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Today’s Topic: Pitfalls in Industrial Process Analytics

Motivation:
] Much of the process analytics literature focuses on modelling UBC
E—fﬁ @ @ odel-centric and algorithmic techniques, while little attention is paid to the
t - Y Y . - .
practical aspects of data acquisition and cleaning.

Data Model
Practitioners unfamiliar with industrial datasets often face

|

difficulties in these areas due to the lack of practical

—_— . ' Data-centric
L B ~ academic resources.

Data Model
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Zha, Daochen, et al. "Data-centric Artificial Intelligence:
A Survey." arXiv preprint arXiv:2303.10158, 2023. O ur WO rk .

https://github.com/daochenzha/data-centric-Al . . . _ .
A series of common pitfalls and practical considerations for

obtaining and pre-processing data for process analytics
applications, intended as a tutorial for data practitioners
unfamiliar with industrial datasets.




Background

« Much of the research in process analytics
under-emphasizes how finished datasets

5 | Training Data

are obtained.

o Inferential models work by capturing
Inferential Model patterns in the training data;

o If the data is not descriptive or
“clean” enough to allow this, models

will not learn well;
Model Output

« Scope is focused on inferentials/soft

o N
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SEeNsors.

Figure 1: “Garbage in, garbage out” — a colloquialism
describing that any advanced model can only be as good as
the quality of data used to train it.

[1] - Sun, W. and Braatz, R.D. (2020). Opportunities in tensorial data analytics for chemical and biological manufacturing processes. Comput. Chem. Eng., 143, 107099.



Pitfall 1 — Failure in data retrieval and contextualization

* “Process data” describe many aspects of operations
in many different formats.

» Exploratory data analysis (EDA) is necessary for
more concrete understanding.

o Self-service analytics tools like Seeq and
Spotfire facilitate EDA tasks.

* Practitioners can contextualize data by consulting
plant personnel.

o e.g. data retrieval settings, interpolation
methods, tag calculations, etc.

Process Data

Plant Topology

Maintenance Logs

Control Logic

Lab Quality Data

Shift Logs

Alarm Data

Domain Knowledge

Figure 2: Industrial data come from many different

sources in different formats, and these must be
contextualized with other datasets to provide

actionable information.
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Example 1-1: Beware of ‘hidden’ calculations

B | C D
Name ObjectType exdesc
PROCESS_YIELD PIPoint if 'FEED'>7000 then 100 * 'SIDEDRAW' / 'FEED' else O

Figure 4: Tag names can be misleading because a process value could undergo transformations through PI calculations before being
historized. In this Pl tag example, the PROCESS_YIELD is zeroed when the FEED is below threshold, not because the yield is 0.
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Figure 5: A process value could also undergo transformations in the DCS. In this example, the tag 79FR274 is not a value from a flow meter
79-FIT-274 as we would expect but is calculated based on 79-FIT-1 and 79-FIT-2.

Tags might not store raw values: watch out for calculations hidden in the data historian/DCS




Pitfall 2 — Ignoring domain knowledge and data cleaning

5000 —— Shutdown
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Continuous chemical processes operate at steady-

Figure 7a: Categories of operating data in one variable.

= shutdown o “Curse of dimensionality”: more features does
3500- I Production ramping
o o= rotenial outers not necessarily lead to better models(?;
%_2000 . . . . .
£ 1500- « Data cleaning: suitable processing of outliers, missing
data points, misaligned data.
% 2000 4000 6000 8000 10000 12000

Combustion air to industrial burner (m3/hr)

Figure 7b: Histogram of operating regimes from Fig. 8a.

[2] - Dong, D. and McAvoy, T. (1996). Nonlinear principal component analysis—based on principal curves and neural networks. Comput. Chem. Eng.




Example 2-1: Using process values to identify plant
operating modes can be misleading during data cleaning

Problem:
How do we determine if a plant was running during a certain time period using historical
process data?

Misconception:
Just apply a threshold filter to the feed rate. If the feed rate was higher than a certain

threshold, the plant was running.

Reason:
Process values can be noisy. Unreliable instruments can fail intermittently to low values.
Blindly thresholding the data could incorrectly remove regions when the plant was online.




Example 2-1: Using process values to identify plant
operating modes can be misleading during data cleaning

Figure 9: Time series of feed rate (PV, blue), feed rate controller valve output (CO, magenta), and regions with feed rate < 100 BPD (red)
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Example 2-1: Using process values to identify plant
operating modes can be misleading during data cleaning

Figure 9: Time series of feed rate (PV, blue), feed rate controller valve output (CO, magenta), and regions with feed rate < 100 BPD (red)
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Plant is down:
low PV with valve closed, CO = 0%.




Example 2-1: Using process values to identify plant
operating modes can be misleading during data cleaning

Figure 9: Time series of feed rate (PV, blue), feed rate controller valve output (CO, magenta), and regions with feed rate < 100 BPD (red)
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Plant is down:
low PV with valve closed, CO = 0%.

Plant is actually online:

faulty flow meter with low PV, but CO is wide open




Example 2-1: Using process values to identify plant
operating modes can be misleading during data cleaning

Figure 9: Time series of feed rate (PV, blue), feed rate controller valve output (CO, magenta), and regions with feed rate < 100 BPD (red)
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Plant is down:
low PV with valve closed, CO = 0%.

Plant is actually online:

faulty flow meter with low PV, but CO is wide open

Context is important: a single tag (.PV) might not tell the whole story.




Example 2-2: Adding more features might not help you —
building soft sensors for tracking ‘green’ molecules

Problem:

To generate carbon credits, refiners must quantify the amount of bio-based ‘green’ content in fuels.

The standard method is to use *C measurements, which is expensive and time-consuming to do
online. A soft sensor can help refiners estimate biogenic content in real-time.

How do we determine which features to use in our soft sensor model?

Misconception:
Just use all tags in the plant, more features = more information. More is always better.

Reason:
Adding ‘non-informative’ or ‘non-useful’ features will confuse your models.




Example 2-2: Adding more features might not help you —
building soft sensors for tracking ‘green’ molecules

Figure 10: Bar charts show soft sensor performance (R?) using all features o Goal' Predict biogenic feed content in fUG'S
(green) compared to carefully selecting features using domain knowledge and )
causal analysis (orange). using historical process data.

B Two features without standardization 8 Two features with standardization @ All features without standardization
@ All features with standardization @l Causal features without standardization @ Causal features with standardization

Q
1766

| * Results: Blindly using all features resulted in
a mediocre model. Carefully selecting
- features using domain knowledge gave much

100

better performance.

R2
RMSE

000

« Work led by UBC researchers and PhD
,( students (Jianping Su and Liang Cao) in
o collaboration with the Burnaby Refinery

Su, Jianping, et al. "Tracking the green coke production when co-processing lipids at a
commercial fluid catalytic cracker (FCC): combining isotope C and causal discovery analysis."
Sustainable Energy & Fuels (2022)




Pitfall 3 — Failure to account for closed-loop conditions

Reality:

Closed-loop feedback control is almost always present in
HOMEOQOSTASIS ¢ FEEDBACK industrial process datasets.

| o
snnuu.us\ Tmm Implications:

g} ((@ Feedback will influence process data and observed

SENSOR correlations, causing sign changes or spurious correlations.

RESPONSEv \/RESPONSE

Significance:

Indiscriminately using industrial process data without
accounting for closed-loop conditions could result in models
or correlations that do not align with reality or physics.

[BOGObiology]. (2016, December 3. 5 Minute Bio — Homeostasis. [Video File]. Retrieved from https://www.youtube.com/watch?v=kAy-03hlfck




Example 3-0: Simple Distillation Column

+ [MacGregor, 1991] Process data was collected
—»( ) at different steady states in a distillation column
for reflux ratio, R and overhead purity, yp.

[5] MacGregor, J., Marlin, T., and Kresta, J. (1991). Some comments on neural networks and other empirical modelling methods. In Proc. of CPC-1V,
South Padre Island, TX, 665-672. CACHE-AIChE.




Example 3-0: Simple Distillation Column

+ [MacGregor, 1991] Process data was collected
at different steady states in a distillation column
for reflux ratio, R and overhead purity, yp.

« Basic chemical engineering principles tell us
that purity should increase with reflux.

e 2D

D

T

Open-loop
(No automatic control)

[5] MacGregor, J., Marlin, T., and Kresta, J. (1991). Some comments on neural networks and other empirical modelling methods. In Proc. of CPC-1V,
South Padre Island, TX, 665-672. CACHE-AIChE.




Example 3-0: Simple Distillation Column

St . —/-——R + [MacGregor, 1991] Process data was collected

4—% -
EE w at different steady states in a distillation column %
""""""""""" o agg:gt'g:oml) for reflux ratio, R and overhead purity, yp.

& « Basic chemical engineering principles tell us

that purity should increase with reflux.

v R « However, an engineer applying regression to the
¥yD data found a negative correlation, which made

no physical sense.
Closed-loop

[5] MacGregor, J., Marlin, T., and Kresta, J. (1991). Some comments on neural networks and other empirical modelling methods. In Proc. of CPC-1V,
South Padre Island, TX, 665-672. CACHE-AIChE.




Example 3-0: Simple Distillation Column

Q » [MacGregor, 1991] Process data was collected
—/—yD at different steady states in a distillation column
- _ Opendoop for reflux ratio, R and overhead purity, yp.
(No automatic control)

« Basic chemical engineering principles tell us
that purity should increase with reflux.

v R * However, an engineer applying regression to the

YD data found a negative correlation, which made

no physical sense.

Closed-loop

» Eventually, the engineer found that operator was

manually increasing reflux ratio when purity was
low due to disturbances, and vice-versa.

[5] MacGregor, J., Marlin, T., and Kresta, J. (1991). Some comments on neural networks and other empirical modelling methods. In Proc. of CPC-1V,
South Padre Island, TX, 665-672. CACHE-AIChE.




Example 3-0: Simple Distillation Column

i

@ g | B e + [MacGregor, 1991] Process data was collected
' at different steady states in a distillation column

R ) o
pen-loop
: Y

{No automatic control) Closed-loop

for reflux ratio, R and overhead purity, yp.

& « Basic chemical engineering principles tell us
that purity should increase with reflux.

: * However, an engineer applying regression to the
Regression correctly captured the _ . _
negative correlation between reflux data found a negative correlation, which made

and purity due to operator actions, no physical sense.

but failed to provide information on
fundamental relationships in the « Eventually, the engineer found that operator was

absence of feedback! manually increasing reflux ratio when purity was

low due to disturbances, and vice-versa.

[5] MacGregor, J., Marlin, T., and Kresta, J. (1991). Some comments on neural networks and other empirical modelling methods. In Proc. of CPC-1V,
South Padre Island, TX, 665-672. CACHE-AIChE.




Pitfall 4 — Mishandling multi-rate data

1 || | || || || O | | " || || ] ] —_ ] — | —1 |
438 . B - Lab Results (Lane 1)
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« Background: Industrial datasets have multiple, irregular sampling rates.
» Fast Process Data: real-time measurements like temperatures, flows etc. (yellow)
« Slow Quality Data: offline measurements like lab samples (black)
* Problem: the time interval between sample collection and lab results could take hours/days

» Implications: must consider how to align fast data and slow data during data cleaning




Pitfall 4 — Mishandling multi-rate data

Capsule

A : Sample taken, awaiting results
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Figure 13: Visual representation of time shift adjustment for

updating lab sample inferentials.

Siang, L. C., EInawawi, S., & Steele, D. (2022). Self-Service Analytics and the Processing of

Hydrocarbons. Digital Chemical Engineering, 100021.

Example - soft sensor maintenance:

* Monitor model performance by
calculating residuals between
predictions and lab results.

* Lab results may only be available hours
or days after sample was taken

* Re-aligning lab results back to sample
collection time is a critical data
cleansing step that is often overlooked.

v




Pitfall 5 — Chasing irrelevant model metrics

Relative model performance
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Figure 15: Durable inferential sensors reduce the burden

of model maintenance. Model accuracy is important but
should also be considered in the broader context of

model maintenance and other performance trade-offs.

Be mindful of the 80/20 rule: Squeezing out marginal
improvements in model accuracy can lead to
diminishing (business) returns.

v

« Example: If you can build a simple model that works
reasonably well and satisfies business stakeholders,
it probably won’'t make sense to spend months trying
to build the ‘perfect’ model with very low prediction
error.




Pitfall 5 — Chasing irrelevant model metrics

Relative model performance
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Figure 15: Durable inferential sensors reduce the burden

of model maintenance. Model accuracy is important but
should also be considered in the broader context of

model maintenance and other performance trade-offs.

Consider not just accuracy, but also model
maintenance and other performance trade-offs:
Soft sensors degrade over time due to process drifts,
instrumentation issues etc.

«  Accuracy metrics R?, RMSE, MAE etc. are just one
part of the story for industrial implementation

« Example: A durable model may be more valuable
than a slightly more accurate one that degrades faster
and needs frequent maintenance.

v



Pitfall 5 — Chasing irrelevant model metrics

In addition, we have asked engineers what are problems related with applications of
soft-sensors; the answers are summarized in Table 9. This result confirms that the
imainténance of models is the most important issue concerning soft-sensors.

Table 9. Problems of soft-sensor applications (from the survey JSPS PSE143 WS27-PCT
2009).

Accuracy deterioration due to changes in process characteristics 29%
Burden (time/cost) of data acquisition 22%
Burden of modeling itself 14%
Burden of data preprocessing 7%
Inadequate accuracy since installation 7%
Inadequate accuracy due to changes in operating conditions 7%
Difficulty in evaluating reliability 7%
Unjustifiable cost performance 7%

« Survey of the chemical process
industry in Japan conducted in 2010

* For soft sensors, model
maintenance is the most important
issue faced by practitioners, more
so than accuracy, modeling etc.

Kano, M., & Ogawa, M. (2010). The state of the
art in chemical process control in Japan: Good
practice and questionnaire survey. Journal of
Process Control




Example 5-1: Consider uncertainties in the ground truth

datalTHTH
a statistics g&a

What Are Repeatability
and Reproducibility?

Part 1: A D02 Viewpoint for Laboratories'

ally as the inherent “imperfections” associated

Q: Many ASTM standard test methods with the test method. In statistical nomenclature,

contain repeatability and reproducibility this inherent “imperfection” is known as preci

n O
statements and values. What is sion although some might prefer to think of it as

the conceptual difference between imprecision.

repeatability and reproducibility, and how Intuitively, the precision associated with mul-
can this information be applied? tiple test results obtained by the same operator

Reference: https://sn.astm.org/data-points/what-are-
repeatability-and-reproducibility-ma09.html

ASTM definition for measurement precisions under specific
test conditions: Reproducibility (R) — uncertainty with test
conducted in different labs, operators and apparatus

Example: ASTM D2700 for measuring fuel motor octane
number (MON) has a reproducibility of R = 0.9.

o This means that a sample tested for MON in 2
different labs with differences below 0.9 can be
explained only by the test method precision, not
equipment/operator error.

Implications: A soft sensor for predicting MON with a typical
value of 90 can’t possibly have an error of less than 1% using
lab samples tested in different facilities as the ground truth.

Understand how the ground truth data is obtained, as well as its limits and uncertainties




Takeaways: Pitfalls and Guidelines for Process Analytics

1. Contextualize your process data
2. Apply domain knowledge
3. Account for closed-loop conditions in industrial processes

4. Align multi-rate data correctly

5. Consider model durability and maintenance, not just accuracy

Burnaby Refinery, BC, Canada

https://APCPapers.github.io/
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“Everyone wants to do the model work, not the data work”:
Data Cascades in High-Stakes Al

Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen Paritosh, Lora
Aroyo
[nithyasamba,kapania, hhighfill, dakrong,pkp,loraa]@google.com
Google Research
Mountain View, CA

ABSTRACT

Al models are increasingly applied in high-stakes domains like
health and conservation. Data quality carries an elevated signifi-
cance in high-stakes Al due to its heightened downstream impact,
impacting predictions like cancer detection, wildlife poaching, and
loan allocations. Paradoxically, data is the most under-valued and
de-glamorised aspect of AL In this paper, we report on data practices
in high-stakes Al from interviews with 53 Al practitioners in India,
East and West African countries, and USA. We define, identify, and
present empirical evidence on Data Cascades—compounding events
causing negative, downstream effects from data issues—triggered
by conventional AI/ML practices that undervalue data quality. Data
cascades are pervasive (92% prevalence), invisible, delayed, but
often avoidable. We discuss HCI opportunities in designing and
incentivizing data excellence as a first-class citizen of Al resulting
in safer and more robust systems for all.

CCS CONCEPTS

« Human-centered computing — Empirical studies in HCL

lionized work of building novel models and algorithms [46, 125]. In-
tuitively, Al developers understand that data quality matters, often
spending inordinate amounts of time on data tasks [60]. In practice,
most organisations fail to create or meet any data quality standards
[87], from under-valuing data work vis-a-vis model development.

Under-valuing of data work is common to all of Al develop-
ment [125]!. We pay particular attention to undervaluing of data
in high-stakes domains® that have safety impacts on living beings,
due to a few reasons. One, developers are increasingly deploying
Al models in complex, humanitarian domains, e.g., in maternal
health, road safety, and climate change. Two, poor data quality
in high-stakes domains can have outsized effects on vulnerable
communities and contexts. As Hiatt et al. argue, high-stakes efforts
are distinct from serving customers; these projects work with and
for populations at risk of a litany of horrors [47]. As an example,
poor data practices reduced accuracy in IBM’s cancer treatment Al
[115] and led to Google Flu Trends missing the flu peak by 140%
[63, 73]). Three, high-stakes Al systems are typically deployed in
low-resource contexts with a pronounced lack of readily available,
high-quality datasets. Applications span into communities that

28



Example 2: Inferential Control Models

The next examples illustrate the problems that can arise when some of the process variables
are affected by the feedback of information from other variables due to the presence of feedback
controllers during data collection. Although these feedback effects were discussed in the early 70's,

they still appear to be poorly appreciated by many process engineers.

A quick appreciation for the effects of feedback can be gained by relating the first author’s
experience with this type of data while working at Monsanto in the 1960's. Process data at a number
of quasi-steady-states was collected from a distillation column on the overhead purity and the reflux
ratio. As we know from theory, under normal operation the overhead purity should increase when the
reflux ratio is increased. However, when an engineer performed a regression on this data he found a
negative correlation between the purity and the reflux which appeared to make no sense. But what
was happening was that an operator was adjusting the reflux ratio in a feedback manner. Every time
the overhead purity was low due to persistent process disturbances the operator increased the reflux
ratio and vice versa. Hence the observed negative correlation. Which accurately represents the
correlation between variables in the plant under operator control but does not give any information on
the fundamental relationship between variables in distillation without feedback. Generalizing this to
the identification of nonparametric dynamic models from data generated by a linear feedback law, we
know from the literature that fitting such data will lead to identifying the negative inverse of the
controller transfer function rather than the process transfer function (eg. Box and MacGregor, 1974;

Ljunget al., 1974).

We consider now a more realistic example taken from a paper by Kresta et al. (1990, 1991) on
the development of an empirical model for inferential control of a distillation column. “Data" were
collected from a steady-state simulation of a benzene-toluene-xylene (BTX) column in the presence of
various disturbances and manipulated variable changes (Figure 1). These data were collected under




Example 3-1: The complexity of a simple control loop

Figure 12: Plot of PV for a temperature controller 52TC111. This data passed the Observatlons

initial check, there were no compression issues or hidden calculations.

« PV fluctuates more after 5PM. Why?

52TC111 (°F) (Lane 3)

10:00 am 12:00 pm 2:00 pm 4:00 pm 6:00 pm 8:00 pm 10:00 pm Jan 14




Example 3-1: The complexity of a simple control loop

Observations

Figure 12: Plot of SP and PV for a temperature controller 52TC111. The SP

started tracking the PV after 5PM.
PV fluctuates more after 5PM.

52TC111.SP (F), 52TC111 (°F) (Lane 3)

« Plot SP: initially the PV was tracking the SP,
but after 5PM the SP tracked the PV. Why?

10:00 am 12:00 pm 2:00 pm 4:00 pm 6:00 pm 8:00 pm 10:00 pm Jan 14




Example 3-1: The complexity of a simple control loop

Figure 12: PV and SP plot for a temperature controller 52TC111 showing loop

mode (AM) switch from Auto to Manual.

Controller Mode: Auto, Manual (Lane 2)

Observations

256
254
253

252

52TC111.SP (°F), 52TC111 (°F) (Lane 3)

52TC111.AM (Lane 4)

PV fluctuates more after 5PM.

Plot SP: initially the PV was tracking the SP,
but after 5PM the SP tracked the PV.

Plot . MODE or .AM tag: in manual mode, SP
tracks PV for bumpless transfer. Why?




Example 3-1: The complexity of a simple control loop

Figure 12: Plot for a temperature controller 52TC111 showing loop mode (AM)
switch from Auto to Manual as well as APC On switch.

Observations

APC ON (Lane 1)

Controller Mode: Auto, Manual (Lane 2) ° PV fluctuates more after 5PM ]

52TCI11.SP (F), 52TC111 (F) (Lane 3)

256

« Plot SP: initially the PV was tracking the SP,
but after 5PM the SP tracked the PV.

52TC111.AM (Lane 4)

* Plot .MODE or .AM tag: in manual mode, SP
tracks PV for bumpless transfer.

52APC_ONOFF (Lane 5)

) APC was turned on, which caused the loop to
go from AUTO to MANUAL. Why?

10:00 am 12:00 pm 2:00 pm 4:00 pm 6:00 pm 8:00 pm 10:00 pm Jan 14




Example 3-1: The complexity of a simple control loop

Figure 12: Plot for a temperature controller 52TC111 showing PID and APC loop
mode changes. APC/cascade configuration is shown at the bottom.

Observations

APC ON (Lane 1)

Controller Moée Auto, Manual (Lane f) ° PV .ﬂuctuates more after 5PM ]

52TCI111.SP (°F), 52TC111 (°F) (Lan

WMWWW . Plot SP: initially the PV was tracking the SP,

but after 5PM the SP tracked the PV.

ane 4)

* Plot .MODE or .AM tag: in manual mode, SP
tracks PV for bumpless transfer.

52APC_ONOFF (Lane 5)

* APC was turned on, which caused the loop to FSFees
go from AUTO to MANUAL. D

h « 52TC111 is part of a cascade loop. When

140#

o ST APC is ON, the cascade loop is broken and

APC controls 52FC111 directly. 52TC111 no
longer involved in control.




Example 3-1: The complexity of a simple control loop

PV fluctuates more after 5PM.

Figure 12: Plot for a temperature controller 52TC111 showing PID and APC loop
mode changes. APC/cascade configuration is shown at the bottom.

APC ON (Lane 1)

. ° Plot SP: initially the PV was tracking the SP,

%A&%WWWWW but after 5PM the SP tracked the PV.
* Plot .MODE or .AM tag: in manual mode, SP

ane 4)

tracks PV for bumpless transfer.

 APC was turned on, which caused the loop to
go from AUTO to MANUAL.

52APC_ONOFF (Lane 5)

« 52TC111 is part of a cascade loop. When
F APC is ON, the cascade loop is broken and

APC controls 52FC111 directly. 52TC111 no
longer involved in control.

140#

STM

Loop configurations can be complex: check your operating modes before using the data




Example 4-1: Multi-rate data retrieval and alignment

A ‘ B ‘ ¢ ‘ D

Date-Time A___Inferential X___Lab
2022-09-03T01:20:17 427.0546875 424.539063
2022-09-03T01:20:17 427.0546875 424.539063
2022-09-03T01:20:17 427.0546875 424.539063
2022-09-03T01:20:18 427.0546875 424.539063

| 2022-09-03701:20:18 427.0546875 424.539063

| 2022-09-03701:20:18 427.0546875 424.539063

Figure 14: Time-series of inferential prediction (high frequency), lab results |

(twice daily) and time required for lab sample processing (green bar).
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B N ' Export
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Problem: Process data can be acquired at high frequency, but
lab measurements are only available twice daily.




Example 4-1: Multi-rate data retrieval and alignment

A ‘ B c | D
Date-Time A___Inferential X___Lab
2022-09-03T01:20:17 427.0546875 424.539063 Fast Grid
2022-09-03T01:20:17 427.0546875 424.539063
2022-09-03T701:20:17 427.0546875 424.539063
2022-09-03701:20:18 427.0546875 424.539063
| 2022-09-03701:20:18 427.0546875 424.539063
| 2022-09-03701:20:18 427.0546875 424.539063

Figure 14: Time-series of inferential prediction (high frequency), lab results

(twice daily) and time required for lab sample processing (green bar).

N o s WN

Lab Sample Processing (Lane 1)
I - | | |

Single grid: apply zero-order hold on lab

, X — Lab (°F) (Lane 2) . .
samples and align to the same timestamp
428
grid (default export settings)
426 T_——__ - RAT Export
¥ Li Fast Grid Slow Grid
424
A B c D
1 Date-Time A___Inferential |Date-Time X___Lab
422 2 2022-09-03T01:21:00  427.0546875|2022-09-03T07:37:52 423
3 2022-09-03T01:21:00 427.171875|2022-09-03T17:41:38  424.859375
12:00 pen Sep4 12:00 pim Sen 5 12:00 pen Se08 1200pm  Sep7 4 | 2022-09-03T01:22:00 427.171875| 2022-09-04T06:58:13  425.28125
5 2022-09-03T01:23:00 427.171875| 2022-09-05T07:16:42  425.992188
) ) 6 2022-09-03T01:24:00 427.171875| 2022-09-06T07:04:06  424.976563
Problem: Process data can be acquired at high frequency, but 7 2022-09-03T01:24:00  427.1953125|2022-09-06T18:18:23 426.320313

lab measurements are only available twice daily. Multiple grids: use different grids and

decide how to treat ‘missing’ lab data

Export settings matter: consider separate timestamp grids for multi-rate data




