A modular framework for stabilizing deep reinforcement learning control

IFAC World Congress 2023

Nathan Lawrence ~ University of British Columbia ~ lawrence@math.ubc.ca
Philip Loewen, Shuyuan Wang, Michael Forbes, Bhushan Gopaluni
Maximizing reward through experience

Reinforcement learning

ChatGPT

Reinforcement learning

ChatGPT

Maximizing reward through experience

https://openai.com/research/learning-from-human-preferences

https://innermonologue.github.io/

RL in PSE?

A review On reinforcement learning: Introduction and applications in industrial process control
Rui Nian, Jinfeng Liu*, Biao Huang

Toward self-driving processes: A deep reinforcement learning approach to control
Steven Spielberg1 | Aditya Tulsyan1 | Nathan P. Lawrence2 | Philip D. Loewen2 | R. Bhushan Gopaluni1

Reinforcement Learning – Overview of recent progress and implications for process control
Joohyun Shin*, Thomas A. Badgwellb, Kuang-Hung Liub, Jay H. Leea,*
Can reinforcement learning help maintain control loops?
It’s complicated

In favor

• Leverage observed data to improve operations
• Minimize prior domain knowledge
• Automated maintenance on a variety of systems

Against

- Additional algorithmic complexity
- Auto-tuners exist already (but are often idle)
- Stability during and after training
- Sample efficiency

Our goal is to balance the automation and scalability of reinforcement learning with control-theoretic tools to create efficient and safe improvements
Reinforcement learning over all stable behaviour

Topics for today

1. Willems’ lemma
 Data-based characterization of dynamics

2. Youla-Kučera parameterization
 Recipe for all stabilizing controllers

3. Learning algorithms
 A module to shape system behavior

Combining these elements gives a modular setup that decouples learning and stability
Key ingredients
State-space model

• Define the system equations

\[x_{t+1} = Ax_t + Bu_t \]
\[y_t = Cx_t \]

where
\[A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times 1}, C \in \mathbb{R}^{1 \times n} \]

• Inputs, outputs are scalars for simplicity

![State-space model diagram](image)
Willems’ fundamental lemma — a special case
(Picture form)

Impulse

What is the span of these data vectors?
Full-rank data matrix!
Willems’ fundamental lemma — general case

Data ↔ models

- Given a signal $z = \{z_t\}_{t=0}^{N-1}$, define its Hankel matrix of order L:

$$
H_L(z) = \begin{bmatrix}
z_0 & z_1 & \cdots & z_{N-L} \\
z_1 & z_2 & \cdots & z_{N-L+1} \\
\vdots & \vdots & \ddots & \vdots \\
z_{L-1} & z_L & \cdots & z_{N-1}
\end{bmatrix}
$$

“Persistently exciting” if full rank

- Let $\{u_t, y_t\}_{t=0}^{N-1}$ be a trajectory where u is persistently exciting of order $L + n$. Then $\{\bar{u}_t, \bar{y}_t\}_{t=0}^{L-1}$ is a trajectory if and only if there exists α such that

$$
\begin{bmatrix}
H_L(u) \\
H_L(y)
\end{bmatrix} \alpha = \begin{bmatrix}
\bar{u} \\
\bar{y}
\end{bmatrix}
$$

Static, collected data

All possible data

A dynamic Willems’ lemma

Carrying a trajectory forward

- Start with Willems’ lemma:
 \[
 \begin{bmatrix}
 H_L(u) \\
 H_L(y)
 \end{bmatrix} \alpha_0 = \begin{bmatrix}
 \tilde{u} \\
 \tilde{y}
 \end{bmatrix}
 \]

- How to advance to the next output? Consider nested Hankel matrices:

\[
\begin{bmatrix}
 y_0 & y_1 & \cdots & y_{N-L} & y_{N-L+1} \\
 y_1 & y_2 & \cdots & y_{N-L+1} & y_{N-L+2} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 y_{L-1} & y_L & \cdots & y_{N-1} & y_N
\end{bmatrix}
\]

\[
H_L(y) = \begin{bmatrix}
 H_L^+(y) \\
 H_L^-(y)
\end{bmatrix}
\]

\[
H_L(y) \alpha' = H_L'(y) \alpha
\]

Multiply previous solution by shifted Hankel matrix — Then repeat!

Figure 2: A visual example of Corollary 3.5 and Theorem 3.4. We collect input–output data for 100 time steps using a standard normal probing signal. After 100 time steps, we take the last \(L \) samples as an initial value, then use recursion outlined in Eq. (5) to "continue" the rollout. This is done several times for different samples of output noise; the shaded regions are the standard deviation from the mean. The bottom figure is the evolution of the spectral radii for the noisy and noise-free matrices.

\[
\begin{bmatrix}
 \tilde{u}' \\
 \tilde{y}'
\end{bmatrix} = \begin{bmatrix}
 H_L'(u) \\
 H_L'(y)
\end{bmatrix} \alpha_0
\]

Multiply previous solution by shifted Hankel matrix — Then repeat!
So far we have characterized a system in terms of data … how do we drive its behaviour?
Youla-Kučera parameterization
All stabilizing controllers

- Hard: Given a controller K, is it stabilizing? What is the set of all stabilizing controllers?

- Easier: What happens when you probe P with stable dynamics Q?
How do we turn it into a controller?
Learning stable systems
(Q in Youla-Kučera)

- \(Q \) is a global parameter, but explicitly writing it down is difficult
- We represent \(Q \) using an unconstrained set of trainable parameters
- Yields stable models suitable for RL or supervised learning
Final ingredient: learning algorithms
Reinforcement learning

Business as usual

- A “policy” π interacts with an “environment”, generating a trajectory $s_0, a_0, r_0, s_1, a_1, r_1, \ldots$

- A “return” is accrued and averaged:
 \[V(s) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right], \text{where } s = s_0 \]

- An “agent” tries to find the “best” policy
Reinforcement learning over all stable behaviour
A modular setup

1. Willems’ lemma
2. Youla-Kučera
3. Learning algorithm

Decouples learning and stability
Industrial example

- RL agent manipulates Q parameter
- End-to-end stable learning with DNN based control
 - Stable during and after training without loss in performance
Conclusions

• Constant advances in deep RL push the boundaries of what is possible

• This success is often misaligned with industrial priorities
 ▶ Performance is not the only metric

• We aim to preserve flexibility of general learning algorithms & maintain key system features

See also: Lawrence, Nathan P. “Deep reinforcement learning agents for industrial control system design.” Electronic Theses and Dissertations, University of British Columbia. 2023.

doi:http://dx.doi.org/10.14288/1.0430547.
Questions?

Lawrence@math.ubc.ca