumptions are met and the
sample size is infinite. It is not based on an iterative search in the
parameter space and needs no initial guesses. It should be noted
that existing causality analysis inevitably introduces false asso-
ciations in the process of causal topology modelling of industrial
process data. Thus, causal discovery algorithms should contain as
much process knowledge as possible as, process knowledge, like
causal orders and connections, can narrow down the search and
result in more efficient learning. Examples of process knowledge
are experience with factors such as complex material flow, infor-
mation (control loop) and energy flow, the physical connection of
multiple devices, etc. The DirectLiNGAM model can integrate this
knowledge into the algorithm, and consequently, provides a more
accurate causal structure.

2.4 Regression models

As mentioned earlier, a soft sensor contains two main components
which include the selection of process variables and the establish-
ment of regression models. One goal of the work reported here
was to determine the ratio between the coefficient of the biogenic
flow and fossil flow in the coke model so that the input (the co-
processing ratio) could be used to estimate the amount of green
coke/green flue gas generated. Consequently, causality-based se-
lection plus linear regression was desirable since it facilitated the
interpretation while maintaining a high prediction performance.
To evaluate the effectiveness of this method against other ma-
chine learning methods, we compared it with correlation-based
selection plus linear regression, coefficient of decision tree-based
selection plus linear regression31, robust regression32, partial
least squares (PLS) regression33 and light gradient boosting ma-
chine (LightGBM) regression34.
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Fig. 2 Framework of causality-based soft sensor

2.5 Causality based green coke soft sensor

Figure 2 summarizes the framework of causality-based green
coke, as determined by the soft sensor. Data “cleaning” involved
the removal of outliers and any data that exceeded the 3σ limit,
plus standardization of the cleaned data. Using this pretreated
data and process knowledge regarding the causality among vari-
ables, the causal discovery was used to identify the causal graph
of coke.

As the correlation scores and the coefficient of decision tree
selection methods do not specify how many features should be
selected, it first appears as though determining the best model is a
trial-and-error process. Thus, to ensure an equitable comparison
with causal discovery, we selected the same variables that were
picked by the Markov blanket.

2.6 Estimation of the uncertainties by bootstrap method

To estimate a probable range, a model containing a bootstrap
was used to determine the ratio between the coefficient of the
biogenic flow and fossil flow in the coke model. As reported pre-
viously18, a bootstrap method can be used to deal with the co-
efficients estimation uncertainties. This was done by repeatedly
taking partial samples, calculating the coefficients, and taking the
average and standard deviation of the coefficients. The average
and standard deviation of the coefficients provided a range of ra-
tios between the coefficient of the biogenic and fossil flow in the
coke model.

2.7 Validation by isotope 14C

One of the motivations of the reported work was that the renew-
able content of the coke stream is not routinely evaluated by the
refinery, partly because this involves the use of 14C, as defined by
ASTM D6866. The few commercial labs able to perform this as-
say typically charge about 500 USD per sample35,36. As refiners
increasingly co-process biogenic feedstocks as one way of decar-
bonizing their operation, quantifying the renewable content of
the finished fuels becomes increasingly important, particularly if

refiners are to obtain credits for their decarbonization efforts.
One way to validate the modeling results is to take flue gas

samples and send them to a third party to quantify their renew-
able content via isotope 14C. However, as well as being time-
consuming and costly, another challenge is that the test results
can sometimes be unrepresentative due to factors such as time
delays, even though the coke generation reaction is rapid.

3 Results and discussion

3.1 Feature importance and selection - less is more

The initial features were selected based on knowledge of the pro-
cess and knowing which factors would have the greatest impact
on the amount of coke generated. To try to quantify the impor-
tance of these features, we used two components, the correlation
scores and the coefficients of decision trees (Figures 3 and 4).

Fig. 3 Correlation of initial selected features

The correlation score is calculated with the Pearson correlation
coefficient, which is used to measure the correlation (linear cor-
relation) between two variables X and Y , with a value between
-1 and 1. 1 means the total positive linear correlation, 0 means
the no linear correlation, and -1 means the total negative linear
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correlation. The definition of Pearson correlation can be given as
follows:

r (X ,Y ) =
Cov(X ,Y )√

Var [X ]Var [Y ]
(3)

where r (X ,Y ) is the Pearson correlation coefficient between X
and Y , Var [X ] is the variance of variable X , Var [Y ] is the variance
of variable Y . Cov(X ,Y ) is the covariance of X and Y . Based on
the correlation score between input variables and total CO2, top
5 varibles with high correlation with CO2 are selected , including
catalyst circulation rate (0.67), catalyst cooler steam (0.56),etc.,
to model total CO2.

Fig. 4 Feature importance of initial selected features

The coefficient of decision trees is calculated based on entropy.
Entropy is a measure of the uncertainty of a random variable. The
definition of entropy can be given as follows:

P(X = xi) = pi, i = 1,2, · · · ,n
H (X) =−∑

n
i=1 pilogpi

(4)

where H (X) is the entropy of random variable X , n is the number
of samples and p is the probability. Here the feature importance
can be understood as the ability to provide reliable information
(uncertainty reduction) in the output CO2 prediction with know-
ing feature X . For example, if we know the value of fossil feed
or catalyst cooler steam, we will be provided with lots of reliable
information to predict CO2, if we know the value of riser quench
or riser temperature, little reliable information will be provided
to predict CO2.

It was apparent that the biogenic feed flow and preheat tem-
perature showed a low correlation with the final coke/CO2 gen-
eration, which contradicts the process itself as the flow of either
stream (the fossil or the bio) will impact the amount of coke/CO2

directly. It was also apparent that the preheat temperature, which
is set by the operator, also impacts the coke yield of the unit as
the amount of coke generate provides heat mainly to heat up the
feeds. This highlighted the limitation of using correlation types of
approaches for feature selection.

In contrast, the features selected by causal discovery, which
were based on process knowledge, appeared to be more robust
(Figure 5). Thus, we established the fossil feed flow rate and bio-
genic feed flow rate as exogenous variables, meaning no other

features could influence the fossil and biogenic feed flow rates as
they are controlled by the operators. Using the Markov blanket
theory (Figure 1), five variables within the Markov blanket of to-
tal CO2, including fossil feed, biogenic feed, preheat temperature,
catalyst cooler steam, and catalyst circulation rate, were selected
to model total CO2. Surprisingly, the riser temperature was not
covered within the Markov blanket, probably as, from a process
point of view, changing the riser temperature likely changed the
product profile. However, it should be noted that the riser tem-
perature is usually set as a constant as it rarely changes.

Fig. 5 Causal discovery of total CO2 with process knowledge

It was also apparent that feature selection was tricky as, intu-
itively, more features should bring in more information and thus
make better predictions. However, this is not true with real data
which typically comes with considerable background noise. Thus,
the more variables used, the more noise generated. It was hoped
that by using the Markov blanket, just enough features were se-
lected, containing just enough information and less noise.

3.2 Renewable coke soft sensors - simpler is superior

It should be noted that the number of features selected is critical
when establishing a soft sensor. Theoretically, since the carbon
source of CO2 is either from fossil or biogenic feed, models based
on these two features should be enough. However, the results
summarised in Figure 6, using R2,RMSE of total CO2 on the test
data (RMSE means the distance between the predicted total CO2

value made by different regression models and the actual total
CO2 value. R2 means how well the predicted total CO2 value
made by the different regression models can explain the variation
in the actual total CO2 value.), show that the model is not reliable
as, in real-world scenarios, where many parameters are changing
without any control, relying on only two features can miss key
information (Figure 6). Therefore, we next compared the models
with the variables selected from a process point of view and com-
pared them with the variables within the Markov blanket. It was
apparent that, with data normalization, this improved the corre-
lation in all three scenarios. However, the improvements were
poorer when only two variables were selected. This showed that
models based on causal discovery had the highest R2 and lowest
RMSE, were more effective, and resulted in a simpler model with
fewer features (selected from the Markov blanket)(Figure 6).

Causal discovery based linear regression also outperformed
when compared with other widely used machine learning algo-
rithms such as correlation based, robust regression based, light-
GBM regression based, PLS regression based and decision tree
feature importance based soft sensors, as summarized in Figure 7.
The causal discovery based linear regression soft sensor had the
simplest structure, with the least features selected, and performed
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better (lowest RMSE:494, and highest R2:0.95) when compared
to all of the other methods.

Fig. 6 Prediction performance index (R2,RMSE) of different linear re-
gression methods

Fig. 7 Prediction performance index (R2, RMSE) comparison of causal
linear regression method with traditional machine learning methods

As discussed in the next section, we also hoped to use the ratio
derived from the model to evaluate the green component of the
streams.

3.3 Bootstrap regression coefficient analysis
As previously discussed, using causal discovery based regression
methods can provide coefficients for both the fossil and biogenic
feed and the ratio can be further used to infer the amount of
green molecules in the products. However, the estimation of the
coefficients can differ when the selection of training data varies.
Therefore, using the bootstrap method and running each model
1 million times, generated a normal distribution for both the fos-
sil and bio feed. This was used to calculate the 95% confidence
interval (Figure 8).

The coefficient and 95% confidence interval of fossil and bio-
genic feed flow determined using the different methods are sum-
marised in Table 1. Since the causal features using the standard-

ization soft sensor showed the best performance, it is very likely
that the coefficient and confidence interval used are optimum.
Thus, by using this model, we could infer that increasing 1 unit
of the fossil feed led to a 0.68 unit increase of burnt coke and,
increasing 1 unit of biogenic feed resulted in a 0.43 unit increase
of burnt coke. As the ratio between the coefficient of the biogenic
and fossil feed flow was 0.63. Thus, within the 95% confidence
interval, the lower bound ratio was 0.55 and the upper bound ra-
tio was 0.72. Thus, theoretically, we should be able to determine
the amount of green molecules when the feed ratio is known. To
further validate the model the values obtained were next com-
pared with the 14C values that were determined for the samples.

Fig. 8 Coefficient and 95% confidence interval of fossil and biogenic feed
flow with bootstrap

3.4 Isotope 14C validation and possible strategies for refin-
ers and policymakers

14C tests were conducted when a 16.2% co-processing (biogenic
feed) ratio was used. As the biogenic carbon, as determined by
this method, was 10.59% ± 0.06% and 10.51% ± 0.06% after
duplicate assays, the ratio of the 14C assays can be represented
as:

test1 ratio :
10.59%
16.2%

(100−10.59)%
(100−16.2)%

≈ 0.65
1.07

≈ 0.61

test2 ratio :
10.51%
16.2%

(100−10.51)%
(100−16.2)%

≈ 0.65
1.07

≈ 0.61

These results indicated that the 95% confidence interval within
the causal featured soft sensor (0.55-0.72) captured the results
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Table 1 Coefficient and 95% confidence interval of fossil and biogenic feed flow in different methods

coefficient fossil bio ratio (bio/fossil) 95% confidence lower bound 95% confidence upper bound
Two features without standardization 1.18 1.07 0.91 0.89 0.92
All features without standardization 0.72 0.54 0.75 0.63 0.90
Causal features without standardization 0.63 0.57 0.90 0.75 1.09
Two features with standardization 0.94 0.76 0.81 0.78 0.85
All features with standardization 0.72 0.46 0.64 0.54 0.76
Causal features with standardization 0.68 0.43 0.63 0.55 0.72
Isotope 14C 1.07 0.65 0.61

obtained by the two 14C tests (0.61) with the error between the
soft sensor (0.63) and 14C assay (0.61) at about 3.3%.

In the future, as refineries will likely be asked to reduce their
scope 1,2 and 3 emissions, quantifying the “green” component of
flue gas will become increasingly important (scope 1 emissions).
As there is currently no online monitoring equipment that pro-
vides quantification of the “green” component, intermittent 14C
analysis is the only way to quantify the “green” fractions with the
assay only providing a “snapshot” of operations.

As refineries are increasingly under pressure to decarbonize,
co-processing biogenic feedstocks provides one way to make use
of the equipment and expertise within a refinery while producing
lower carbon-intensive (CI) fuels. However, tracking and quan-
tifying the amount of “green” molecules in the various streams
is problematic with 14C monitoring the only method accepted by
policies such as California and BC’s Low Carbon Fuels Standard
(LCFS).

However, a combination of process data assessment and causal
discovery significantly minimized prediction errors and could pro-
vide a more robust model. This approach, combined with regular
14C validation, is likely to be the most practical way to quantify
the carbon intensity of processes and fuels when following a co-
processing regime with this method used by refiners and, hope-
fully, supported by policymakers.

4 Conclusions
Co-processing biogenic feedstocks will accelerate the decar-
bonization of transport fuels while leveraging global refining and
their downstream supply chains. However, quantifying the re-
newable content of the various co-processed streams currently
relies on sporadic 14C monitoring which is expensive and only
provides a “snapshot” of refinery operations and products. A com-
bination of process data assessment and the use of the causal dis-
covery model can be used to significantly minimize prediction er-
rors and provide representative data. This approach, combined
with regular 14C validation, is likely to be the most practical way
to quantify the carbon intensity of processes and fuels. The “fewer
features based model” performed better than models with more
features, likely due to the addition of less “noise” from more un-
causal variables. The simple linear causal models performed bet-
ter than other, typical, machine learning algorithms.
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