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Abstract: Tree-based ensemble models are easy to implement and have been widely used
in various fields. However, they have limitations in industrial process applications since the
majority of tree-based ensemble models are prone to over-fitting. In addition, the internal
structure of tree-based ensemble models is very complex and the output of the model is also
difficult to explain, which makes its application in industrial soft sensors very challenging. The
purpose of this work is to build accurate and interpretable soft sensors for industrial processes.
First, to deal with overfitting, a robust tree-based ensemble model and extremely randomized
trees are used to build accurate soft sensors. Then, to improve model interpretability, an
interpretable machine learning algorithm, namely Shapely additive explanation, is used to infer
the global and local contributions of each feature to the predictions. Finally, the effectiveness
of the proposed algorithms is validated on real industrial fluid catalytic cracker unit data.
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1. INTRODUCTION

In modern industrial processes, it is necessary to monitor
a large number of critical variables that are closely related
to the process safety and economic benefits (Gopaluni
et al. (2020)). These critical variables are called quality
variables. However, some quality variables are difficult or
expensive to measure by sensors in real-time, which poses
challenges for the monitoring and control of industrial
processes. To achieve real-time monitoring of quality vari-
ables, data-driven soft sensors are proposed to estimate
the difficult or expensive to measure quality variables from
easily measured process variables (Zhu et al. (2020)).

With the development of big data approaches and in-
creasing computing power, tree-based models (including
decision trees (DT) (Kotsiantis (2013)), random forests
(RF) (Ho (1995)), light gradient boosting machine (Ke
et al. (2017)), extremely randomized trees (ET) (Geurts
et al. (2006)), etc.) have been widely used in various fields.
Compared with statistical models, tree-based models are
easy to implement, and the accuracy of the models is often
significantly better. During the past decade, almost all
winners of Netflix competitions, Kaggle competitions, etc.,
utilized tree-based ensemble models in their solutions.

However, these algorithms have limitations in industrial
process applications since modern industrial processes are

often characterized by high dimensions, multi-collinearity,
and strong noise (Cao et al. (2022)). For example, the
well-known decision tree algorithm recursively splits the
training data based on the decision nodes. The optimal
split is determined by maximizing a certain score function.
The score function is sensitive to the training data. Some
minor modifications to the original dataset result in an
entirely different decision tree, which makes it difficult to
generalize.

The decision tree is fairly easy to understand and imple-
ment. However, just one tree is not enough to produce valid
results. A random forest consists of many decision trees,
and there is no relationship between different decision
trees. It randomly selects features for each decision tree,
then averages the result (regression) or performs a major-
ity voting (classification). A large number of uncorrelated
decision trees will produce more accurate predictions than
a single decision tree. But, the random forest model is
prone to over-fitting due to the characteristics of industrial
processes. Some studies have shown that random forests
often overfit in the presence of noise (Biau (2012)).

To further avoid over-fitting, extremely randomized trees
are proposed. ET is a tree-based ensemble method that
uses a different type of decision tree compared to the
random forest. It is superior to the random forest in
terms of generalization and has outstanding performance



when having redundant and noisy features. ET is similar
to random forests but more robust and faster as it uses
stronger randomization when splitting its decision tree
node. We will describe the ET in detail in section 2.

Although tree-based ensemble models have achieved good
results in many fields, little attention has been paid to
explaining their predictions. These models have a common
problem: the internal structure is very complex, which
is difficult for humans to understand. The output of the
model is also difficult to explain, which makes its appli-
cation in some areas related to life safety or important
decision-making very risky. Due to the risk-sensitive na-
ture of industrial processes, the reliability and stability of
soft sensors are essential for industrial applications. The
ability to interpret soft sensor predictions can increase
the reliability of soft sensors predictions. Therefore, it is
crucial to understand the behaviour of the model and the
important factors that affect the decision-making of the
model through model interpretation (Du et al. (2019)).

Interpretable machine learning is a popular field of ma-
chine learning research (Murdoch et al. (2019)). An inter-
pretable model is one that can estimate the contribution
of each input feature to the model predictions. Shapley
value is a concept based on the game theory proposed by
economist Lloyd Shapley (Kuhn and Tucker (2016)). Its
core idea is to fairly distribute the contributions of each
player in a game, and then explain the black-box machine
learning model from both global and local levels. If the
Shapley value attribution is represented as a linear addi-
tive feature model, then it will be Shapley additive expla-
nations (SHAP) model (Lundberg and Lee (2017)). It has
a wide variety of applications as well as solid theoretical
guarantees (consistency, local accuracy, and missingness)
(Molnar (2020)). In this work, we use SHAP to explain
ET-based soft sensor predictions, where the player is the
input to the soft sensor, the game is the prediction of the
soft sensor, and the SHAP value is the contribution of each
input to the prediction.

This work aims to establish robust and interpretable in-
dustrial soft sensors based on extremely randomized trees
and SHAP. The remaining part of this article is organized
as follows. In Section 2, detailed explanations of extremely
randomized trees and SHAP are given. Then, robust and
interpretable inferential sensors are put forward with de-
tailed implementation procedures. Section 3 presents a
case study on the real fluid catalytic cracker (FCC) unit
data to verify the effectiveness of the proposed method.
Concluding remarks are presented in Section 4.

2. METHODS
2.1 FExtremely Randomized Trees

Define S as n X p matrix, n as the number of training
samples, p as the number of features, M as the number
of trees, K as the number of features that are selected at
each node, y as the output label and 7n,,;, as the minimum
sample size for splitting a node.

ET is a tree-based ensemble method for supervised ma-
chine learning problems. Fig. 1 shows the structure of ET.
To build ET, the first step is to create M decision trees.
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Fig. 1. Extremely Randomized Trees structure

Different from random forests, the sampling for each tree is
random without bootstrap replacement. The usage of the
full original training dataset (no bootstrap) can minimize
the bias of ET. Then, K features among p features are
selected randomly to develop ET. The value of K affects
the randomness of the tree. In general, the smaller K is,
the more random the tree is.
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Fig. 2. Single tree structure of Extremely Randomized
Trees

Step 2: Create a node with
the optimal split, generate
left and right subtrees, return
to Step 1 until stop split

As we know, the traditional decision tree directly calcu-
lates the optimal split using entropy or information gain.
Entropy is a measure of the uncertainty of a random
variable and the information gain represents the degree
of uncertainty reduction in the output y with a known
feature X. The definition of entropy and information gain
can be given as follows:

PX=uz)=p;,i=12--n
n
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H(y|X)= Zpl (y| X =)
IG (3, X) = H (y) — H (y | X)

where p is the probability of random variable X, H (X) is
the entropy of random variable X, H (y | X) is the condi-
tional entropy of y given X, IG (y, X) is the information
gain.



Different from the traditional decision tree, every single
tree of ET randomly selects the optimal split and divides
the training data into subsets. They are done recursively
until all training data subsets are correctly assigned or the
sample size in subsets is smaller than n,,;,. Fig. 2 shows
the structure of each tree in ET. The algorithm generates
several random splits and then returns the optimal split
(from these random splits) based on maximizing score
function. Here, the score function in ET regression is
defined as follows:

var {y | S} — Blvar {y | Si} -
var{y | S}

[Sr]
S

Q= var{y | S;} @)

where S; and S, represent the two subsets (left subset and
right subset) of S that correspond to the split s, var {y | S}
is the variance of y in S. This score function is also called
relative variance reduction. In fact, the construction of
an entire tree is a method of dividing the space with a
hyperplane. When compared to the optimal split (optimal
hyperplane) utilized in RF that may cause overfitting
of the original dataset, the use of random splits in ET
provides greater diversity and robustness.

Fig. 3 gives the flowchart of an ET-based soft sensor.
Table 1 summarizes the differences and similarities of
decision trees, random forests, and extremely randomized
trees.

‘W’VN'WM.N‘WMV‘”')WM‘,(W . /—7 \

e st —| €52 . )
| w’m_, qu,md e Wujn‘r""ﬂ. ... } . Q 5
‘ — (00000 0 00 \, . o
umrin A i 000000 g
LI VAT L, - e, — | S
. | | e | g
1 Prediction 1 Predicion 2 Prediction -1 SRR > o
M’”‘”ﬁwﬁ‘w [ | | |

Data Soft sensor

Fig. 3. An ET-based soft sensor

Table 1. Comparison of different tree methods

ET RF DT
Number of trees Many Many 1
Decision node Random features | Random features All features
Split Random split Optimal split Optimal split
Bootstrapping No Yes NA
Variance Low Medium High

The decision path of a tree is a straightforward inter-
pretable approach, but for large-scale ensemble tree mod-
els, the decision path of each tree needs to be combined,
and the results will become difficult to understand. There-
fore, we need additional methods to interpret tree-based
ensemble models.

2.2 SHAP (SHapley Additive exPlanations)

The Shapley value uses game theory ideas to assign feature
contributions. Its main advantage is providing a consistent
and fair solution. For the results predicted by multiple
features, since there may be interactions between each
feature, the Shapley value of a feature X is the weighted
average contributions under all feature combinations.

The Shapley value of feature X is defined as follows:

ox ()= Y wx()[F (8 U{x}) - 1) ©)

S'Cp\X

where f is the complex model like ET, ¢x (o) is the
Shapley value of feature X under model f, p is the
number of input features, S’ is a subset of the features.
For wx (') = W, the denominator p! rep-
resents all possible feature combinations; the numerator
[S/|'(p — |S’| — 1)! means the appearance times of S U{X }
in all p! combinations; f (S' U {X}) — f(S') indicates

the expected marginal contribution of feature X in one
combination.

When the Shapley value attribution is represented as a
linear additive feature model, it is known as the Shapley
Additive Explanations (SHAP) model. The SHAP model
specifically adapts the Shapley values for interpreting the
output of machine learning models. It quantifies the con-
tribution of each feature to a particular instance’s predic-
tion while maintaining the desirable properties of Shapley
values, such as consistency, local accuracy, and additivity.
In the context of the SHAP model, the prediction can be
decomposed into individual feature contributions and a
baseline prediction (i.e., the prediction when no features
are input), making it easier to understand the importance
of each feature in a specific prediction.

From the definition of Shapley value, we can see that
computing Shapley value is an NP-hard problem. In this
work, a fast (polynomial-time) algorithm, TreeSHAP, is
utilized to compute SHAP values for the ET-based soft
sensor (Lundberg et al. (2018)). This is possible due to
the structure of the tree-based model and the additivity
of the Shapley values.
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Fig. 4. An example of SHAP analysis

Fig. 4 shows an example of SHAP analysis, the black
box model has 4 inputs and the output is 42. The base
prediction is ¢y = 42.66. According to (3), the contribution
of feature 1 is -0.76 and the contribution of feature 2 is
40.42, and so on and so forth. The sum of all individual
contributions is equal to model output 42, which satisfies
the definition of SHAP.

2.3 Interpretable Soft Sensors using Extremely Randomized
Trees and SHAP

Tree-based interpretable models have significant implica-
tions for industrial process monitoring, as interpretation
helps operators and engineers understand, trust and use
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Fig. 5. The framework of proposed method

the model more effectively. In this work, we propose an
accurate and interpretable soft sensor using ET and SHAP.

The framework of the proposed method is given in Fig. 5.
The first step is data cleaning involving the removal of
outliers and standardization of the cleaned data. Then,
a robust and accurate ET soft sensor is developed with
pretreated data. Finally, SHAP is used to accurately
estimate the contribution of each input feature to the soft
sensor predictions and the SHAP value is the contribution
of the feature.

3. CASE STUDY

In this section, process data from the Parkland refinery
in Burnaby, British Columbia, Canada, is used for the
case study. We focus on establishing an interpretable soft
sensor for a fluid catalytic cracker (FCC) unit. FCC is
a core process in a refinery. It is an intermediate unit
that processes the heavy hydrocarbons from crude oil and
“cracks” them into smaller hydrocarbons, which can then
be processed into a wide variety of different products (Su
et al. (2021)). FCC unit consists of three main parts,
namely the reactor, the regenerator, and the fractionator,
which can be seen in Fig. 6.
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Fig. 6. A flow diagram of a Fluid Catalytic Cracking unit

The HCC (Heavy Catalytic Cracked) gasoline 90% cut
point (the temperature at 90% volume distilled, cannot
be measured online) in the FCC fractionator is selected
as the soft sensor output. 10 process variables that may
impact the cut-point temperature are selected based on
process knowledge. We select 2076 samples from April 2018
to September 2022, of which the first 70% of the data (1453

samples) are used as the training set and the last 30% (623
samples) of the data are used as the test set. Considering
confidentiality issues, we will not give the variable name
and the magnitude of the variable. Fig. 7. shows the raw
data after preprocessing.
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Fig. 8. The performance of ET soft sensor on test data

In this work, we use ET to construct soft sensors where
the specific parameters, and the specific parameters were
chosen with a grid search as follows: the number of trees
M is 100, the selected number of features K at each node
is 5, and the minimum sample size for splitting a node
Nmin 18 2. Fig. 8 and Fig. 9 give the detailed prediction
performance of the ET soft sensor on test data.
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Fig. 9. The residuals of ET soft sensor on test data

Table 2. Comparison of different soft sensors

RMSE R?
ET Regressor 3.8562 | 0.7932
Random Forest 4.0111 | 0.7771
Gradient Boosting Regressor 4.0301 | 0.7746
Huber Regressor 4.358 0.7367
Ridge Regression 4.4054 | 0.7311
Linear Regression 4.4067 | 0.7308
Neural networks (3 dense layers) | 4.8609 | 0.6845
Lasso Regression 5.1631 | 0.6329
Elastic Net 5.3317 | 0.6093
Decision Tree Regressor 5.4937 | 0.5756

To evaluate the effectiveness of the proposed method, we
compared it with several other machine learning meth-
ods, such as Random Forest Regressor, Gradient Boosting
Regressor, Huber Regressor, Ridge Regression, Linear Re-
gression, Neural Networks (3 dense layers), Lasso Regres-
sion, Elastic Net, and Decision Tree Regressor. We per-
formed a grid search to select the optimal hyperparameters
for each method and tested their performance on the test
data. Table 2 summarizes the results of these experiments.
The results prove that the proposed ET soft sensor has the
best performance (RMSE is 3.8562, R? is 0.7932). It should
be noted that ET soft sensor shows a larger improvement
in performance compared to other tree-based methods, like
Random Forest Regressor, Gradient Boosting Regressor,
and Decision Tree Regressor, indicating that the proposed
soft sensor is more accurate and robust.

Now we have a soft sensor of cut point temperature with
excellent performance, but the problem is that the ET
model itself has a complex structure, and it is difficult
to know the inference process of the result from inside
the model. Therefore, we use SHAP to enhance the in-
terpretability of the model after training and mining the
implicit information learned by the model.

SHAP can provide both global interpretation and local
interpretation. Global interpretation refers to the inter-
pretation of the entire model from input to output, from
which we can understand the impact of each feature on
the model. Fig. 10 displays the global interpretation of
each input on the soft sensor prediction. Each instance
is represented by a single dot on the feature row with
the SHAP value (contribution) on the z axis. The sum
of SHAP values is used to calculate the importance of the
features, as shown on the y-axis. We can see that for all the

data, the first and most important feature is feature 1; and
for feature 1, the larger its feature value, the greater its
contribution (positive correlation). Conversely, for feature
5, the smaller its feature value, the larger its contribution
(negative correlation).

High
Feature 1 . '”n .
Feature 7 —* ce eee
Feature 5 -+— .
Feature 3 - + ------

Feature 4 . -+~

Feature value

Feature 10
Feature 9 - -+~
Feature 2 +- .
Feature 8 .

Feature 6 --+-

-10 -5 0 5 10 15 20 25
SHAP value (impact on model output)

Fig. 10. Global interpretation of ET soft sensor

In addition to the global interpretation, we need to under-
stand the variation in ET soft sensor predictions among
specific instances. This type of explanation is called local
interpretation. Local interpretation refers to explaining
how the predictions change when the input values of an
instance or a group of instances change. Fig. 11 shows
the local interpretation of each instance on the ET soft
sensor prediction. In this figure, f(x) is the soft sensor
prediction. For each individual prediction (column), the
blue one means a negative contribution while the red one
means a positive contribution. The darker the color, the
greater the contribution.
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Fig. 11. Local interpretation of ET soft sensor

To further show the interpretation of individual predic-
tions, we choose the 1000th sample and the 2000th sample
as examples for the analysis. The bottom of a waterfall plot
starts as the base prediction (428.67), and then each row
shows how the contribution of each feature moves the value
from the base prediction to the ET soft sensor prediction.

As Fig. 12 shows, for the 1000th sample, the soft sensor
prediction is 432.5. Feature 6 has the smallest contribu-
tion, moving only about 0.1 of the base prediction (428.67).
Feature 5 has the largest contribution, moving about 3 of
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Fig. 12. Interpretation of ET soft sensor on 1000th sample
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Fig. 13. Interpretation of ET soft sensor on 2000th sample

the base prediction (428.67). Similarly, as Fig. 13 shows,
for the 2000th sample, the soft sensor prediction is 430.41.
Feature 6 has the smallest contribution, moving only about
-0.02 of the base prediction (428.67). Feature 7 has the
largest contribution, moving about 2 of the base prediction
(428.67). We notice a discrepancy between local and global
interpretations. The reason for this discrepancy is that
local interpretations focus more on specific instances, while
global interpretations are concerned with the entire model.
Furthermore, in specific instances, interactions between
features may result in some features’ contributions dif-
fering from those in the global interpretation. Therefore,
we need to combine global and local interpretations to
gain a more comprehensive understanding of the model’s
predictions.

4. CONCLUSION

The objective of this work is to make process monitoring
methods more robust, efficient, and interpretable. Due to
the unique characteristics of industrial processes, we in-
troduce the ET algorithm to build an accurate and robust
soft sensor. By increasing the randomness in the modeling
process, ET solves the overfitting to a certain extent. In
addition, since the ET model is not interpretable, SHAP
is used to interpret complex ET model from global and
local perspectives. The proposed explainable soft sensors
using ET and SHAP can greatly improve interpretability
while maintaining high accuracy. The effectiveness of the

proposed interpretable soft sensor is demonstrated with a
real application to a commercial-scale FCC unit.
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