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Soft Sensors

e A soft sensor is a mathematical model that uses measurable variables
X to estimate the difficult-to-measure variables Y.

e The variables Y are usually related to product quality/process safety,
and hence important.

e Machine learning is the dominant approach used in building soft
sensors.
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Motivation: Why Ensemble Tree Models?

e Most machine learning models perform well with high signal-to-noise
ratio scenarios, but fail to high noise samples (adversarial examples).

e Industrial process are extremely noisy, noise may come from changing
operating conditions, measurement errors, or the introduction of
unnecessary variables.

e Ensemble tree based models are robust to noise and outliers. Almost all
winners of competitions, utilized tree-based ensemble models in their
solutions.

Deep neural networks (DNNs) are brilliant at image
recognition — but they can be easily hacked
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Motivation: Why Model Interpretability?

e Industrial processes involve risk-sensitive tasks, any accidental situation
can lead to disastrous consequences.

e It is not enough to get the prediction (the what). The model must also
explain why it came to the prediction (the why) and how to intervene
the process with the prediction (the how).

e Most machine learning models are black-box models, difficult to
interpret their behavior in relation to the process variables.

Why did you predict
With Machine Learning 42 for this data point?
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Motivation

e How do we build accurate and robust soft sensors?
e How do we explain soft sensor predictions?

e Our goal is to design soft sensors that provide accurate and robust
predictions as well as good interpretations.
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Extremely Randomized Trees
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Extremely Randomized Trees
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Table 1. Comparison of different tree methods

T
r 1 ¢ 5 il
1 Bootstran1 | BootStran2 | [ Bootstran 10

ET RF DT
Number of trees Many Many 1
Decision node Random features | Random features All features
Split Random split Optimal split Optimal split
Bootstrapping No Yes NA
Variance Low Medium High
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Extremely Randomized Trees

v Faster Computation

v" Robust to Noise and Outliers
v More Diverse Decision Trees
v Lower Risk of Overfitting

Cons

X Complex Internal Structure
X Hard to Interpret
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Explainable Model

e It is difficult to (mathematically) define interpretability.

e A (non-mathematical) definition: Interpretability is the degree to
which a human can understand the cause of a decision.

e An Explainable Model is one that can accurately estimate the
contribution of each input feature to the model predictions.
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Explainable Model: SHAP (Shapley additive explanation)

e Lloyd S. Shapley proposed the idea of Shapley value to interpret model
prediction based on game theory and won Nobel Prize in Economics 2012.

e SHAP is an algorithm used to explain the output of any complex machine
learning models.
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Explainable Model: SHAP (Shapley additive explanation)

e SHAP is an algorithm used to explain the output of any complex
machine learning models.

e Model-Agnostic: SHAP can interpret and compare different models in
a consistent manner, regardless of their internal structures and
operations.

e Post-Hoc Interpretability: SHAP offers interpretations after the model
has been trained/ generated predictions.
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Explainable Soft Sensor Models - Summary

e An accurate and interpretable soft sensor using ET and SHAP
is proposed.

e It has significant implications for industrial process monitoring,
as interpretation helps operators and engineers understand,
trust and use the model more effectively.
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Canada Parkland Refinery Data

@ Soft sensor data from Parkland refinery in Burnaby, British Columbia,
Canada, is used for the case study.

@ 2 years of data from a fluid catalytic cracking (FCC) unit, 10 process
variables, 1 quality variable, 2076 samples, 70% for training, 30% for test.

@ The objective is to provide an explanation for HCC gasoline 90% cut point
predictions.
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Results: Extremely Randomized Trees

The number of trees M is 100, the selected number of features K at
each node is 5, and the minimum sample size for splitting a node is 2.

Prediction performance on test data
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Results: Comparisons

Predict Table 2. Comparison of different soft sensors

RMSE | R? - "

ET Regressor 3.8562 | 0.7932 1

g Random Forest 40111 | 0.7771 )
i Gradient Boosting Regressor 4.0301 | 0.7746 )
5 Huber Regressor 4.358 0.7367 .
U Ridge Regression 1.4054 | 0.7311
5 Linear Regression 4.4067 | 0.7308 10
° Neural networks (3 dense layers) | 4.8609 | 0.6845 .
Lasso Regression 5.1631 | 0.6329 Y

Elastic Net 5.3317 | 0.6093
1500 1600 Decision Tree Regressor 5.4937 | 0.5756 Diafigion
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Results: Interpretation
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e This work presents a novel framework to build soft sensors
and explain the predictions of soft sensors.

e The real-world commercial refinery case study validates the
effectiveness of the proposed method.

e Model explanation is a promising research area that can
offer significant benefits to the process industry.

v' Extremely Randomized Trees to build accurate soft sensors.

v" SHAP to interpret complex ensemble tree model by
distributing the contribution of each feature.
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