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Maximizing reward through experience

Reinforcement learning
ChatGPT Chess, Go, Shogi

https://openai.com/research/learning-from-human-preferences

https://www.deepmind.com/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules
https://innermonologue.github.io/

Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor.” 2018.

https://openai.com/research/emergent-tool-use#surprisingbehaviors
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RL in PSE?
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It’s complicated

• Leverage observed data to 
improve operations


• Minimize prior domain 
knowledge 

• Automated maintenance on a 
variety of systems

Can reinforcement learning help 
maintain control loops?

- Additional algorithmic complexity


- Auto-tuners exist already (but are 
often idle)


- Stability during and after training 

- Sample efficiency

Our goal is to balance the automation and scalability of reinforcement learning 
with control-theoretic tools to create efficient and safe improvements

In favor Against
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1. Willems’ lemma


Data-based characterization of dynamics


2. Youla-Kučera parameterization


Recipe for all stabilizing controllers


3. Learning algorithms


A module to shape system behavior

Reinforcement learning over all stable behaviour
Topics for today

Combining these elements gives a modular setup that decouples learning and 
stability
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State-space model

• Define the system equations





where 



• Inputs, outputs are scalars for 
simplicity

xt+1 = Axt + But

yt = Cxt

A ∈ ℝn×n, B ∈ ℝn×1, C ∈ ℝ1×n

Key ingredients

Process

B

A

C+u y
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Willems’ fundamental lemma — a special case
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(Picture form)
Impulse What is the span of these data vectors?
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Willems’ fundamental lemma — general case
Data  models⟺

• Given a signal , define its Hankel matrix of order :


• Let  be a trajectory where  is persistently exciting of order . 
Then  is a trajectory if and only if there exists  such that

z = {zt}N−1
t=0 L

{ut, yt}N−1
t=0 u L + n

{ūt, ȳt}L−1
t=0 α

HL(z) =

z0 z1 … zN−L
z1 z2 … zN−L+1
⋮ ⋮ ⋱ ⋮

zL−1 zL … zN−1

[HL(u)
HL(y)] α = [ū

ȳ]

“Persistently exciting” if full rank

Static, collected data

All possible data

Willems, Jan C., et al. "A note on persistency of excitation.” 2005.
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Carrying a trajectory forward

• Start with Willems’ lemma:


• How to advance to the next 
output? Consider nested Hankel 
matrices:

A dynamic Willems’ lemma

[HL(u)
HL(y)] α0 = [ū

ȳ]

y0 y1 … yN−L yN−L+1
y1 y2 … yN−L+1 yN−L+2
⋮ ⋮ ⋱ ⋮ ⋮

yL−1 yL … yN−1 yN

HL(y)

H′ L(y)
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Figure 2: A visual example of Corollary 3.5 and Theorem 3.4. We collect input–output

data for 100 time steps using a standard normal probing signal. After 100 time steps,

we take the last L samples as an initial value, then use recursion outlined in Eq. (5) to

“continue” the rollout. This is done several times for di↵erent samples of output noise;

the shaded regions are the standard deviation from the mean. The bottom figure is the

evolution of the spectral radii for the noisy and noise-free matrices H+
LH

0
L.

20

HL(y)α′ = H′ L(y)α

⟹

[ū′ 

ȳ′ ] = [H′ L(u)
H′ L(y)]
H′ L(y)

α0
Multiply previous solution by 
shifted Hankel matrix —

Then repeat!

1
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So far we have characterized a system in 
terms of data … how do we drive its 
behaviour?
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Youla-Kučera parameterization
All stabilizing controllers

• Hard: Given a controller , is it stabilizing? What is the set of all stabilizing 
controllers?


• Easier: What happens when you probe  with stable dynamics ?

K

P Q

Q P

12
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 “parameter” characterizes stable behaviourQ
How do we turn it into a controller?

PQ

⏟⏟ StableStable

Input Output

Stable

⟺

Q
Output

Process+

-1

Input

Controller

+

P
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(  in Youla-Kučera)Q

•  is a global parameter, but 
explicitly writing it down is 
difficult


• We represent  using an 
unconstrained set of trainable 
parameters


• Yields stable models suitable for 
RL or supervised learning

Q

Q

Learning stable systems
2
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Linear case — matrix factorization

Nonlinear case — stable DNN

Lawrence, Nathan, et al. “Almost surely stable deep dynamics.” 2020.



Final ingredient: learning 
algorithms
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Business as usual

• A “policy”  interacts with an 
“environment”, generating a 
trajectory 


• A “return” is accrued and 
averaged:  

,where 


• An “agent” tries to find the 
“best” policy

π

s0, a0, r0, s1, a1, r1, …

V(s) = 𝔼[
∞

∑
t=0

γtr(st, at)] s = s0

Agent

Environment

A
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n
a t

R
ew

ar
d
r t

S
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s t

st+1

rt+1

Reinforcement learning
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Reinforcement learning over all stable behaviour
A modular setup

1. Willems’ lemma


2. Youla-Kučera


3. Learning algorithm

Decouples learning and stability

-1

+ OutIn

{ }

+

adequate instrumentation. Therefore, we de- 
cided to make our own equipment. 

The system used is shown in Fig. I .  It 
consists of two cascaded tanks made of 
transparent plexiglass, a  sump. and a pump. 
The pump is a high-quality gear pump driven 
by a velocity-controlled DC motor. The same 
pump is used in dialysis machines. We also 
built the electronics, which converts a stan- 
dard 0- to 10-V DC signal to pump  speed. 
The tank levels are measured by capacitive 
sensors. The  sensor signals are converted to 
standard 0- to 10-V DC signals proportional 
to the levels. The electronics is stable so that 
good calibration coefficients can be given to 
the students. 

The process design allows students to see 
directly what is happening. The levels are 
easily visible. Since the  water inlet is  tilted, 
the inflow can be judged visually. Distur- 
bances are introduced simply by adding water 
to the tanks from a pitcher, or by opening a 
valve in the upper tank. See Fig. 1 .  Mea- 
surement noise can be simulated by blowing 
air into the tanks through a small tube. 

Time Scales 

Considerable thought was given to the 
choice of time constants.  The process should 
be slow enough so that the students can see 
what is happening, but it should not be so 
slow that it is boring. The tanks are designed 
to take 90 sec to empty and about 30 sec to 
fill when the pump motor is running at full 
speed. Further. it was desired that the pro- 
cess be slow enough to favor thinking and 
computing over pure experimentation. 

The PC 

It  is necessary to have control equipment 
and recorders. We decided at  an early stage 
to use a personal computer  (PC)  for these 
functions. One reason was that we wanted 
to introduce digital control from the very be- 
ginning of the course. After considering 
available systems, we decided to use an Ap- 
ple II. This was one of the cheapest, most 
commonly used computers, with reasonable 
graphics and a wide choice of interface 

Fig. 1. The laboratory process. 

boards. Some preliminary experimentation 
showed that the relatively poor graphics res- 
olution was adequate. An interface card from 
Mountain Hardware was chosen  for A/D and 
D/A conversion. This board gives a resolu- 
tion of 8 bits. which is satisfactov for our 
purposes. The low resolution also gives 
measurement noise in a natural way. A clock 
card UTIM by U'Microcomputers, Ltd.. was 
chosen. This board has the advantage that it 
does not require a battery. The choice of 
computer was a good one. When we ex- 
panded the lab we were able to get second- 
hand machines very cheaply. 

All programming was done in compiled 
Applesoft Basic. A drawback is  that  it is not 
easy to write well-structured. readable pro- 
grams. Two-character identifiers are not suf- 
ficient for readability. Some care in the pro- 
gramming ensures that all programs can be 
run at a sampling rate of at least IO Hz. 
which is sufficient. 

The Experiments 

In this section. we will briefly describe the 
experiments performed. 

Experiment I 

The goal of the first experiment is to pro- 
vide empirical experience of simple feed- 
back control. This experiment is scheduled 
for the second week  of the course. when the 
students have had an introductory lecture on 
automatic control.  The students start by ex- 
ploring the system. They make process dia- 
grams and  block diagrams. and continue with 
simple experiments with manual and auto- 
matic control of the tank levels. In particu- 
lar, they are asked to explore  P and PI con- 
trol of the upper tank. including set-point 
changes and load disturbances. They are also 
required to record their observations, partic- 
ularly the numerical values of reasonable 
regulator parameters and step response. static 
error, etc. 

To perform the experiment. the students 
run a preprogrammed PID regulator. The 
screen menu for the first experiment is shown 
in Fig. 2. The different entries are largely 
self-explanatory. This menu is shown when 
the system is initiated, and different options 
are chosen by typing the corresponding let- 
ter.  Once the control options are selected, 
the system switches to the graphic mode. 
The process inputs and outputs are then dis- 
played. as shown in Fig. 3. The  system re- 
turns to the menu when any key is pressed. 
The regulator output is then frozen. 

Some of the details of the PID algorithm 
are hidden in the unseen program algorithm, 
such as elimination of integral windup. lim- 

PID Regulator 

Alter configuration (C) 
Alter parameters (P) 
Manual control (MI 
Automatic control (A) 
Hard copy (HI 
Store (SI 
Quit (Q) 

Fig. 2 .  Menu for the simple PID regula- 
tor. 

Heasured s i g n a l  & s e t   o i n t  r------el 
P u l s e  lood-?lsturDonce 

F Step load-d~s!urbance 

ICont.r-ol signal 

f 

I 

100 zoo 
Fig. 3. Results of level control of the up- 
per tank with a proportional regulator. 
Note the large steady-state errors and the 
sensitivity to load disturbances. 

itation of derivative gain.  ctc. At this stage. 
the students see the control as an ideal text- 
book PID regulator. More details are shown 
to the students in later experiments. 

The dynamics of the upper tank is just  a 
first-order lag. Such a process is very easy 
to control.  The gain is limited by the mea- 
surement noise. Since both the A/D and 
D/A converters have a resolution of 8 bits. 
it follows that the highest proportional gain 
is 255. With this gain. one bit  of the A/D 
converter gives fu l l  swing in the output. Fig- 
ure 3 shows the performance of a regulator 
with a gain of 5 with load disturbances. 
There are large steady-state errors as ex- 
pected. Notice the sensitivity to the load dis- 
turbances. Figure 4 shows the response when. 
a PI regulator is used. A comparison of Figs. 
3 and 4 clearly shows the benefit of integral 
action in reducing steady-state errors.  The 
PI regulator has a gain of 10 and an integral 
time of 8 sec. 

It is more difficult to control the level in 
the lower tank. 

Proportional control gives a large steady- 
state error. Figure 5 shows the performance 
of a proportional regulator with a gain of 5 .  
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• RL agent manipulates  parameter


• End-to-end stable learning with 
DNN based control


‣ Stable during and after training 
without loss in performance

Q

Industrial example
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Astrom, K., and A-B. Ostberg. "A teaching laboratory for process control.”, 1986

adequate instrumentation. Therefore, we de- 
cided to make our own equipment. 

The system used is shown in Fig. I .  It 
consists of two cascaded tanks made of 
transparent plexiglass, a  sump. and a pump. 
The pump is a high-quality gear pump driven 
by a velocity-controlled DC motor. The same 
pump is used in dialysis machines. We also 
built the electronics, which converts a stan- 
dard 0- to 10-V DC signal to pump  speed. 
The tank levels are measured by capacitive 
sensors. The  sensor signals are converted to 
standard 0- to 10-V DC signals proportional 
to the levels. The electronics is stable so that 
good calibration coefficients can be given to 
the students. 

The process design allows students to see 
directly what is happening. The levels are 
easily visible. Since the  water inlet is  tilted, 
the inflow can be judged visually. Distur- 
bances are introduced simply by adding water 
to the tanks from a pitcher, or by opening a 
valve in the upper tank. See Fig. 1 .  Mea- 
surement noise can be simulated by blowing 
air into the tanks through a small tube. 

Time Scales 

Considerable thought was given to the 
choice of time constants.  The process should 
be slow enough so that the students can see 
what is happening, but it should not be so 
slow that it is boring. The tanks are designed 
to take 90 sec to empty and about 30 sec to 
fill when the pump motor is running at full 
speed. Further. it was desired that the pro- 
cess be slow enough to favor thinking and 
computing over pure experimentation. 

The PC 

It  is necessary to have control equipment 
and recorders. We decided at  an early stage 
to use a personal computer  (PC)  for these 
functions. One reason was that we wanted 
to introduce digital control from the very be- 
ginning of the course. After considering 
available systems, we decided to use an Ap- 
ple II. This was one of the cheapest, most 
commonly used computers, with reasonable 
graphics and a wide choice of interface 

Fig. 1. The laboratory process. 

boards. Some preliminary experimentation 
showed that the relatively poor graphics res- 
olution was adequate. An interface card from 
Mountain Hardware was chosen  for A/D and 
D/A conversion. This board gives a resolu- 
tion of 8 bits. which is satisfactov for our 
purposes. The low resolution also gives 
measurement noise in a natural way. A clock 
card UTIM by U'Microcomputers, Ltd.. was 
chosen. This board has the advantage that it 
does not require a battery. The choice of 
computer was a good one. When we ex- 
panded the lab we were able to get second- 
hand machines very cheaply. 

All programming was done in compiled 
Applesoft Basic. A drawback is  that  it is not 
easy to write well-structured. readable pro- 
grams. Two-character identifiers are not suf- 
ficient for readability. Some care in the pro- 
gramming ensures that all programs can be 
run at a sampling rate of at least IO Hz. 
which is sufficient. 

The Experiments 

In this section. we will briefly describe the 
experiments performed. 

Experiment I 

The goal of the first experiment is to pro- 
vide empirical experience of simple feed- 
back control. This experiment is scheduled 
for the second week  of the course. when the 
students have had an introductory lecture on 
automatic control.  The students start by ex- 
ploring the system. They make process dia- 
grams and  block diagrams. and continue with 
simple experiments with manual and auto- 
matic control of the tank levels. In particu- 
lar, they are asked to explore  P and PI con- 
trol of the upper tank. including set-point 
changes and load disturbances. They are also 
required to record their observations, partic- 
ularly the numerical values of reasonable 
regulator parameters and step response. static 
error, etc. 

To perform the experiment. the students 
run a preprogrammed PID regulator. The 
screen menu for the first experiment is shown 
in Fig. 2. The different entries are largely 
self-explanatory. This menu is shown when 
the system is initiated, and different options 
are chosen by typing the corresponding let- 
ter.  Once the control options are selected, 
the system switches to the graphic mode. 
The process inputs and outputs are then dis- 
played. as shown in Fig. 3. The  system re- 
turns to the menu when any key is pressed. 
The regulator output is then frozen. 

Some of the details of the PID algorithm 
are hidden in the unseen program algorithm, 
such as elimination of integral windup. lim- 
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Fig. 3. Results of level control of the up- 
per tank with a proportional regulator. 
Note the large steady-state errors and the 
sensitivity to load disturbances. 

itation of derivative gain.  ctc. At this stage. 
the students see the control as an ideal text- 
book PID regulator. More details are shown 
to the students in later experiments. 

The dynamics of the upper tank is just  a 
first-order lag. Such a process is very easy 
to control.  The gain is limited by the mea- 
surement noise. Since both the A/D and 
D/A converters have a resolution of 8 bits. 
it follows that the highest proportional gain 
is 255. With this gain. one bit  of the A/D 
converter gives fu l l  swing in the output. Fig- 
ure 3 shows the performance of a regulator 
with a gain of 5 with load disturbances. 
There are large steady-state errors as ex- 
pected. Notice the sensitivity to the load dis- 
turbances. Figure 4 shows the response when. 
a PI regulator is used. A comparison of Figs. 
3 and 4 clearly shows the benefit of integral 
action in reducing steady-state errors.  The 
PI regulator has a gain of 10 and an integral 
time of 8 sec. 

It is more difficult to control the level in 
the lower tank. 

Proportional control gives a large steady- 
state error. Figure 5 shows the performance 
of a proportional regulator with a gain of 5 .  
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Conclusions

• Constant advances in deep RL 
push the boundaries of what is 
possible


• This success is often misaligned 
with industrial priorities


‣ Performance is not the only 
metric


• We aim to preserve flexibility of 
general learning algorithms & 
maintain key system features
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