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Abstract: A significant portion of the effort involved in advanced process control, process
analytics, and machine learning involves acquiring and preparing data. Literature often empha-
sizes increasingly complex modelling techniques with incremental performance improvements.
However, when industrial case studies are published they often lack important details on data
acquisition and preparation. Although data pre-processing is unfairly maligned as trivial and
technically uninteresting, in practice it has an out-sized influence on the success of real-world
artificial intelligence applications. This work describes best practices for acquiring and preparing
operating data to pursue data-driven modelling and control opportunities in industrial processes.
We present practical considerations for pre-processing industrial time series data to inform the
efficient development of reliable soft sensors that provide valuable process insights.
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1. INTRODUCTION

Data-centric artificial intelligence (DCAI) is an emerg-
ing field concerned with the development of high-quality
datasets for Artificial Intelligence (AI) and Machine Learn-
ing (ML) applications. The traditional approach to AI/ML
involves the iterative construction of high-performance
models given a fixed dataset. The data-centric paradigm
inverts the traditional approach and calls for iterative im-
provements on the dataset given a fixed model (Mazumder
et al., 2022). The success of an AI system is critically
dependent on data quality, but ironically, researchers at
Google found that data work is often undervalued and
disincentivized compared to building novel models and
algorithms (Sambasivan et al., 2021).

Industrial process plants have amassed billions of data
points from decades of high-frequency measurements.
However, industrial big data are not necessarily good
data due to many potential sources of error, noise, and
uncertainty. Process plants in continuous manufacturing
industries are designed to operate at steady-state. Extract-
ing useful insights from largely steady-state process data
often requires additional information about the physics
of the actual process. For that reason, industrial process
datasets have been described as data-rich but information-
poor (Dong and McAvoy, 1996).

What makes a dataset ‘good’? A good dataset is ac-
quired from reliable sources and prepared in a manner
appropriate for both the process opportunity and proposed
solution. Data acquisition not only includes working with
stakeholders to obtain and contextualize data, but it also
involves upstream activities such as using process knowl-
edge to identify the opportunity, investigate the feasibility,

and determine the data requirements. Process knowledge
is important for many data preparation tasks such as
validating the integrity of data, identifying features from
first principles, designing visualization strategies, as well
as data pre-processing tasks such as cleaning, filtering, nor-
malizing, time-shifting, and segmenting data. The intent
of the modelling task will also influence data acquisition
and pre-processing decisions.

This article provides a practical guide on data collec-
tion and preparation for process analytics and model de-
velopment, using perspectives synthesized from a cross-
functional team of academic and industry practitioners.
We arrange the paper into several sections that describe
common pitfalls and possible solutions in handling process
data. We focus on a broad discussion of best practices
in the process industries, rather than algorithm-specific
requirements (Tsai et al., 2018).

2. BACKGROUND

‘Process Analytics’ refers to the application of advanced
analytics and ML techniques to manufacturing data (Sun
and Braatz, 2020). The preparation of this data needs
to be suitable for the analytics task and desired insights.
From the plant to the end-user, data will undergo a series
of steps, each with its own factors that will affect data
reliability, as described in Figure 1.

In this discussion, we use inferential models as an example
to demonstrate the practical challenges of data prepara-
tion. Inferential models, or soft sensors, are mathematical
models used to estimate process quality variables that
are critical for control. Economic and physical constraints
often limit the ability of implementing on-line sensors and
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Process drifts, ambient conditions

Control loop monitoring,
instrumentation failure

Process constraints, soft sensor 
reliability

Physical Process

Advanced Process
Control, Inferentials

Regulatory Control

Plant-wide
Optimization

Real-time optimization, 
economic constraints

Fig. 1. Plant process control hierarchy for industrial con-
trol systems (Hahn and Edgar, 2014). The text on
the right describes factors that strongly affect data
reliability within each layer.

analyzers to provide high frequency measurements of key
process variables (PVs). Inferential models are trained
with historical data to learn a mapping that generates
predictions of key quality parameters from related PVs
with reliable on-line measurements (Rippon et al., 2021b).

Inferential modelling frameworks have been proposed by
several authors (Nian et al., 2022; Kadlec et al., 2009;
Qin, 1997). Kadlec (2009) found that many pre-processing
steps such as handling missing data, outliers, feature se-
lection, are all done manually. Practitioners have reported
that dealing with these data pre-processing steps can take
longer than building the model itself (Qin, 1997; Kano
and Ogawa, 2010). Due to the safety-critical nature of
industrial operations, control practitioners must have a
strong understanding of their data pre-processing needs
based on domain knowledge. Engineers typically clean and
pre-process data in a transparent, deterministic and inter-
pretable manner. The painstaking preparation of useful
data is warranted by the significant influence data quality
has on the success and sustainability of industrial data
science applications. Recent research has also attempted
to automate data pre-processing steps using reinforcement
learning (Berti-Equille, 2019), but such techniques are not
widespread in industrial practice because an explainable
model is important for gaining stakeholder acceptance to
trust and use it (Barton and Lennox, 2022).

Many academic papers describe the soft sensor modelling
steps in detail, discussing various hyperparameter opti-
mizations, evaluating the proposed model’s performance
compared to competing algorithms, and discussing the
model’s advantages. However, discussions on how the input
data to the model is obtained and managed is often absent,
aside from cursory and often vague statements of “data
cleaning” or “data pre-processing” steps like removing 3-
sigma outliers or performing normalization on the input
data prior to modelling.

How was the input data retrieved? How were the relevant
variables selected and how was the data cleaned? How were
the timestamps for multi-rate data aligned? These chal-
lenges are resolved behind the scenes between data scien-
tists, plant engineers, Subject Matter Experts (SMEs), op-
erators, and instrumentation technicians. Although these
details are essential for experimental reproducibility, they
are often not presented in a thorough and comprehensive
manner in the final publication.

In a series of experiments, Zliobaite and Gabrys (2012)
show how different data pre-processing treatments affect
model performance under different types of concept drifts,
quantitatively demonstrating the importance of data pre-
processing on the final model. Despite the importance of
data preparation, there is relatively sparse guidance in the
literature on how to handle process data for analytics and
ML in a practical manner. In what follows, we provide
insights on this topic that are framed as possible pitfalls
that may plague the practitioner.

3. GUIDELINES FOR PROCESS DATA ANALYTICS

Distilling operational insights and production value from
industrial process data is essential for sustainable capital-
ization of natural resources. Here we present five common
pitfalls for researchers and industrial practitioners. Each
pitfall is accompanied by a discussion on how it can be
identified and avoided.

3.1 Pitfall 1: Failure to correctly retrieve and contextualize
process data

Unlike the contrived datasets widely available for data
science or ML benchmark problems that are already ap-
plicable for modelling, the data acquisition workflow for
industrial processes is a non-trivial step. Due to the large
data volume that is retrievable from industrial data his-
torians, it is helpful to frame the data acquisition ques-
tion not by asking “what data do I have?” like in static,
contrived datasets, but rather, by asking “what data do I
want?” Therefore, acquiring good industrial process data
is not merely a simple transfer of data, but a more com-
plex, iterative exercise with collaborative efforts between
data practitioners and plant personnel. Some variables in
the data may be irrelevant, or even detrimental, to the
modelling task, so appropriate curation of variables based
on domain knowledge is necessary for good model develop-
ment. For example, if a lab sample is only updated weekly,
retrieving hourly data for that sample will be misleading
and does not reflect the true data resolution, and if a
control loop is always running in manual mode, adding
a constant setpoint to the dataset will not be meaningful.

Data access Given the iterative nature of industrial
data acquisition, having data that is readily accessible
to partners is an important step to reduce the cost of
data exploration. In joint academic-industry projects, it
is more productive to provide direct historian data access
to the academic partners involved, so that they can query
and acquire the datasets that they need, while the plant
engineers can provide support with process advice and
data context. Understandably, depending on company
policies, such open arrangements are not always possible.

Data exploration Exploratory data analysis (EDA) must
be performed to inspect and understand the available data.
Appropriate representation and visualization of time series
data is important during EDA. The role of data visual-
ization for effective collaborations is severely underappre-
ciated, particularly in the context of using visualization
tools to empower operators and SMEs and leverage their
domain expertise in data-driven decision-making (Rippon
et al., 2021a; Elnawawi et al., 2022).

The practitioner should always review a sample of the
data before attempting to do any large-scale queries.



For example, when retrieving data for a plant feed rate,
it is logical to remove periods when the unit was shut
down. Simple spreadsheet filters or textual queries in SQL
may be unsuitable for this task. For example, using a
simplistic SQL WHERE clause to remove values below a
threshold in the entire dataset, without closer inspection
of the underlying time series, will inadvertently remove
anomalies outside of the shutdown window that could be
indicative of process upsets or instrumentation issues that
may actually be useful data.

Most industrial plants have self-service data visualization
tools such as Seeq, Spotfire, PI Vision, or CCI Cake (Siang
et al., 2022) that can help make EDA or other data visu-
alization and cleaning tasks easier to perform. Custom-
built tools may be warranted for more complex analysis,
but the practitioner should consult plant personnel before
attempting to develop a costly, time-consuming solution
from scratch if existing tools are readily available and
satisfy the practitioner’s needs.

Data resolution How should we structure our historian
queries? Should we retrieve raw, un-gridded data or should
we retrieve gridded and interpolated data at intervals
of seconds, minutes, hours, or days? If interpolation is
desired, do we assume a zero-order hold between data
points, or a first-order linear interpolation? These are
questions that may be tag or unit-specific, and should
be discussed with plant personnel after the initial data
exploration work is complete. Treating all tags equally
with the same retrieval settings would likely lead to a
poorly-constructed dataset due to a mismatch between
the data retrieval frequency and the actual data collection
frequency. If the process response is slow, collecting high-
frequency data will result in an unnecessarily large dataset
that may not provide any additional modelling benefits.

Data compression may be a major pitfall in analyzing data
from industrial process data historians. Thornhill et al.
(2004) is an excellent quantitative study on industrial data
compression that describes the issue in detail and provides
guidance for dealing with compression problems. Due to
the reduced cost of computing storage over the past two
decades, many facilities have deactivated data compression
settings in their historians. However, care must be taken
when extracting large, multi-year datasets as the older
time slices may suffer from compression issues even though
the new time slices are unaffected.

Data contextualization As shown in Figure 2, pro-
cess data are one of many sources of plant information.
Plant topology data from P&IDs provide connectivity and
causality information, informing the practitioner on how
process tags are related. Domain knowledge from oper-
ating standards and discussions with plant personnel can
provide important first-principles information about the
underlying physics and chemistry of the process. Main-
tenance records can provide instrumentation reliability
information to determine the trustworthiness of the mea-
surements. Control logic diagrams allow the practitioner
to interrogate the underlying data generation process for a
historized tag. As facilities modernize and undergo digital
transformation, less effort is required by the practitioner to
collect, parse and understand these disparate information
sources.

Process Data

Plant Topology Maintenance Logs

Control Logic Lab Quality Data

Shift Logs Alarm Data

Domain Knowledge

Fig. 2. Process data must be contextualized with other
datasets to provide meaning.

Data practitioners should be aware that tag names and
labels may be misleading. For example, one might assume
that the tag historizes a raw measurement signal, but in
reality, the tag could be a calculated value that applies
transformations like filtering, clipping or splicing to the
signal. This can be reviewed by inspecting the distributed
control system (DCS) logic diagrams or historian calcula-
tions. Lab data can provide a ground truth for soft sensors,
but it is often collected at a much slower rate. Finally, shift
turnover logs and alarm data highlight abnormal plant
conditions that should be managed accordingly.

Summary 1 EDA is an essential step for understanding
the available data. Practitioners need to be aware of the
contexts from which they pull and use process data, and
they must ensure that data retrieval is suitable for the
task at hand. Practitioners should consult plant personnel
to determine if existing visualization tools can be used
to avoid unnecessary effort. Engaging in discussions with
the facility’s historian administrator or process control
engineers can help the practitioner understand potential
DCS logic or compression issues. Lastly, different sources
of plant data like P&IDs, control logic diagrams, operating
standards, and maintenance records should be examined
to obtain a holistic understanding of the data being used
for further analysis.

3.2 Pitfall 2: Ignoring domain knowledge and assuming
that data volume and variety can make up for data quality

Industrial big data are not always good data. A common
misconception is that data volume and variety can make
up for data quality. Continuous chemical processes operate
at steady-state by design, in contrast with more dynamic
systems like robotics or autonomous vehicles. Adding more
features and more data volume will not necessarily improve
model performance, as demonstrated in prior work where
the benefits of new features are outweighed by the curse
of dimensionality (Rippon et al., 2021b). It is also well-
recognized in the literature that a purely data-driven,
black-box soft sensor model that disregards the physics
of the plant will be unreliable when the process operates
under conditions that were not captured during data
collection (Kano and Ogawa, 2010).

Data cleaning Data points outside their ‘normal’ op-
erating range should be discarded. Statistical techniques
like a 3-sigma outlier removal procedure may be simple
to apply, but these techniques may not be effective if
the process has different modes of operation. Xu et al.
(2015) distinguish between model-based and data-driven
outlier detection techniques, and further describe outliers
as either univariate or multivariate depending on how



many components of the data are part of the outlier. As
an example, the 3-sigma rule postulates that outliers can
be detected if the following condition is true:

|xt − µ| > 3σ (1)

where xt is the data point being tested, µ is the mean,
and σ is the standard deviation of the dataset. However,
the mean and standard deviation will change depending
on different modes of operation. It may be more effective
to use model-based outlier detection or techniques with
a moving time window to account for different operating
modes (Xu et al., 2015).

Figure 3 presents industrial data to demonstrate an
archetypal example of a process value partitioned into four
common operating modes. Figure 3a (left) shows a his-
togram of combustion air flow rates and Figure 3b (right)
shows sampled periods of time series data corresponding to
each mode of operation. Many PVs share a highly similar
distribution which can help simplify data cleaning, but it
is important to note that the distribution of some PVs
can be significantly different. Normal operating ranges for
various process data can be obtained by consulting plant
personnel with a priori knowledge (Shang et al., 2014).

Common heuristics used by practitioners are listed below.
Data that do not conform to these heuristics should be re-
viewed for potential issues, depending on the application.

• Check that the tags of interest are actually moving
beyond typical background noise levels. A static input
that has no significant movement or excitation in the
data provides no predictive power. A tag that does
not move at all could be indicative of instrumentation
or historian issues.

• Check for multicollinearity. If two inputs are collinear,
such as redundant temperature sensors, depending on
the modelling algorithm and intent, it is unlikely that
both are needed. Adding more inputs to the model
will create more points of failure that can degrade
model reliability.

• Check that the regulatory control system is func-
tioning well and the control loops are well-tuned.
If the control loops are oscillating, the data can be
detrimental for model performance.

• Check for mass and energy balance closure and mis-
calibrated sensors.

During data cleaning, the practitioner must identify
whether the input measurements are sensible. Industrial
instrumentation can be faulty due to maintenance or cal-
ibration issues. Sensors can be calibrated for past oper-
ating conditions that are no longer valid and they may
have varying quality under different process conditions.
Plant personnel and asset reliability data can help identify
instrumentation issues. For a systematic and data-driven
approach, data reconciliation and gross error detection
should be considered. In particular, an accurate mass bal-
ance may be critical if the application involves regulatory
compliance, such as carbon accounting. For an in-depth
treatment of these topics, the classical text by Narasimhan
and Jordache (1999) is an excellent resource.

Feature selection P&IDs should be thoroughly reviewed
to identify key manipulated variables (MVs) and con-
trolled variables (CVs) in a process before any data-
driven modelling is attempted. Tags that are indicative
of different operating conditions should be identified. For
instance, in pulp mills, valve positions can indicate the use
of different process fluids (e.g., filtrate, mill water, con-
densate, or white water). Refining processes are typically
locally-linear, and multiple linear models might be needed
to cover different process states. Some product specifica-
tions are seasonal, e.g., higher Reid Vapor Pressure (RVP)
gasoline blends are produced in the winter. Column tray
temperatures are indicative of product composition, and
a pressure-compensated temperature (PCT) is commonly
used for composition prediction. Observing manual opera-
tor interventions in response to off-spec products can also
help identify key MVs and CVs in the process that may
not be present in the control scheme.

Isolating relevant features can also include making numer-
ical changes like normalization, biasing, or conversion of
raw data. An iterative approach may be required to iden-
tify the optimal set of features. Computational techniques
such as the Shapley value (Cao et al., 2022a) and causal
graphs (Cao et al., 2022b) could also help find relevant
features and can be a powerful approach when combined
with domain knowledge.

Steady-state and transient data Industrial plants in con-
tinuous manufacturing are designed to operate at steady-
state to ensure reliable and consistent production. The
process is in a ‘transient state’ when it moves between
different operating points. Both steady-state and dynamic
analyses are important in process control applications, so
being able to distinguish them in process data will help
practitioners develop better models. For dynamic models,
practitioners must ensure that training data includes tran-
sient data to capture process dynamics.

Numerous methods for identifying steady and transient
states both online and offline have been developed over
the years (Wu et al., 2015; Kelly and Hedengren, 2013).
As a practical example of these techniques, Rhinehart
developed a statistical method based on the ratio of two
variances that is computationally simple and suitable for
online implementation called the R-statistic (Cao and
Rhinehart, 1995). The R-statistic is near unity when the
process is at steady-state, and can be compared to a
‘critical value’ to determine if the null hypothesis of being
at steady state can be rejected (Rhinehart, 2013).

Calculating the R-statistic on key process variables such
as feed rate can guide practitioners to systematically select
appropriate steady-state and transient-state sections of
data for model development. During system identification,
extended periods of steady-state data absent of any pro-
cess excitations should be removed, as those regions do not
contribute any useful dynamic modelling information.

Summary 2 Practitioners must understand which sub-
set of data are necessary for the analysis tasks involved,
both in terms of features and time windows. Practition-
ers should only use data within the appropriate ranges,
and these will depend on which operational modes are
important for the type of analysis performed. This includes
many factors, such as posturing units for making differ-



(a) Histogram of process data with operating categories. (b) Examples of categories of operating data.

Fig. 3. Common characteristics of process data are illustrated as (a) histogram partitions and (b) time series examples.

ent products or identifying steady- and transient states
during operation. Data should be checked for adequate
variability in the selected ranges, and multivariate factors
like multicollinearity and mass/energy balance closures
must be properly understood. Some variables may consist
of combinations of others like PCTs and RVPs, and the
underlying inputs should be reviewed carefully.

3.3 Pitfall 3: Failure to differentiate between open-loop
and closed-loop conditions

One distinguishing characteristic of industrial process data
is the presence of closed-loop operating conditions under
feedback control, which is rarely found in other datasets.
It is well-recognized that empirical models fit with closed-
loop data instead of open-loop data will show a sign change
in the coefficients (Kresta et al., 1994).

Although closed-loop identification methods can build
open-loop correlations from closed-loop data, practitioners
need to be aware of the effect that feedback has on a
given dataset. Closed-loop data introduce correlations that
are not present in open-loop data. MacGregor provided a
simple example; consider a simple distillation column with
automatic control of overhead purity using reflux rate. Dis-
tillation fundamentals tell us that increasing reflux should
increase overhead purity, and vice versa. However, under
closed-loop control, the data showed a negative correla-
tion, because both operator intervention and the controller
are responding to low overhead purity by increasing the
reflux, and vice versa (MacGregor et al., 1991). If the prac-
titioner were to ignore domain knowledge and chemical en-
gineering fundamentals, they would erroneously ‘discover’
that higher reflux leads to poorer product separation based
on trends in the closed-loop data.

For more practical considerations, how can we detect the
presence of open-loop and closed-loop conditions in the
data? For a single PID loop, one can query the data
historian for the loop mode tag, typically prefixed with
.MODE or .AM (Auto/Manual). For multivariable control
and APC systems, one could query the data historian
for the APC systems’ ON status. Furthermore, non-critical
APC variables may have their service status turned off
for maintenance or other operational reasons, even though
the overall APC system is active. For these reasons, it
is important to study and understand the underlying
control logic that governs the tags, especially if more

advanced control techniques like multivariable control,
cascade control or gap control are used.

The relationship between input variables (i.e., MVs) and
output variables (i.e., CVs) is governed by process dy-
namics. Changes in the MVs require time to propagate
through the system before the CVs return to steady-state.
This time is known as the ‘time to steady state’ (TTSS)
in industrial model predictive control (MPC) terminology.
If steady-state modelling is performed without using tra-
ditional system identification techniques, Ferreira et al.
(2022) stressed the importance of applying a time shift
to align the input and output signals and noted a lack
of literature discussing this issue. This time shift is akin
to applying the appropriate time delay to the signals. In
practice, this time delay will likely be a time-varying time
delay, as feed rate changes will affect the residence time of
material in the process. Failure to apply the appropriate
time shift can lead to poor steady-state modelling.

Sensor data can be manually aligned by estimating the
residence times using domain knowledge. If the facility
is utilizing an APC system with reasonably accurate
models, they should provide a good estimate for the TTSS.
If the relationships under study are not configured in
the APC models, then system identification techniques
can be applied to historical process data to probe these
relationships. If historical data is largely steady-state and
does not meet the practitioner’s needs, a step test could be
performed in collaboration with plant personnel to discuss
what moves to make and which control loops to use.

Summary 3 Practitioners should be cognizant of open-
and closed-loop conditions when acquiring data. Models
can be built using data from both modes of operation,
but the chosen modelling techniques must take this into
account. As illustrated by MacGregor’s distillation control
example, data under closed-loop conditions may show
counter-intuitive effects and sign changes. If the data
acquisition tasks require step testing, engineers need to
create a detailed test plan to ensure proper collection of
data that minimizes hindrances to normal operation.

3.4 Pitfall 4: Failure to align multi-rate data correctly

Industrial processes are multi-rate systems because a large
number of online measurements are sampled at a fast rate
(e.g., seconds), but their corresponding quality variables,
measured in a laboratory, are sampled at a much lower



frequency (e.g., hours or days). We illustrate this multi-
rate data alignment issue with a classical example of
reconciling process and lab readings in estimating the bias
for soft sensor models.

Soft sensor performance can be measured by calculating
residuals, whereby model predictions are compared to the
‘true’ values using lab quality variables measured offline.
These lab quality variables are obtained with significant
time delay, e.g., hours or even days after sample collection.
Due to this time delay, intuitively, the lab results must be
compared with the inferential prediction at the sampling
time as opposed to the time when the lab results are
returned (Lu and Chiang, 2018; Wang and Chiang, 2019).

We wish to compute the residual, ri = ŷi − yj where
yj is the lab quality results available at time tj from a
sample collected earlier at time ti, and ŷi is the model
prediction at time index ti, as shown in Figure 4. There
is a need to track the sampling time and align the time
stamps of the lab results with the inferential predictions for
correct computation of the residuals. In industrial plants, a
common configuration in the DCS logic is to provide a lab
sample switch for operators to control a binary indicator
function, I. When a sample is taken, the operator will
toggle the sample switch which changes I from 0 to 1.
When the lab results are available, I will reset from 1 to 0.
Therefore, I provides a mechanism to systematically track
ti and tj that are required for the residual calculations.
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Fig. 4. Lab sample collection and time shift methodology.

In reality, the lab results received may not be correct due
to human errors or equipment malfunctions. The operator
must use domain knowledge and experience to judge the
trustworthiness of these lab results. In industrial plants, an
additional layer of data validation is typically provided in
the form of an operator toggle switch. This switch triggers
an acceptance pulse, A, if the operator accepts the lab
results. This concept is illustrated in Figure 4, where the
first lab result at t′1 is rejected, and the second lab result
at t′2 is accepted because a pulse is present.

An operator-accepted residual is used as a bias term,
f(r) to correct the raw inferential predictions, such that
the corrected prediction is ŷ′ = ŷ − f(r). The bias is
determined by the most recent lab sample accepted by
the operator, which is r2 in this example, as shown by
the purple line in Figure 4. The function f applied to the
residual indicates that the raw residual value might not
be used directly for control. In industrial practice, a lag
filter is usually applied on the bias to avoid making large
changes to the inferential and bumping the controller.

One common issue that is often overlooked is the un-
certainty in sample collection time, ∆t. The actual sam-
ple collection time, denoted by t′i = ti + ∆t, can be
affected by the physical location of the sampling point.
The uncertainty may be particularly large if the sampling
point is located far from the process unit, if the piping
configuration involves a long circuit with deadlegs, or if the
sample flow rate is slow. A large ∆t could also stem from
incorrect usage of the manual sample collection indicator
switch, I, such as when the switch is flipped too early or
too late relative to taking the sample. If the process is truly
at steady-state, ∆t may not have a significant effect, but
nonetheless, having a thorough understanding of how the
sample timestamps are generated will help the practitioner
construct a high-quality dataset.

In facilities that use hardware and equipment from mul-
tiple vendors, each with their own independent data col-
lection systems, care must be taken to synchronize their
internal clocks and data timestamps. Failure to keep these
clocks synchronized will result in temporal uncertainties in
the data across different equipment and areas of the plant.
These uncertainties will lead to difficulties in performing
a meaningful plant-wide analysis, and worse, may even
invalidate results and conclusions.

Summary 4 Practitioners must consider how multi-
rate signals are cleaned and aligned in their datasets.
Domain knowledge can be incorporated in data cleaning by
discarding lab samples that are not accepted by the opera-
tor. The prediction-correction scheme must be understood
in the control logic because the bias term will likely have
filters or other transformations applied to it. The physical
location of the sampling point and its configuration should
be inspected and properly accounted for to accurately
estimate sampling times. If equipment and hardware from
multiple vendors are used, care must be taken to properly
synchronize their timestamps.

3.5 Pitfall 5: Chasing irrelevant model metrics at the
expense of business and environmental outcomes

Soft sensors often fail to provide sustained value in indus-
trial production environments after initial commissioning.
The following list contains a subset of the many possible
reasons why a soft sensor model can fail:

(1) Process drifts - conditions can shift over time due to
feed quality, equipment changes, fouling, etc.

(2) Instrumentation issues - instruments such as pressure
taps may get plugged up due to fouling or cold
conditions and provide incorrect readings.

(3) Sampling station issues - if the sample line is too long
and the sample flow is too slow, the line must be
thoroughly flushed to collect a representative sample.



(4) Lab equipment issues - results from lab devices may
drift may slowly drift away from their true value and a
sharp drop in error will be apparent after calibration.

(5) Regulatory control issues - samples collected when the
process is not at steady-state may reflect transient
process conditions that may not be suitable for the
desired modelling objectives.

A 2010 survey revealed that over 90% of industrial soft
sensors in Japan use linear modelling techniques like
multiple linear regression and partial least squares (Kano
and Ogawa, 2010; Kim et al., 2013). Depending on the
sophistication of the DCS at the facility, implementing a
complex model like a deep neural network may not be
feasible without costly infrastructure upgrades. Simpler
models may be preferable if they help drive business value
(Nian et al., 2022). The survey also noted that the most
pressing problem with industrial inferential sensors is not
model accuracy, but rather, model maintenance. How do
we design durable soft sensors that maintain high accuracy
for long periods of time given the dynamic nature of
the underlying process? These issues must be given due
consideration during model development.

For real-world industrial problems, model metrics such
as mean absolute error (MAE), root mean squared error
(RMSE), or coefficient of determination (R2) are part of
a broader set of consideration such as development time,
durability and interpretability. The practitioner should be
mindful of the 80/20 rule or Pareto Principle during model
development and be aware that striving endlessly towards
performance metrics may come with rapidly diminishing
returns. For example, trying to improve a model’s accuracy
from 80% to 90% will likely be significantly easier than
squeezing out an extra 0.1% of performance to go from
99% to 99.9%. Furthermore, the presence of sensor noise,
measurement errors, uncertainties in lab results, and other
practical process-specific considerations may significantly
outweigh minor performance improvements in model ac-
curacy.

Unless there are significant business benefits, spending
excessive time to strive for perfection in model metrics
may not be the most productive use of the practitioner’s
time, nor be in alignment with the priorities of the busi-
ness stakeholders. From an operational perspective, the
practitioner should understand how the models they are
building will be used to drive plant improvements. It is
important to consider the business impact and intended
usage of the models, and not treat model development as
merely an academic exercise to maximize certain metrics.

For model updates, it may be useful to consider the new
model’s performance not in absolute terms based on its
RMSE or R2 value, but rather, in relative terms compared
to the baseline performance. If the existing model is poor,
even a new model with modest RMSE or R2 values
could be valuable. Simple, interpretable algorithms may
also work well and should be considered first. Achieving
some quick wins will demonstrate business value and a
clear return on investment, leaving the practitioner free to
explore more advanced solutions while providing operating
value and keeping stakeholders satisfied.
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Fig. 5. Durable inferential sensors reduce the burden of
model maintenance.

Key performance trade-offs must be considered during
model development, such as production objectives, model
maintenance, and operator training. Model durability is
the length of time a model is in production before per-
formance degradation necessitates tuning or retraining.
As illustrated in Figure 5, a high-performing model may
not necessarily be a durable model. A durable model,
even with a slightly lower performance relative to a frag-
ile model, requires less frequent maintenance and would
typically be preferred by plant personnel. The produc-
tion losses incurred by an inferential model being unre-
liable or unavailable may be several orders of magnitude
greater than the opportunity cost of a model operating
at a slightly lower accuracy until the next update. Model
metrics like the prediction error are only a small part of
delivering value in practice, but unfortunately, the soft sen-
sor literature focuses on predictive performance (Barton
and Lennox, 2022), and not enough attention is given to
practical issues like model durability and interpretability.

Summary 5 Practitioners must acknowledge that in
industry, regression metrics (e.g., RMSE) are considered
in a broader context including robustness and mainte-
nance. Despite the increasing sophistication of ML tools,
the implementation of such algorithms is limited by the
hardware capabilities in the plant, and complex models
may not be the most appropriate or even feasible solution.
Unlike other domains, models developed in a safety-critical
industrial plant must be interpretable for plant personnel
to understand, trust and maintain them.

4. CONCLUSIONS

In process analytics, exploratory data analysis is essential.
Blindly feeding data into algorithms without understand-
ing the reliability and quality of the data can result in poor
and fragile models with low acceptance and trust from
plant personnel. While data pre-processing and collection
are understood heuristically within organizations, there
are many fundamental open questions to address on this
topic. How can we improve reconciliation of data from
different sources? Can we ensure consistent model per-
formance under process changes and concept drifts? Can
we capture and generalize lessons in data collection and
preparation? Can we automate data acquisition and pre-
processing, or develop a systematic methodology for soft
sensor development? Such research directions may provide



significant unrealized benefits to the broader chemical
engineering and process control community. This work
provides guidance for practitioners to navigate common
pitfalls encountered during data acquisition and prepa-
ration, which in practice, have been resolved by ad hoc
discussions between the data practitioner and experienced
plant personnel, but often undocumented in the literature.
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