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Motivation:
Much of the process analytics literature focuses on modelling 
and algorithmic techniques, while little attention is paid to the 
practical aspects of data acquisition and cleaning. 

Practitioners unfamiliar with industrial datasets often face 
difficulties in these areas due to the lack of practical 
academic resources.

Our Work:
A series of common pitfalls and practical considerations for 
obtaining and pre-processing data for process analytics 
applications, intended as a tutorial for data practitioners 
unfamiliar with industrial datasets.

Today’s Topic: Pitfalls in Industrial Process Analytics

Zha, Daochen, et al. "Data-centric Artificial Intelligence: 
A Survey." arXiv preprint arXiv:2303.10158, 2023.

https://github.com/daochenzha/data-centric-AI
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• Much of the research in process analytics 
under-emphasizes how finished datasets 
are obtained.

o Inferential models work by capturing 
patterns in the training data;

o If the data is not descriptive or 
“clean” enough to allow this, models 
will not learn well;

• Scope is focused on inferentials/soft 
sensors.

Background

[1] - Sun, W. and Braatz, R.D. (2020). Opportunities in tensorial data analytics for chemical and biological manufacturing processes. Comput. Chem. Eng., 143, 107099.

Figure 1: “Garbage in, garbage out” – a colloquialism 
describing that any advanced model can only be as good as 
the quality of data used to train it.
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• “Process data” describe many aspects of operations 
in many different formats.

• Exploratory data analysis (EDA) is necessary for 
more concrete understanding.

o Self-service analytics tools like Seeq and 
Spotfire facilitate EDA tasks.

• Practitioners can contextualize data by consulting 
plant personnel.

o e.g. data retrieval settings, interpolation 
methods, tag calculations, etc.

Pitfall 1 – Failure in data retrieval and contextualization

Figure 2: Industrial data come from many different 
sources in different formats, and these must be 
contextualized with other datasets to provide 
actionable information.
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Example 1-1: Beware of ‘hidden’ calculations

Figure 4: Tag names can be misleading because a process value could undergo transformations through PI calculations before being 

historized. In this PI tag example, the PROCESS_YIELD is zeroed when the FEED is below threshold, not because the yield is 0.

Tags might not store raw values: watch out for calculations hidden in the data historian/DCS

Figure 5: A process value could also undergo transformations in the DCS. In this example, the tag 79FR274 is not a value from a flow meter

79-FIT-274 as we would expect but is calculated based on 79-FIT-1 and 79-FIT-2.
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• Continuous chemical processes operate at steady-
state – they are “data-rich but information-poor”[2].

• Accounting for domain knowledge:

o Selecting tags that are relevant to the task;

o Distinguishing different operating regimes;

o “Curse of dimensionality”: more features does 
not necessarily lead to better models[3];

• Data cleaning: suitable processing of outliers, missing 
data points, misaligned data.

Pitfall 2 – Ignoring domain knowledge and data cleaning

[2] - Dong, D. and McAvoy, T. (1996). Nonlinear principal component analysis—based on principal curves and neural networks. Comput. Chem. Eng.

Figure 7a: Categories of operating data in one variable.

Figure 7b: Histogram of operating regimes from Fig. 8a.
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Problem:
How do we determine if a plant was running during a certain time period using historical 
process data?

Misconception:
Just apply a threshold filter to the feed rate. If the feed rate was higher than a certain 
threshold, the plant was running.

Reason:
Process values can be noisy. Unreliable instruments can fail intermittently to low values. 
Blindly thresholding the data could incorrectly remove regions when the plant was online.

Example 2-1: Using process values to identify plant 
operating modes can be misleading during data cleaning
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Example 2-1: Using process values to identify plant 
operating modes can be misleading during data cleaning
Figure 9: Time series of feed rate (PV, blue), feed rate controller valve output (CO, magenta), and regions with feed rate < 100 BPD (red)
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Example 2-1: Using process values to identify plant 
operating modes can be misleading during data cleaning

Plant is down:
low PV with valve closed, CO = 0%.

Figure 9: Time series of feed rate (PV, blue), feed rate controller valve output (CO, magenta), and regions with feed rate < 100 BPD (red)
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Example 2-1: Using process values to identify plant 
operating modes can be misleading during data cleaning

Plant is actually online:
faulty flow meter with low PV, but CO is wide open

Figure 9: Time series of feed rate (PV, blue), feed rate controller valve output (CO, magenta), and regions with feed rate < 100 BPD (red)

Plant is down:
low PV with valve closed, CO = 0%.
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Example 2-1: Using process values to identify plant 
operating modes can be misleading during data cleaning

Plant is actually online:
faulty flow meter with low PV, but CO is wide open

Figure 9: Time series of feed rate (PV, blue), feed rate controller valve output (CO, magenta), and regions with feed rate < 100 BPD (red)

Context is important: a single tag (.PV) might not tell the whole story.

Plant is down:
low PV with valve closed, CO = 0%.
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Problem:
To generate carbon credits, refiners must quantify the amount of bio-based ‘green’ content in fuels. 
The standard method is to use 14C measurements, which is expensive and time-consuming to do 
online. A soft sensor can help refiners estimate biogenic content in real-time.

How do we determine which features to use in our soft sensor model?

Misconception:
Just use all tags in the plant, more features = more information. More is always better.

Reason:
Adding ‘non-informative’ or ‘non-useful’ features will confuse your models.

Example 2-2: Adding more features might not help you –
building soft sensors for tracking ‘green’ molecules
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• Goal: Predict biogenic feed content in fuels 

using historical process data.

• Results: Blindly using all features resulted in 

a mediocre model. Carefully selecting 
features using domain knowledge gave much 

better performance.

• Work led by UBC researchers and PhD 
students (Jianping Su and Liang Cao) in 

collaboration with the Burnaby Refinery

Example 2-2: Adding more features might not help you –
building soft sensors for tracking ‘green’ molecules

Reference:
Su, Jianping, et al. "Tracking the green coke production when co-processing lipids at a 
commercial fluid catalytic cracker (FCC): combining isotope 14C and causal discovery analysis."
Sustainable Energy & Fuels (2022)

Figure 10: Bar charts show soft sensor performance (R2) using all features 
(green) compared to carefully selecting features using domain knowledge and 

causal analysis (orange).
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Pitfall 3 – Failure to account for closed-loop conditions

Reality:
Closed-loop feedback control is almost always present in 
industrial process datasets.

Implications:
Feedback will influence process data and observed 
correlations, causing sign changes or spurious correlations.

Significance:
Indiscriminately using industrial process data without 
accounting for closed-loop conditions could result in models 
or correlations that do not align with reality or physics.

[BOGObiology]. (2016, December 3. 5 Minute Bio – Homeostasis. [Video File]. Retrieved from https://www.youtube.com/watch?v=kAy-03hIfck
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• [MacGregor, 1991] Process data was collected 
at different steady states in a distillation column 
for reflux ratio, ! and overhead purity, "#.

Example 3-0: Simple Distillation Column 

[5] MacGregor, J., Marlin, T., and Kresta, J. (1991). Some comments on neural networks and other empirical modelling methods. In Proc. of CPC-IV, 
South Padre Island, TX, 665–672. CACHE-AIChE.
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• [MacGregor, 1991] Process data was collected 
at different steady states in a distillation column 
for reflux ratio, ! and overhead purity, "#.

• Basic chemical engineering principles tell us 
that purity should increase with reflux.

Example 3-0: Simple Distillation Column 

[5] MacGregor, J., Marlin, T., and Kresta, J. (1991). Some comments on neural networks and other empirical modelling methods. In Proc. of CPC-IV, 
South Padre Island, TX, 665–672. CACHE-AIChE.
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• [MacGregor, 1991] Process data was collected 
at different steady states in a distillation column 
for reflux ratio, ! and overhead purity, "#.

• Basic chemical engineering principles tell us 
that purity should increase with reflux.

• However, an engineer applying regression to the 
data found a negative correlation, which made 
no physical sense.

Example 3-0: Simple Distillation Column 

[5] MacGregor, J., Marlin, T., and Kresta, J. (1991). Some comments on neural networks and other empirical modelling methods. In Proc. of CPC-IV, 
South Padre Island, TX, 665–672. CACHE-AIChE.
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• [MacGregor, 1991] Process data was collected 
at different steady states in a distillation column 
for reflux ratio, ! and overhead purity, "#.

• Basic chemical engineering principles tell us 
that purity should increase with reflux.

• However, an engineer applying regression to the 
data found a negative correlation, which made 
no physical sense.

• Eventually, the engineer found that operator was 
manually increasing reflux ratio when purity was 
low due to disturbances, and vice-versa.

Example 3-0: Simple Distillation Column 

[5] MacGregor, J., Marlin, T., and Kresta, J. (1991). Some comments on neural networks and other empirical modelling methods. In Proc. of CPC-IV, 
South Padre Island, TX, 665–672. CACHE-AIChE.
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• [MacGregor, 1991] Process data was collected 
at different steady states in a distillation column 
for reflux ratio, ! and overhead purity, "#.

• Basic chemical engineering principles tell us 
that purity should increase with reflux.

• However, an engineer applying regression to the 
data found a negative correlation, which made 
no physical sense.

• Eventually, the engineer found that operator was 
manually increasing reflux ratio when purity was 
low due to disturbances, and vice-versa.

Example 3-0: Simple Distillation Column 

[5] MacGregor, J., Marlin, T., and Kresta, J. (1991). Some comments on neural networks and other empirical modelling methods. In Proc. of CPC-IV, 
South Padre Island, TX, 665–672. CACHE-AIChE.

Regression correctly captured the 
negative correlation between reflux 
and purity due to operator actions, 
but failed to provide information on 
fundamental relationships in the 
absence of feedback!
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• Background: Industrial datasets have multiple, irregular sampling rates. 

• Fast Process Data: real-time measurements like temperatures, flows etc. (yellow)

• Slow Quality Data: offline measurements like lab samples (black)

• Problem: the time interval between sample collection and lab results could take hours/days

• Implications: must consider how to align fast data and slow data during data cleaning

Pitfall 4 – Mishandling multi-rate data



21

Example - soft sensor maintenance:

• Monitor model performance by 
calculating residuals between 
predictions and lab results.

• Lab results may only be available hours 
or days after sample was taken

• Re-aligning lab results back to sample 
collection time is a critical data 
cleansing step that is often overlooked.

Pitfall 4 – Mishandling multi-rate data

Figure 13: Visual representation of time shift adjustment for 
updating lab sample inferentials. 

Siang, L. C., Elnawawi, S., & Steele, D. (2022). Self-Service Analytics and the Processing of 
Hydrocarbons. Digital Chemical Engineering, 100021.
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• Be mindful of the 80/20 rule: Squeezing out marginal 
improvements in model accuracy can lead to 
diminishing (business) returns. 

• Example: If you can build a simple model that works 
reasonably well and satisfies business stakeholders, 
it probably won’t make sense to spend months trying 
to build the ‘perfect’ model with very low prediction 
error.

Pitfall 5 – Chasing irrelevant model metrics

Figure 15: Durable inferential sensors reduce the burden 
of model maintenance. Model accuracy is important but 
should also be considered in the broader context of 
model maintenance and other performance trade-offs.
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• Consider not just accuracy, but also model 
maintenance and other performance trade-offs: 
Soft sensors degrade over time due to process drifts, 
instrumentation issues etc. 

• Accuracy metrics !", RMSE, MAE etc. are just one 
part of the story for industrial implementation

• Example: A durable model may be more valuable 
than a slightly more accurate one that degrades faster 
and needs frequent maintenance.

Pitfall 5 – Chasing irrelevant model metrics

Figure 15: Durable inferential sensors reduce the burden 
of model maintenance. Model accuracy is important but 
should also be considered in the broader context of 
model maintenance and other performance trade-offs.
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• Survey of the chemical process 
industry in Japan conducted in 2010

• For soft sensors, model 
maintenance is the most important 
issue faced by practitioners, more 
so than accuracy, modeling etc.

Kano, M., & Ogawa, M. (2010). The state of the 

art in chemical process control in Japan: Good 

practice and questionnaire survey. Journal of 
Process Control

Pitfall 5 – Chasing irrelevant model metrics
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Example 5-1: Consider uncertainties in the ground truth

Understand how the ground truth data is obtained, as well as its limits and uncertainties

• ASTM definition for measurement precisions under specific 
test conditions: Reproducibility (R) – uncertainty with test 
conducted in different labs, operators and apparatus

• Example: ASTM D2700 for measuring fuel motor octane 
number (MON) has a reproducibility of ! = 0.9. 

o This means that a sample tested for MON in 2 
different labs with differences below 0.9 can be 
explained only by the test method precision, not 
equipment/operator error.

• Implications: A soft sensor for predicting MON with a typical 
value of 90 can’t possibly have an error of less than 1% using 
lab samples tested in different facilities as the ground truth.

Reference: https://sn.astm.org/data-points/what-are-
repeatability-and-reproducibility-ma09.html
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1. Contextualize your process data

2. Apply domain knowledge

3. Account for closed-loop conditions in industrial processes

4. Align multi-rate data correctly

5. Consider model durability and maintenance, not just accuracy

Takeaways: Pitfalls and Guidelines for Process Analytics

Burnaby Refinery, BC, Canada

https://APCPapers.github.io/



Appendix & Extra Slides
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Example 3-1: The complexity of a simple control loop

Figure 12: Plot of PV for a temperature controller 52TC111. This data passed the 
initial check, there were no compression issues or hidden calculations. 

Observations

• PV fluctuates more after 5PM. Why?
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Example 3-1: The complexity of a simple control loop

Observations

• PV fluctuates more after 5PM.

• Plot SP: initially the PV was tracking the SP, 
but after 5PM the SP tracked the PV. Why?

Figure 12: Plot of SP and PV for a temperature controller 52TC111. The SP 
started tracking the PV after 5PM.
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Example 3-1: The complexity of a simple control loop

Observations

• PV fluctuates more after 5PM.

• Plot SP: initially the PV was tracking the SP, 
but after 5PM the SP tracked the PV.

• Plot .MODE or .AM tag: in manual mode, SP 
tracks PV for bumpless transfer. Why?

Figure 12: PV and SP plot for a temperature controller 52TC111 showing loop 
mode (AM) switch from Auto to Manual. 
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Example 3-1: The complexity of a simple control loop

Observations

• PV fluctuates more after 5PM.

• Plot SP: initially the PV was tracking the SP, 
but after 5PM the SP tracked the PV.

• Plot .MODE or .AM tag: in manual mode, SP 
tracks PV for bumpless transfer.

• APC was turned on, which caused the loop to 
go from AUTO to MANUAL. Why?

Figure 12: Plot for a temperature controller 52TC111 showing loop mode (AM) 
switch from Auto to Manual as well as APC On switch.
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Example 3-1: The complexity of a simple control loop

Observations

• PV fluctuates more after 5PM.

• Plot SP: initially the PV was tracking the SP, 
but after 5PM the SP tracked the PV.

• Plot .MODE or .AM tag: in manual mode, SP 
tracks PV for bumpless transfer.

• APC was turned on, which caused the loop to 
go from AUTO to MANUAL.

• 52TC111 is part of a cascade loop. When 
APC is ON, the cascade loop is broken and 
APC controls 52FC111 directly. 52TC111 no 
longer involved in control.

Figure 12: Plot for a temperature controller 52TC111 showing PID and APC loop 
mode changes. APC/cascade configuration is shown at the bottom.
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Example 3-1: The complexity of a simple control loop

Loop configurations can be complex: check your operating modes before using the data

• PV fluctuates more after 5PM.

• Plot SP: initially the PV was tracking the SP, 
but after 5PM the SP tracked the PV.

• Plot .MODE or .AM tag: in manual mode, SP 
tracks PV for bumpless transfer.

• APC was turned on, which caused the loop to 
go from AUTO to MANUAL.

• 52TC111 is part of a cascade loop. When 
APC is ON, the cascade loop is broken and 
APC controls 52FC111 directly. 52TC111 no 
longer involved in control.

Figure 12: Plot for a temperature controller 52TC111 showing PID and APC loop 
mode changes. APC/cascade configuration is shown at the bottom.
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Example 4-1: Multi-rate data retrieval and alignment

Export

Single grid: apply zero-order hold on lab 
samples and align to the same timestamp 
grid (default export settings)

Problem: Process data can be acquired at high frequency, but 
lab measurements are only available twice daily.

Figure 14: Time-series of inferential prediction (high frequency), lab results 
(twice daily) and time required for lab sample processing (green bar).
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Example 4-1: Multi-rate data retrieval and alignment

Export

Export settings matter: consider separate timestamp grids for multi-rate data

Single grid: apply zero-order hold on lab 
samples and align to the same timestamp 
grid (default export settings)

Multiple grids: use different grids and 
decide how to treat ‘missing’ lab data

Problem: Process data can be acquired at high frequency, but 
lab measurements are only available twice daily.

Figure 14: Time-series of inferential prediction (high frequency), lab results 
(twice daily) and time required for lab sample processing (green bar).

Fast Grid Slow Grid

Fast Grid


