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Abstract: We adapt reinforcement learning methods for continuous control to bridge the gap
between complete ignorance and perfect knowledge of the environment. Our method, Partial
Knowledge Least Squares Policy Iteration (PLSPI), takes inspiration from both model-free RL
and model-based control. It uses incomplete information from a partial model and retains RL’s
data-driven adaption towards optimal performance. The linear quadratic regulator provides a
case study; numerical experiments demonstrate the effectiveness and resulting benefits of the
proposed method.
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1. INTRODUCTION

Reinforcement learning (RL) is an online process that
enables an agent to autonomously adapt to its environ-
ment. It has recently achieved great success on complex
tasks such as playing Atari games (Mnih et al., 2015),
winning at Go (Silver et al., 2016), and OpenAI Five
(Berner et al., 2019). However, RL is famously data-hungry
(Ye et al., 2021; Yu, 2018). Poor sample efficiency is a
secondary concern in the purely virtual tasks mentioned
above, but it is a critical limitation in real-world systems
like robotics, healthcare, and industrial processes, where
every observation costs time and money.

Researchers have made a lot of progress in sample effi-
cient RL in recent years, including exploration (Plappert
et al., 2017), environment modeling (Tamar et al., 2016),
abstraction (Bacon et al., 2017), meta-RL (McClement
et al., 2022) and more. In most of these cases, however, the
RL formulation assumes the learner knows nothing of the
system. In many practical problems, we have some prior
information about the system, such as its order, structure,
or even some of the model parameters. If RL could utilize
such information instead of learning everything about its
environment from scratch, we can reasonably expect an
improvement in sample efficiency.

Of course, when a complete and accurate model for the
system is available, classic model-based control techniques,
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such as optimal control, will be preferred. Sampling and
data are not required at all. One even has tidy analytical
solutions in certain well-studied cases, such as the linear
quadratic regulator (LQR). These classic control methods
do not adapt to changes in the environment, however. Fur-
thermore, complete and accurate models are vanishingly
rare in practice (Spielberg et al., 2019). In this research,
we aim to build a bridge from the theoretical world of LQR
to the practical world of partial knowledge and inevitable
uncertainty.

The recent advances in model-based RL (MBRL) share
the motivations above (Deisenroth and Rasmussen, 2011).
MBRL was also developed to improve sample efficiency,
however, sample efficiency is achieved by trading off per-
formance. In spite of the term “model-based” in its name,
MBRL works in a different way from control. It first uses
sampled data to fit a model, then uses the synthetic model
to generate more data. These artificial data and real data
are merged into a single batch of synthetic data to train a
policy. Hence, the fundamental idea behind MBRL is still
feeding the learning agent with more data. In contrast,
this research aims to develop a learning framework using
sample-free control techniques while retaining the ability
to explore the uncertain part of the environment in pursuit
of optimal performance.

Within the limited research on this topic, (Tamar et al.,
2011; Shelton, 2002) define and use partial model knowl-
edge in an RL framework, but their methods are based on
discrete Markov decision process (MDP) models with finite



action and state spaces. This does not fit with continuous
control.

In the initial explorations described here, we focus on
LQR, but we expect nonlinear applications to follow. In
practice, LQR models are often used to approximate and
control more general systems. Further, even though LQR
is the most basic and important optimal control problem
with unbounded, continuous state and action spaces, the
problem of incorporating a priori information has not been
thoroughly investigated.

To this end, we propose a novel off-policy algorithm
named Partial Knowledge Least Squares Policy Iteration
(PLSPI) for learning-based LQR with partially known
parametric model information. Specifically, our method
combines classic LSPI (Lagoudakis and Parr, 2003), which
is a model-free method utilizing a linear structure of the
value function, with optimal control techniques.

The method proposed here offers two key benefits:

(1) PLSPI gives RL the ability to use partial parametric
system information, so that the sample efficiency can
be improved.

(2) PLSPI provides a conceptual link between model-free
learning and model-based control.

2. PRELIMINARIES

2.1 Notation

For any fixed vector q in Rn, the quadratic form qTQq
is a linear function of its symmetric n × n matrix Q. To
make this explicit, define the “overbar” function on vectors
and matrices. Let q denote the column vector of length
1
2n(n+1) whose elements list all possible products of two
elements from q, i.e.,

q = [q21 , q1q2, . . . , q1qn, q
2
2 , q2q3, . . . , q2qn, q

2
3 , . . . , q

2
n]

T .

Then let Q denote the vector of length 1
2n(n + 1) whose

elements list the upper triangular entries in Q, ordering
the elements of q and Q so that the usual quadratic form
involving q and Q turns into an inner product:

qTQq = q′Q.

Use Tr(·) to represent the trace of a matrix; and E(·) for
the mathematical expectation; let [·]T and [·]′ equivalently
represent transpose of a vector or a matrix.

2.2 The linear quadratic regulator (LQR)

LQR aims to minimize the accumulated quadratic cost
for a linear dynamical system. This paper focuses on the
infinite horizon time-invariant discrete-time LQR, in which
the cost function is

r(xt, ut) = xT
t Qxt + uT

t Rut

for prescribed matrices Q = QT ≥ 0 and R = RT > 0.
In the general formulation, a discount factor γ ∈ (0, 1] is
given and the problem is

min J = E

( ∞∑
t=0

γtr(xt, ut)

)
s.t. xt+1 = Axt +But + ξt

(1)

Here the ξt are independent and identically distributed
Gaussian random vectors with E(ξt) = 0 and E(ξtξTt ) =
W . The deterministic case arises when W = 0; in this
situation the expectation is superfluous, and we typically
consider γ = 1. In the stochastic case, the covariance
W = WT > 0 is known and we choose γ ∈ (0, 1).

Both stochastic and deterministic LQR problems can
be solved using dynamic programming, where the value
function is first evaluated, and then an optimal controller
with linear form is obtained. An advantage of the LQR
formulation is that the cost-to-go function is a quadratic
function of state x. The value function is obtained by
solving a Discrete Algebric Riccati Equation (DARE)

P = Q+ γATPA− γATPB(R+BTPB)−1BTPA (2)

where P induces a positive definite quadratic form which
can be interpreted as a value function for the LQR prob-
lem. For deterministic LQR, the value function is of the
form

V (xt) = xT
t Pxt, (3)

while for stochastic LQR, the value function includes a
term independent of the state

V (xt) = xT
t Pxt +

γ

1− γ
Tr(WP ). (4)

Once the matrix P has been determined, the unique
optimal controller is given by

u∗
t = −Kxt = −γ(R+BTPB)−1BTPAxt. (5)

A companion to the state value function V , that takes the
state x as input, is the state-action value function Q, that
takes state and action pairs (x, u) as inputs. It can also be
written as a quadratic form. For deterministic LQR, the
derivation is as follows (Bradtke et al., 1994):

QK(x, u) = r(x, u) + γVK(f(x, u))

= xTQx+ uTRu+ γ(Ax+Bu)TPK(Ax+Bu)

= [x, u]T
[
Q+ γATPKA γATPKB
γBTPKA R+ γBTPKB

]
[x, u]

= [x, u]T
[
HK(11) HK(12)

HK(21) HK(22)

]
[x, u]

= [x, u]THK [x, u].
(6)

Under our hypotheses, the matrix HK is positive definite.
For stochastic LQR, there is an additional constant term
in it

QK(x, u) = [x, u]⊤HK [x, u] +
γ

1− γ
Tr(WPK) (7)

whereHK has the exact same form as that of deterministic
case.

2.3 Policy iteration for LQR

Policy iteration is the most important and popular method
for model-free control. Policy iteration involves two re-
peated steps: policy evaluation, and policy improvement.
For LQR, both steps have analytical solutions. As shown
in (6), the cost-to-go function has been parameterized as
a quadratic function with respect to state-action pairs.
Hence, with the help of the ‘overbar’ function [·], the
quadratic form can be written as a linear form, and least
squares estimation (LSE) can be applied to the policy
evaluation step.



Bradtke et al. (1994) first followed this straightforward
idea and developed the policy iteration method for de-
terministic LQR. Given a tuple of data (xi, ui, ri, xi+1)
belonging to dataset D, the following recursion can be
written

QK (xi, ui) = r(xi, ui) + γVK(xi+1)

= r (xi, ui) + γQK (xi+1,Kxi+1) .
(8)

With its quadratic representation, the equation for identi-
fying the state-action value function can be constructed

[xi, ui]
′
HK [xi, ui] = r (xi, ui)

− γ [xi+1,Kxi+1]
′
HK [xi+1,Kxi+1]

(9)

Using the ‘overbar’ function [·] for vectors and matrices,
equation (9) can be written as(

[xi, ui]
′
− γ[xi+1,Kxi+1]

′)
HK = r (xi, ui) . (10)

For the policy improvement step, the updated controller
is obtained through

K = −H−1
K(22)HK(21). (11)

Equation (10) is often referred to as Bellman Resid-
ual Minimizing Approximation. While also utilizing the
quadratic structure of the value function, a more ad-
vanced approach is proposed in Least Squares Temporal
Differences (LSTD) (Bradtke and Barto, 1996) and Least
Squares Policy Iteration (LSPI) (Lagoudakis and Parr,
2003) for the policy evaluation step. The detailed deriva-
tion is out of scope for this paper, but the final estimation
equation turns out to require only a slight modification of
(10):

[xi, ui]([xi, ui]
′
− γ[xi+1,Kxi+1]

′
)HK

= r (xi, ui) [xi, ui],
(12)

where [xi, ui]([xi, ui]
′
−γ[xi+1,Kxi+1]

′
) is a square matrix.

Line (12) is often referred as Least-Squares Fixed-Point
Approximation. (Lagoudakis and Parr, 2003) state that
this way of constructing the learning equation requires
fewer samples and can obtain a superior policy. As shown
above for stochastic LQR, there is a constant term in

the value function. In this paper, we still use [x, u]
′
HK

to approximate QK . This won’t affect too much on the
results under noise with low variance, which is a reasonable
assumption in practice.

In contrast to (Bradtke et al. (1994)), LSPI estimates the
variable HK by summing all equations (12) with respect
to all the tuples in the dataset D and then solving the final
equation

∑
i∈D

[xi, ui]([xi, ui]
′
− γ[xi+1,Kxi+1]

′
)HK

=
∑
i∈D

r (xi, ui) [xi, ui].
(13)

Furthermore, the framework of LSPI contains an outer
loop and an inner loop: the inner loop evaluates and
improves the policy by iterating with the same dataset ;
the outer loop interacts with the environment and updates
the dataset with the newest learned policy.

3. PROBLEM STATEMENT

This paper focuses on the stochastic LQR formulated
above, with W = σ2

ωI. Our method can also be adapted
to deterministic settings.

We assume that we have, prior to running the algorithm,
some information about system dynamics A and B. We are
trying to learn an optimal solution, under the assumption
that some of the elements of A and B are known, and
others are unknown.

4. RL WITH PARTIAL KNOWLEDGE

In this section, we describe our method of endowing a
model-free RL algorithm with partial model knowledge.
Our method aims to reduce the sample data consumed by
RL, and this is achieved by constructing a better estima-
tion for the value function in the policy evaluation step.
Specifically, we utilize optimal control results and elegantly
fuse them into the LSPI scheme to enhance learning based
LQR. A novel method named Partial Knowledge Least
Square Policy Iteration (PLSPI) is developed to consider
partial model information and improve sample efficiency
in RL. The method is outlined as follows.

4.1 Representing Partial Model Information

Our method of considering partial model information is
based on decomposing the system dynamics A and B into
two parts

A = A1 +A2

B = B1 +B2,
(14)

where A1 and B1 contain all the known parameters,
and A2 and B2 contain all the unknown parameters.
Specifically, A1 and B1 set the parameters located in the
unknown place as 0; A2 and B2 set all the known part as 0,
and keeps the unknown part there. However, it should be
noted that one can have multiple choices of value to plug-
in. If some inaccurate estimation of the unknown parts
exits, plug-in the estimated value would be a better choice.

Take a second order scalar system for instance. Knowing
the order of the system, the decomposition can be con-
structed as

xn+1 =

[
0 1
? ?

]
xn +Bun

↓

xn+1 =

([
0 1
0 0

]
+

[
0 0
? ?

])
xn +Bun

(15)

where the left matrix is A1, the right matrix is A2. It will
be illustrated later that without identifying A2, the LQR
can still be solved with online data and A1.

With A1 and B1, and a given controller K1, a sub-model
containing known model information can be constructed
as

x̃1 = A1x0 −B1K1x0 (16)

where x̃1 represents the consequent state executed from
the sub-model, and x0 is the sampled data input to the
sub-model. The sub-model shares the same cost matrix Q
and R with the original model. The choice of K1 will be
discussed in subsection 4.3.



With the sub-model, a DARE related to A1 and B1 can
be obtained as

PK1 = Q+KT
1 RK1 + γ(A1 −B1K1)

TPK1(A1 −B1K1).
(17)

With (17), PK1 can be solved offline. After having PK1,
the corresponding state-action value functionHK1 can also
be calculated offline, as follows:

HK1
=

[
R+ γAT

1 PK1
A1 γAT

1 PK1
B1

γBT
1 PK1A1 Q+ γBT

1 PK1B1

]
(18)

The result will be introduced into reinforcement learning
process in the next subsection.

4.2 Introducing Partial Model Information into RL

Having HK1
, the partial knowledge can be transferred into

the RL process. With the property of value function, that
the cost-to-go from current state-action can be expanded
as one stage cost plus the cost-to-go from the consequent
state-action, the following equation can be constructed

([xi, ui]
′
− γ[x̃i+1,K1x̃i+1]

′
)HK1 = r (xi, ui) , (19)

where (xi, ui) denotes a (state,action) pair sampled from
the real system. Unlike the state xi+1 sampled online, x̃i+1

represents the virtual next state obtained by stepping the
sub-model from the current state xi:

x̃i+1 = A1xi −B1K1xi (20)

The core of integrating partial model information into RL
is achieved by forming the difference between (9) and (19):

([xi, ui]
′
− γ[xi+1,Kxi+1]

′
)HK − ([xi, ui]

′

− γ[x̃i+1,K1x̃i+1]
′
)HK1

= r (xi, ui)− r (xi, ui)

⇒ ([xi, ui]
′
− γ[xi+1,Kxi+1]

′
)(HK −HK1

)

= γ([xi+1,Kxi+1]
′
− [x̃i+1,K1x̃i+1]

′
)HK1

(21)

Define HK −HK1 as HK2 . We will have

([xi, ui]
′
− γ[xi+1,Kxi+1]

′
)HK2

= γ([xi+1,Kxi+1]
′
− [x̃i+1,K1x̃i+1]

′
)HK1 .

(22)

We hypothesize that this will lead to an improvement on
sample efficiency. The idea behind this operation is that
instead of identifying HK from scratch, we can instead
identify the gap between what we have known (or a initial
guess/baseline of it) and the actual value of it, and hence
save data. Note that the right-hand side of the equation
can be viewed as a reformulated reward after introducing
partial model information. Plus, since the Q function takes
state and action as input, r(xi, ui) can always be cancelled
out no matter what value K1 is fed into the sub-model
(20).

Inspired by LSPI, a more advanced way to construct the
LSE equation is used. This can be simply done by slightly
adjusting (22)

[xi, ui]([xi, ui]
′
− γ[xi+1,Kxi+1]

′
)HK2

= γ[xi, ui]([xi+1,Kxi+1]
′
− [x̃i+1,K1x̃i+1]

′
)HK1 .

(23)

Given a batch of data D, the overall policy evaluation
equation is given by

∑
i∈D

[xi, ui]([xi, ui]
′
− γ[xi+1,Kxi+1]

′
)HK2

= γ
∑
i∈D

[xi, ui]([xi+1,Kxi+1]
′
− [x̃i+1,K1x̃i+1]

′
)HK1

.

(24)
Now (24) is the improved policy evaluation equation, that
takes both online data and prior model into account. The
sample efficiency can benefit from the improved equation.

4.3 Overall Algorithm

In (23), the choice of K1 is still pending. To facilitate a
connection between the sub-model and the real model,
the preferred choice of K1 is the same controller K
that is currently evaluated. However, sometimes K may
destabilize the sub-model. When this happens, K1 will be
chosen as the optimal controller of the sub-model, which
can be obtained by first solving (17) and then plugin it
into (5). The optimal controller will be noted as K∗

1 .

Another way to choose K1 is to fix it as K∗
1 through the

whole learning process. We tested this method, and it has
similar performance but the hybrid method above works
slightly better.

Following LSPI, PLSPI also contains two loops. It is
summarized as Algorithm 1.

Algorithm 1 Partial Knowledge LSPI (PLSPI)

1: Input: Rollout numbers N ; Time horizon T ; Explo-
ration noise ϵt; Partial model A1 and B1; Maximum
iterations I1 and I2.

2: Initialization: Initialize controller K.
3: for i = 0, . . . , I1 do
4: D ← ∅
5: Execute ut = −Kxt+ϵt forN episodes. StoreN×T

pairs of data for D.
6: for j = 0, . . . , I2 do
7: if A1 −B1K is stable then
8: K1 = K
9: else

10: K1 = K∗
1

11: Solve (17)(18) to obtain HK1.
12: Identify HK2 with (24), and obtain HK with

HK = HK1 +HK2 .
13: Improve policy with K = −H−1

K(22)HK(21).

14: return K

Remark 1. Our method can serve as a bridge between
control and RL. Consider the extreme cases. When the
prior information is the full model, and the initial con-
troller is initialized with the full model, the estimation
actually needs no data: it reduces to solving a fully-
specified optimal control problem. When prior information
is completely absent, then the scheme reduces to classic
LSPI, which finds the optimal policy totally by data.

5. NUMERICAL EXAMPLES

We present several simulation examples to illustrate our
algorithm. The first example tests the effectiveness of



LSPI and the proposed method on LQR, specifically on a
deterministic undiscounted setting. The second example is
a more complex and unstable model with practical origins
(cooling system) which is used for comparison purposes.
In all experiments, the exploration noise follows i.i.d.
Gaussian random vectors with E(ϵt) = 0 and E(ϵtϵTt ) =
σ2
ηI, with σ2

η = 0.1. The controller K is initialized as 0.

5.1 Example 1

Consider the classic discrete-time double integrator with
dynamic coefficients

A =

[
1 1
0 1

]
, B =

[
0
1

]
,

and quadratic cost coefficients

Q =

[
1 0
0 1

]
, R = 1.

The system is deterministic so that the noise ξt = 0. The
discount factor γ is set to 1. The eigenvalues of the system
both equal 1, meaning that the system is on the boundary
of stability.

For our PLSPI method, the partial information is set as

A1 =

[
1 1
0 0

]
, B1 =

[
0
1

]
.

The problem is simple, so both LSPI and PLSPI perform
well. They converge to the optimal controller within just
1 or 2 iterations. Each iteration contains 30 rollouts, with
one rollout being a run with a horizon of 20 steps.

5.2 Example 2

Next we consider a simplified model of a 3-level cooling
system, which is a popular test scenario for RL applica-
tions (Tu and Recht, 2018; Krauth et al., 2019; Dean et al.,
2020). The detail is as follows,

A =

[
1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

]
,

B = I, Q = I, R = 1000I, σ2
ω = 0.01, and γ = 0.98. The

open-loop system is unstable, which increases the difficulty
for the learning algorithm. To make the problem harder,
we use the scale factor 1000 to penalize control action
through R much more heavily than state offsets through Q
This puts the maximum eigenvalue of the optimal closed-
loop around 0.98, making the system challenging to tune.
We assume knowledge of only the diagonal entries in the
dynamic matrices, setting the partial information as

A1 =

[
1.01 0 0
0 1.01 0
0 0 1.01

]
, B1 =

[
1 0 0
0 1 0
0 0 1

]
.

The performance of PLSPI and LSPI is compared in terms
of the average trend and the variation of the evolution
from multiple simulations. Specifically, we run LSPI and
our PLSPI for 10 times each, and obtain Fig. 1.

Particularly, two versions of LSPI are tested here. LSPI-v1
follows the original setting, where the inner loop iterates
for multiple times (5 in our case) given a fixed batch of
data; LSPI-v2 adopts the setting in (Krauth et al., 2019),

Fig. 1. The comparison between different methods in terms
of the evolution of closed-loop system with respect to
iterations. Each iteration contains 30 rollouts, with
each rollout running 20 steps. The shaded area rep-
resents the variance of each method, with percentile
0-75%. The solid line represents the median of each
method.

where there is no inner loop, meaning each batch of data
is only used for once.

Fig. 1 shows PLSPI converging faster than both versions
of LSPI. More importantly, the shaded region showing
observed variance is also smaller for PLSPI, which indi-
cates another benefit: given limited data, PLSPI learns
the optimal controller with better accuracy. These benefits
contribute to the better sample efficiency of our method.

The stochastic system response is also tested, with the
results shown in Fig.2. Trajectories in Fig.2 show that
the learned controller can regulate the states under a
stochastic system point of view.

Fig. 2. Stochastic trajectories generated from the learned
controller. The X-axis represents simulation steps.

We further apply the algorithm to a completely known
system model (knowledge on noise term is not required)
to test an extreme case. Fig.3 shows the result.

In Fig. 3, the learner gets to the optimal solution with
only 1 iteration, and evolves without any variance. The
initial variance is related to the random initialization of
the controller. If the controller is initialized with the given



Fig. 3. Results of PLSPI given a completely known system
model, with percentile 0-100%.

model, the variance can also be eliminated. This result
follows the purpose of the algorithm design: given complete
information about the system, the algorithm will follow a
fully optimal control solution process, without consuming
any data.

6. CONCLUSION

In control tasks, some partial parametric model informa-
tion is often known, but seemingly under-utilized in model-
free RL. Taking it as a starting point, we have adopted
complementary benefits in model-free RL and model-based
control to develop a framework that aims to bridge both
sides. This paper is a proof of concept and there are many
avenues to explore. These include the exact learning for
value function under stochastic setting; theoretical guar-
antee on when partial information is useful; and extensions
to nonlinear systems. We believe this is a promising area to
investigate further as RL gains traction in process systems
engineering.
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