
A modular framework for stabilizing deep
reinforcement learning control

Nathan P. Lawrence ∗ Philip D. Loewen ∗ Shuyuan Wang ∗∗

Michael G. Forbes ∗∗∗ R. Bhushan Gopaluni ∗∗

∗Department of Mathematics, University of British Columbia,
Vancouver, BC V6T 1Z2, Canada (e-mail: input@nplawrence.com,

loew@math.ubc.ca).
∗∗Department of Chemical and Biological Engineering, University of

British Columbia, Vancouver, BC V6T 1Z3, Canada (e-mail:
antergravity@gmail.com, bhushan.gopaluni@ubc.ca)

∗∗∗Honeywell Process Solutions, North Vancouver, BC V7J 3S4,
Canada (e-mail: michael.forbes@honeywell.com)

Abstract: We propose a framework for the design of feedback controllers that combines the
optimization-driven and model-free advantages of deep reinforcement learning with the stability
guarantees provided by using the Youla-Kučera parameterization to define the search domain.
Recent advances in behavioral systems allow us to construct a data-driven internal model;
this enables an alternative realization of the Youla-Kučera parameterization based entirely
on input-output exploration data. Using a neural network to express a parameterized set of
nonlinear stable operators enables seamless integration with standard deep learning libraries.
We demonstrate the approach on a realistic simulation of a two-tank system.

Keywords: Reinforcement learning, data-driven control, Youla-Kučera parameterization, neural
networks, stability, process control

1. INTRODUCTION

Closed-loop stability is a basic requirement in controller
design. However, many learning-based control schemes do
not address it explicitly (Buşoniu et al., 2018). This is
somewhat understandable. First, the “model-free” setup
assumed in such algorithms, compounded by the complexity
of the methods and their underlying data structures, makes
stability difficult to reason about. Second, especially in
the case of reinforcement learning (RL), many of the
striking recent success stories pertain to simulated tasks or
game-playing environments in which catastrophic failure
has no real-world impact. When the feedback controller
is to be learned directly with RL, tuning the discount
factor and/or the reward function influences not only
the learning performance but also the stability during
exploration (Buşoniu et al., 2018). This issue provides
a counterpoint to the generality and expressive capacity of
modern RL algorithms, which have nonetheless attracted
immense interest for control tasks (Nian et al., 2020).

In this work, we propose a stability-preserving framework
for RL-based controller design. Our inspiration is the
Youla-Kučera parameterization (Anderson, 1998), which
gives a characterization of all stabilizing controllers for
a given system. The key design variable is then a stable
“parameter”, rather than a direct controller representation.
Optimizing over stable operators is still non-trivial, but

? ©2023 the authors. This work has been accepted to IFAC World
Congress for publication under a Creative Commons Licence CC-BY-
NC-ND.

we show how this can be done in a flexible manner using
neural networks. Finally, the Youla-Kučera parameteri-
zation requires an internal model of the system, which
contradicts one of the key advantages of RL. We address
this with tools from the behavioral systems literature
(Markovsky and Dörfler, 2021), specifically, Willems’ funda-
mental lemma (Willems et al., 2005). This powerful result
provides a characterization of system dynamics entirely
from input-output data. We leverage this to yield a “model-
free” internal representation for the plant, resulting in a
mathematically equivalent realization of the Youla-Kučera
parameterization.

In sum, we disentangle three key components in RL-based
control system design: algorithms, function approximators,
and dynamic models. The resulting framework supports a
modular approach to learning stabilizing policies, in which
advances in any single category can be applied to improve
overall results.

1.1 Related work

Buşoniu et al. (2018) provide a survey of RL techniques
from a control-theoretic perspective, emphasizing the
need for stability-aware RL algorithms. Existing strategies
for incorporating stability into RL can be described
in three broad categories: integral quadratic constraints
(IQCs), Lyapunov’s second method, and the Youla-Kučera
parameterization.

IQCs are a method from robust control theory for proving
stability of a dynamical system with some nonlinear or time-

Fig. 1. A stable nonlinear parameter Q interacts with its
environment; collected input-output trajectories are
used to construct a Hankel matrix. These ingredients
yield an equivalent realization of the Youla-Kučera
parameterization.

varying component. In the context of RL, nonlinearities in
the environment or the nonlinear activation functions used
to compose a policy neural network can be characterized
using IQCs. This has been the approach in several recent
works, for example, Jin and Lavaei (2020); Wang et al.
(2022).

Lyapunov stability theory is also well represented in the RL
literature (Berkenkamp et al., 2017; Han et al., 2020). The
principal idea is to learn a policy that guarantees the steady
decrease of a suitable Lyapunov function. Berkenkamp
et al. (2017) proposed one of the first methods to establish
stability with deep neural network policies: a Lyapunov
function and a statistical model of the environment are
assumed to be available, then the policy is optimized
within an expanding estimate of the region of attraction.
Subsequent works add the task of acquiring a Lyapunov
function to the learning process (Lawrence et al., 2020). For
example, Han et al. (2020) exploit a trainable Lyapunov
neural network in tandem with the policy. Methods based
on merging model predictive control with RL (Zanon and
Gros, 2020) also make essential use of Lyapunov analysis.

The Youla-Kučera parameterization is a seemingly under-
utilized technique for integrating stability into RL algo-
rithms. Friedrich and Buss (2017) employ the Youla-Kučera
parameterization through the use of a crude plant model;
RL is used to optimize the tracking performance of a
physical two degree of freedom robot in a safe fashion
while accounting for unmodeled nonlinearities. Recently, a
recurrent neural network architecture based on IQCs was
developed (Revay et al., 2021). Since this architecture
satisfies stability conditions by design, it can be used
for control in a nonlinear version of the Youla-Kučera
parameterization (Wang et al., 2022).

While we also use the Youla-Kučera parameterization, our
approach has several novel aspects. Its method for produc-
ing stable operators uses a non-recurrent neural network
structure; this makes the implementation and integration
with off-the-shelf RL algorithms relatively straightforward,
for both on-policy and off-policy learning. We also formulate
a data-driven realization of the Youla-Kučera parameteri-
zation based on Willems’ fundamental lemma, essentially
removing the prior modeling assumption.

2. BACKGROUND

This section lays out the foundational pieces for our
approach. We first connect Willems’ lemma to the Youla-
Kučera parameterization, then we show our approach to
learning stable operators.

We consider linear time-invariant (LTI) systems of the form

xt+1 = Axt +But
yt = Cxt +Dut

(1)

Sometimes it is convenient to express Equation (1) as a
transfer function, in which case we write P = P (z) =
C(zI −A)−1B+D. We assume that (A,B) is controllable,
that (A,C) is observable, and that an upper bound of
the order of the system is known. Crucially, the system
matrices are unknown. For simplicity in our formulation
we assume the system of interest is stable and single-input
single-output, however, the results can be extended to more
general cases.

2.1 Data-driven realization of the Youla-Kučera
parameterization

Given an N -element sequence {zt}N−1
t=0 of vectors in Rm,

the Hankel matrix of order L is given by

HL(z) =

z0 z1 . . . zN−L
z1 z2 . . . zN−L+1

...
...

. . .
...

zL−1 zL . . . zN−1

 .
Definition 1. The sequence {zt}N−1

t=0 ⊂ Rm is persistently
exciting of order L if rank(HL(z)) = mL.

Definition 2. An input-output sequence {ut, yt}N−1
t=0 is a

trajectory of an LTI system (A,B,C,D) if there exists a

state sequence {xt}N−1
t=0 such that Equation (1) holds.

The following theorem is the state-space version of Willems’
fundamental lemma (Willems et al., 2005). It provides an
alternative characterization of an LTI system based entirely
on input-output data. Only an upper bound of the order
of the system is required.

Theorem 3. (See van Waarde et al. (2020)). Let

{ut, yt}N−1
t=0 be a trajectory of an LTI system (A,B,C,D)

where u is persistently exciting of order L + n. Then
{ut, yt}L−1

t=0 is a trajectory of (A,B,C,D) if and only if
there exists α ∈ RN−L+1 such that[

HL(u)
HL(y)

]
α =

[
u
y

]
. (2)

(When we omit the time index in the context of the right-
hand side of Equation (2), it is understood as a column
vector z = [z0 . . . zL−1]T .) Theorem 3 has been applied
extensively for predictive control tasks (Markovsky and
Dörfler, 2021; Berberich and Allgower, 2020). In particular,
a sequence of inputs may be proposed, and through a
slight variation of Equation (2), the corresponding outputs
computed. This leads to a scheme of forecasting a sequence
of inputs and “filling in” the outputs.

In what follows, we consider the scenario of using the Hankel
based model as an internal system model. Therefore, we

assume the system is strictly proper — that is, D = 0 in
Equation (1) — to ensure a realizable controller strategy

later on. Now, given a system trajectory {ut, yt}L−1
t=0 , we

note that yL is uniquely determined by these available data.
A simple way of stepping the system forward is to consider
a time-shifted Hankel matrix

H ′L(z) = HL(z′),

where z = {zt}N−1
t=0 and z′ = {zt}Nt=1 for some N .

Corollary 4. Let {ut, yt}N−1
t=0 be a trajectory of a strictly

proper LTI system (A,B,C) where u is persistently exciting

of order L+ n+ 1. Then for each trajectory {ut, yt}L−1
t=0 of

(A,B,C), there exists α ∈ RN−L such that

y′ = H ′L(y)α.

Proof. By Theorem 3, the trajectory {ut, yt}L−1
t=0 satisfies[

HL(u)
HL(y)

]
α =

[
u
y

]
for some α ∈ RN−L. Moreover, by Definition 2 there exists
a sequence of states {xt}L−1

t=0 that corresponds to the input-

output trajectory {ut, yt}L−1
t=0 . This sequence induces the

state xL. We have

yL = CxL
= C (AxL−1 +BuL−1)

= C

(
A

N−L−1∑
i=0

αixL+i +B

N−L−1∑
i=0

αiuL+i

)

=

N−L−1∑
i=0

αiC (AxL+i +BuL+i)

=

N−L−1∑
i=0

αiyL+i+1

as desired. 2

Corollary 4 gives a systematic way of stepping a trajectory
forward in time. This is particularly useful for aligning the
true system with a Hankel representation while implement-
ing a feedback controller online.

The Youla-Kučera parameterization produces the set of all
stabilizing controllers through a combination of an internal
system model and a stable operator. The trick is to directly
parameterize the closed-loop transfer functions associated
with the plant, then recover a controller. For example, the
behavior of the closed-loop transfer function PC

1+PC from
the reference r to output y is determined by the transfer
function C

1+PC . By introducing a stable design variable Q,
we can then directly shape the stable behavior of the system
through the transfer function PQ. By setting Q = C

1+PC ,

we arrive at the Youla-Kučera parameterization (Anderson,
1998):

Cstable =

{
Q

1−QP
: Q is stable

}
This result extends further to unstable, multiple-input
multiple-output systems. Moreover, when P is linear, one
may use a nonlinear operator Q (Anderson, 1998).

Algorithm 1 Data-driven stabilizing controller

1: Input: Stable Q parameter; Observations {uk, yk}N−1
k=0 ;

Initial trajectory {uk, yk}L−1
k=0

2: for each time step t do
3: Set ut−1 ← uL−1

4: Observe the tracking error et = rt − yt
5: Compute yL from Corollary 4
6: Apply the input r̂ = et + yL to the Q parameter

and return control action uL
7: Update trajectory:

{uk, yk}L−1
k=0 ← {uk, yk}

L
k=1

In Algorithm 1, we translate the mathematical ideas
above into a direct sequential process. The following result
provides details of the correspondence.

Theorem 5. Assume P is a stable and strictly proper LTI
system. Let Q be a stable and proper LTI parameter.
Given an upper bound L of the order of P , Algorithm 1
produces the same control signal {ut}∞t=0 as the Youla-
Kučera parameterization.

Proof. We use qt, pt to denote the impulse responses
of Q and P , respectively. Similarly, respective minimal
state-space matrices are denoted (Aq, Bq, Cq, Dq) and
(Ap, Bp, Cp).

By the Youla-Kučera parameterization, we have

C(z) =
Q(z)

1−Q(z)P (z)
∀z ∈ C

⇐⇒ (1−Q(z)P (z))U(z) = Q(z)E(z)

⇐⇒ ut = qt ∗ (et + pt ∗ ut) ∀t ∈ N0

=

t−1∑
j=0

CqA
t−1−j
q Bq r̂j +Dq r̂t,

(3)

where r̂j = ej +
∑j−1
i=0 CpA

j−1−i
p Bpui and ∗ is the con-

volution operator; we have also assumed, without loss of
generality, that P and Q have zero initial state.

Next we relate Equation (3) to Algorithm 1. Let {ek}∞k=0
be an arbitrary sequence. (Such a sequence is dynamically
generated in Algorithm 1.) Without loss of generality, let

the initial trajectory be {uk, yk}L−1
k=0 = {0, 0}L−1

k=0 . For each

time t ∈ N0 we compute α(t) and yt = yL from Corollary 4.
Since L is an upper bound of the order of P , yt is the unique

next output from the trajectory {uk, yk}L−1
k=0 . Therefore,

we have

r̂t = et +

N−L−1∑
i=0

α
(t)
i yL+i+1.

Then

ut =

t−1∑
j=0

CqA
t−1−j
q Bq r̂j +Dq r̂t

gives the next control input.

By updating the trajectory between time steps —
{uk, yk}L−1

k=0 ← {uk, yk}Lk=1 — we dynamically generate a

sequence {α(t)}∞t=0 that produces the control inputs {ut}∞t=0
satisfying the discrete integral equation in Equation (3). 2

2.2 Learning stable operators

The Youla-Kučera parameterization is very elegant, as it
refines the search space for any problem to the set of stable
operators. However, effectively optimizing over this set is
still a major challenge (Wang et al., 2022).

We adapt the method due to Lawrence et al. (2020).
First let us recall the notion of a Lyapunov candidate
function V : Rn → R: 1) V is continuous; 2) V (z) > 0 for
all z 6= 0, and V (0) = 0; 3) There exists a continuous,
strictly increasing function ϕ : [0,∞) → [0,∞) such that
V (z) ≥ ϕ(‖z‖) for all z ∈ Rn; 4) V (z)→∞ as ‖z‖ → ∞.

Lyapunov functions are instrumental for proving a system
is stable through Lyapunov’s second method (Khalil, 2002).
Lawrence et al. (2020) construct stable autonomous systems
of the form zt+1 = fθ(zt) “by design” through the use of
trainable Lyapunov functions. A neural network satisfying
the principal requirements above can be obtained through a
slightly modified input-convex neural network (Amos et al.,
2017) — see Lawrence et al. (2020) and the references
therein for details.

Two neural networks work in tandem to form a single
model that satisfies the decrease condition central to
Lyapunov’s second method: a smooth neural network f̂θ,

and a Lyapunov neural network Vθ. Set ẑ′ = f̂θ(z) where z
is the current state and ẑ′ is the proposed next state. Two
cases are possible: either ẑ′ decreased the value of V or it
did not. We can write out a “correction” to the dynamics
in closed form by exploiting the convexity of V :

zt+1 = fθ(zt)

≡

f̂θ(zt), if V (f̂θ(zt)) ≤ βV (zt)

f̂θ(zt)

(
βV (zt)

V (f̂θ(zt))

)
, otherwise

= γf̂θ(zt), where

γ = γ(zt) =
βV (zt)− ReLU

(
βV (zt)− V (f̂θ(zt))

V (f̂θ(zt))
.

(4)

Since Equation (4) defines the model fθ, both f̂θ and Vθ are
trained in unison towards whatever goal is required of the
sequential states zt, zt+1, . . ., such as supervised learning
tasks. Moreover, although the model fθ is constrained to
be stable, it is unconstrained in parameter space, making
its implementation and training fairly straightforward
with deep learning libraries. Further, despite the complex
structure in Equation (4), Lawrence et al. (2020) show that
the overall model is continuous. Here, we use fθ to model
the internal dynamics of a nonlinear Q parameter. For
example, a control–affine model may be used with stable
transition dynamics fθ.

3. UNCONSTRAINED STABILIZING
REINFORCEMENT LEARNING

A brief overview of deep RL will serve to define our notation,
which is largely standard. For more background, see Sutton
and Barto (2018); Buşoniu et al. (2018); a tutorial-style
treatment is given by Nian et al. (2020).

Reinforcement learning is an optimization-driven frame-
work for learning “policies” simply through interactions
with an environment (Sutton and Barto, 2018). The states
s and actions a belong to the state and action sets S, A,
respectively. At each time step t, the state st influences the
sampling of an action at ∼ π(· | st) from the “policy” π.
Given the action at, the environment produces a successor
state st+1. This cycle completes one step in a Markov deci-
sion process, which induces a conditional density function
st+1 ∼ p(· | st, at) for any initial distribution s0 ∼ p0(·). As
time steps forward under a policy π, a “rollout” is denoted
h = (s0, a0, r0, s1, a1, r1, . . .). Each fixed policy π, induces
a probability density pπ(·) on the set of trajectories.

In RL the desirability of a given rollout is quantified by
a “reward” rt = r(st, at) associated with each stage in the
process above. The overall goal of the agent is to determine
a policy that maximizes the cumulative discounted reward.
That is, given some constant γ ∈ (0, 1),

maximize J(π) = Eh∼pπ
[∞∑
t=0

γtr(st, at)

]
over all policies π : S → P(A),

(5)

where P(A) denotes the set of probability measures on A.

In the space of all possible policies, the optimization is
performed over a subset parameterized by some vector θ.
For example, in some applications, θ denotes the set of
all weights in a deep neural network. In this work, the
policy is the nonlinear Q parameter outlined in Section 2.2.
Therefore, Equation (5) automatically satisfies an internal
stability constraint over the whole weight space θ. We are
then able to use any RL algorithm to solve the problem.
We do not recount the inner workings of common RL
algorithms, as they are well-documented (Nian et al., 2020).
Instead, a brief overview is given.

The broad subject of reinforcement learning concerns
iterative methods for choosing a desirable policy π (this is
the “learning”), guided in some fundamental way by the
agent’s observations of the rewards from past state-action
pairs (this provides the “reinforcement”).

A standard approach to solving Problem (5) uses gradient
ascent

θ ← θ + α∇J(θ),

where α > 0 is a step-size parameter. Analytic expressions
for ∇J(θ) exist for both stochastic and deterministic
policies (see Sutton and Barto (2018); Buşoniu et al. (2018)).
Crucially, these formulas rely on the state-action value
function1,

Q(RL)(st, at) = Eh∼pπ
[∞∑
k=t

γk−tr(sk, ak)

∣∣∣∣∣st, at
]
.

Although Q(RL) is not known precisely, as it depends on
both the dynamics and the policy, it can be estimated with
a deep neural network (Buşoniu et al., 2018). These ideas
and various approximation techniques form the basis of
deep RL algorithms.

Fig. 2. Cumulative reward curve over 20 training sessions.
The solid line is the median and the shaded region
shows the interquartile range. The dashed line and its
shaded region are the final results of training without
the stability constraint.

4. A SIMULATION EXAMPLE

We showcase our training results on a realistic simulation
of a level-control system involving two large tanks of water.
The objective is to regulate the water level in the upper
tank, while water continuously drains out into a lower
reservoir. A pump lifts water from the reservoir back to the
upper tank, establishing a cyclic flow. A physical depiction
of the setup is shown in Figure 1 and further explained in
Lawrence et al. (2022).

The system dynamics are based on Bernoulli’s equation,
establishing outflow fout ≈ fc

√
2g` , and the conservation

of fluid volume in the upper tank:
d

dt

(
πr2

tank`
)

= πr2
tank

˙̀ = fin − fout

(We use dot notation to represent differentiation with
respect to time; g is the gravitational constant; ` is the
level; rtank is the radius of the tank; see Lawrence et al.
(2022) for a more thorough description of the system.)
Our application involves four filtered signals, with time
constants τp for the pump, τin for changes in the inflow, τout

for the outflow, and τm for the measured level dynamics. We
therefore have the following system of differential equations
describing the pump speed, flow rates, level, and measured
level, respectively:

τpṗ+ p = psp

τinḟin + fin = fmax

(p

100

)
τoutḟout + fout = πr2

pipefc

√
2g`

πr2
tank

˙̀ = fin − fout

τmṁ+m = `

To track a desired level `sp — “sp” stands for “setpoint” —
we can employ level and flow controllers by including the
following equations:

psp = PIDflow(fin,sp − fin)

fin,sp = PIDlevel(`sp −m)
(6)

Equation (6) uses shorthand for PID controllers taking
the error signals fin,sp − fin and `sp −m, respectively. For

1 Unfortunately both this function and the Youla-Kučera parameter
are typically denoted by Q. This explains the superscript here.

Fig. 3. A global view of the training progress across all 20
sessions. For each episode, a distribution of time spent
at various output values is obtained. The heatmap
shows the average amount of time spent at each
episode–output coordinate.

our purposes, PIDflow and PIDlevel are fixed and a part of
the environment. The implementation of these dynamics is
performed in discrete time steps of 0.5 seconds and with
Gaussian measurement noise with variance 0.015.

(Training results) Since the environment includes a PID
controller, we modify the control scheme to be in incremen-
tal form ut = ut−1 + ∆ut, where ∆ut is the sum of the
Youla-Kučera parameter and PID controller outputs:

∆ut = ∆u
(q)
t + ∆u

(PID)
t

We ran 20 training sessions for 100 episodes each and
combined the results in Figures 2 and 3. Figure 2 shows the
cumulative rewards for each episode. We convey the median
and interquartile ranges over the 20 training sessions; we
see that median reward curve is much closer to the upper
limit of the shaded region than the lower, indicating that
the majority of experiments fall within that tight region.
Although there is significant variation at initialization, due
to the random policy initialization, the training sessions
exhibit consistent convergence. The reward curves tend to
plateau after around 40 episodes.

Figure 3 shows the collective evolution of each episode
throughout the training sessions. Each episode–output
coordinate is shaded based on how much time the output
variable spent there on average. Darker shading around the
dashed values (setpoints) is more desirable. The purpose
of this figure is to provide a rough translation of what
the reward curve in Figure 2 entails. On the other hand,
Figure 4 shows a single rollout from one of the experiments.

5. CONCLUSION

The Youla-Kučera parameterization is well-known in con-
trol theory, but seemingly under-utilized in RL. Taking
it as a starting point, we have adopted advances in deep
learning and behavioral systems to develop an end-to-end
framework for learning stabilizing policies with general RL
algorithms. This paper is a proof of concept and there are
many avenues to explore. These include the use of stochastic
policies; extensions to unstable systems; and balancing the
persistence of excitation assumption during training and
steady-state operations. We believe this is a fruitful area

Fig. 4. A sample input-output rollout by the trained RL
agent for one of the training sessions. Dashed lines are
setpoints; solid lines are measured values.

to investigate further as deep RL gains traction in process
systems engineering.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support of the
Natural Sciences and Engineering Research Council of
Canada (NSERC) and Honeywell Connected Plant. We
would also like to thank Professor Yaniv Plan for helpful
discussions.

REFERENCES

Amos, B., Xu, L., and Kolter, J.Z. (2017). Input convex neural
networks. In Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning
Research, 146–155. PMLR. URL https://proceedings.mlr.press/

v70/amos17b.html.
Anderson, B.D. (1998). From Youla–Kucera to identification, adaptive

and nonlinear control. Automatica, 34(12), 1485–1506. doi:
10.1016/S0005-1098(98)80002-2.

Berberich, J. and Allgower, F. (2020). A trajectory-based framework
for data-driven system analysis and control. In 2020 European
Control Conference (ECC), 1365–1370. IEEE, Saint Petersburg,
Russia. doi:10.23919/ECC51009.2020.9143608.

Berkenkamp, F., Turchetta, M., Schoellig, A., and Krause, A.
(2017). Safe model-based reinforcement learning with stability
guarantees. In Advances in Neural Information Processing Systems,
volume 30. URL https://proceedings.neurips.cc/paper/2017/file/

766ebcd59621e305170616ba3d3dac32-Paper.pdf.
Buşoniu, L., de Bruin, T., Tolić, D., Kober, J., and Palunko, I. (2018).

Reinforcement learning for control: Performance, stability, and
deep approximators. Annual Reviews in Control, 46, 8–28. doi:
10.1016/j.arcontrol.2018.09.005.

Friedrich, S.R. and Buss, M. (2017). A robust stability approach
to robot reinforcement learning based on a parameterization of
stabilizing controllers. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), 3365–3372. IEEE, Singapore,
Singapore. doi:10.1109/ICRA.2017.7989382.

Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing function
approximation error in actor-critic methods. In Proceedings of the
35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, 1587–1596. PMLR.
URL https://proceedings.mlr.press/v80/fujimoto18a.html.

Han, M., Zhang, L., Wang, J., and Pan, W. (2020). Actor-critic
reinforcement learning for control with stability guarantee. IEEE
Robotics and Automation Letters, 5(4), 6217–6224. doi:10.1109/
LRA.2020.3011351.

Jin, M. and Lavaei, J. (2020). Stability-certified reinforcement
learning: A control-theoretic perspective. IEEE access : practical
innovations, open solutions, 8, 229086–229100. doi:10.1109/
ACCESS.2020.3045114.

Khalil, H.K. (2002). Nonlinear Systems. Prentice-Hall.
Lawrence, N.P., Forbes, M.G., Loewen, P.D., McClement, D.G.,

Backström, J.U., and Gopaluni, R.B. (2022). Deep reinforcement
learning with shallow controllers: An experimental application
to PID tuning. Control Engineering Practice, 121, 105046. doi:
10.1016/j.conengprac.2021.105046.

Lawrence, N.P., Loewen, P.D., Forbes, M.G., Backström, J.U.,
and Gopaluni, R.B. (2020). Almost surely stable deep
dynamics. In Advances in Neural Information Processing
Systems, volume 33, 18942–18953. Curran Associates,
Inc. URL https://proceedings.neurips.cc/paper/2020/file/

daecf755df5b1d637033bb29b319c39a-Paper.pdf.
Markovsky, I. and Dörfler, F. (2021). Behavioral systems theory

in data-driven analysis, signal processing, and control. Annual
Reviews in Control, S1367578821000754. doi:10.1016/j.arcontrol.
2021.09.005.

Nian, R., Liu, J., and Huang, B. (2020). A review on reinforcement
learning: Introduction and applications in industrial process control.
Computers & Chemical Engineering, 139, 106886. doi:10.1016/j.
compchemeng.2020.106886.

Revay, M., Wang, R., and Manchester, I.R. (2021). Recurrent
equilibrium networks: Flexible dynamic models with guaranteed
stability and robustness. doi:10.48550/ARXIV.2104.05942.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement Learning: An
Introduction. Adaptive Computation and Machine Learning Series.
The MIT Press, Cambridge, Massachusetts, second edition edition.

Tian, J. and contributors, o. (2020). ReinforcementLearning.jl:
A reinforcement learning package for the Julia programming
language. URL https://github.com/JuliaReinforcementLearning/

ReinforcementLearning.jl.
van Waarde, H.J., De Persis, C., Camlibel, M.K., and Tesi, P. (2020).

Willems’ fundamental lemma for state-space systems and its
extension to multiple datasets. IEEE Control Systems Letters,
4(3), 602–607. doi:10.1109/LCSYS.2020.2986991.

Wang, R., Barbara, N.H., Revay, M., and Manchester, I.R. (2022).
Learning over all stabilizing nonlinear controllers for a partially-
observed linear system. IEEE Control Systems Letters, 7, 91–96.
doi:10.1109/LCSYS.2022.3184847.

Willems, J.C., Rapisarda, P., Markovsky, I., and De Moor, B.L. (2005).
A note on persistency of excitation. Systems & Control Letters,
54(4), 325–329. doi:10.1016/j.sysconle.2004.09.003.

Zanon, M. and Gros, S. (2020). Safe reinforcement learning using
robust MPC. IEEE Transactions on Automatic Control, 66(8),
3638–3652. doi:10.1109/TAC.2020.3024161.

Appendix A. IMPLEMENTATION DETAILS

Numerical experiments were carried out in the Julia
programming language. In particular, we utilized the
ReinforcementLearning.jl package (Tian and contribu-
tors, 2020). We used the TD3 algorithm (Fujimoto et al.,
2018) to update network parameters. We used the reward

function −0.1|ysp − y| − 0.01
(
∆u(q)

)2
. Most hyperparame-

ters were set to their default values; we set the policy delay
to 4. We used two-layer feedforward networks throughout.
The critic network had 64 nodes per layer and used the
softplus activation. We used the same structure for the
actor in the stability-free comparison shown in Figure 2.
For the stable Q parameter we used Equation (4) and
created a state-space model with matrices B,C,D and fθ
instead of the nominal A matrix. f̂θ had 16 nodes per layer
and used the tanh activation. Vθ also had 16 nodes per
layer.

